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A SIMPLE SOLUTION OF HILBERT’S FOURTEENTH PROBLEM
IN DIMENSION FIVE

BY

ARNO VAN DEN ESSEN (Nijmegen)

Abstract. We give a short proof of a counterexample (due to Daigle and Freuden-
burg) to Hilbert’s fourteenth problem in dimension five.

Introduction. In 1900 at the International Congress of Mathematicians
in Paris David Hilbert presented a list of 23 problems, intended to challenge
the mathematicians of the new century. The fourteenth problem of this list
can be stated as follows: let k be a field, k[z] := k[x1, ..., z,] the polynomial
ring, k(z) its quotient field and L a subfield containing k.

Is LN k[z] a finitely generated k-algebra?

A positive answer was given by Zariski ([7]) in case trdeg;, L < 2. However
in 1958 Nagata ([5]) constructed a counterexample in dimension 32. Then in
1988 Roberts ([6]) found a new counterexample in dimension 7. Recently, in
1998 Freudenburg ([2]), studying Robert’s example, found a 6-dimensional
counterexample, from which a 5-dimensional example was obtained in 1999
by Daigle and Freudenburg in [1]: they consider on B := k[X, S, T, U, V] the
derivation D := X39g + SO 4+ TOy + X20y and show that BP :=ker D :
B — B is not finitely generated over k (then the quotient field L of BP is
a counterexample to Hilbert fourteen, since L N B = BP).

The main aim of this note is to give a short proof of this result, by
substantially simplifying the arguments given in [1] and [2].

Finally, I would like to mention that recently S. Kuroda has constructed
new counterexamples to Hilbert fourteen in the missing dimensions 4 and 3

(131 [4])-

1. The main result. Throughout this paper we use the following no-
tations: k is a field of characteristic zero,

B:=k[X,S,T,U, V], Dgy:=X33s+8S0r+T0y;, D:=Dy+X?dy.
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Furthermore,
A= k[S,T, U], D1 = 83+S(‘3T+T8U.

Finally, for any 0 # f € B, deg f denotes the usual degree of f. We also
use another grading on A given by a vector w € N* and we write w-deg to
denote the degree with respect to this grading. The main aim of this note
is to give a short proof of

THEOREM 1.1 (Daigle-Freudenburg). BP is not a finitely generated k-
algebra.

The proof is based on the following result which will be proved in the
next section.

PROPOSITION 1.2. Let e : N — N be defined by e(3l) = 21, e(31 + 1) =
e(3l+2) =20+ 1 for all 1 > 0. There exist co = 1,c1,c9,... in A with
Dic; = ¢;—1 and degc; < e(i) for alli > 1

Proof of Theorem 1.1. (i) Define

; S T U
. y2i+l
o= X e( 5

Then one easily verifies that Dya; = X2a;—; for all i > 1 and that

> for ¢ > 0.

e . ! .
F, = ;(_1)2(”712')! a;V" e BP  foralln>1.
Suppose now that BP is finitely generated by gi,...,gs over k. We may
assume that g;(0) = 0 for all i. Write g; = > g;;V7 with ¢;; € k[X, S, T, U].
By (ii) below we find that g;; € (X,S,T,U) for all i,j. Let d denote the
maximum of the V-degrees of all g;. Consider Fy; = XV %! +lower degree
V-terms as above. So Fy1 € BP = k[g1,...,gs]. Looking at the coefficient
of V1 we deduce that X € (X, S,T,U)?, a contradiction.

(ii) To prove that g;; € (X,S,T,U) for all 4,j it suffices to show that
if g =Y g;V7 € BP satifies g(0) = 0 then each g; € (X,S,T,U). First,
clearly go € (X,S,T,U). So let j > 1. From Dg = 0 we get jg;X? =
Do(—gj—1) € Do(k[X,S,T,U]) C (X3,8,T) for all j > 1. If g;(0) € k*, then
X? e (X3,8,T,UX?), contradiction. So ¢;(0) = 0, i.e. g; € (X, S, T,U).

2. The proof of Proposition 1.2. Put
1 1
TI::T—§SQ, U1::U—ST+§S3.

Then A = k‘[Tl,Ul][S]. Since D1T1 = D1U1 = 0 and D18 = 1 we get
AP = k[T1,U;]. Consider on A the grading defined by w(S) = 1,w(T) = 2
and w(U) = 3. Then D;(A,) C A,—; forall n > 1, where A,, is the k-span of
all monomials of A of w-degree n. By induction on n we construct ¢, € A.
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So assume that ¢, is already constructed. Write ¢, = E?:o H,_;S" with
H, ;€ A, ;N AP (this is possible since A = APt [S] and ¢, € A,). Then

n

- 1 -

Cnt+l = Z H—lHn—iSHl € Ann1
=0

and Di(¢y+1) = ¢p. Finally, by Lemma 2.1 below, there exists h € A, 11 N

AP such that ¢,,1 := ¢p41 — h satisfies deg c,qq < e(n+1).

LEMMA 2.1. If f € A,41 is such that deg D1 f < e(n), then there ezists
h € Ani1 N AP such that deg(f — h) < e(n+1).

Proof. (i) Let n = 3[ (the cases n = 3l + 1 and n = 3l + 2 are treated
similarly) and let M be the k-span of all f € A,,11 such that deg Dy f < 2I
(= e(31)). Write f =" . S*TIU* with i + 25 + 3k = 31 + 1 and %, € k.
Then
D\ f = Z (icviji+ (G + D2 i1+ (k+1Day_1j-1 1) S TIUR.

i+2j+3k=31+1

So
(x) degDif <20 i doyjn + (K + a1 j—16+1+ (J+ 12416 =0

for all i, j, k satisfying i +2j +3k=3l+1and (i —1)+j+k >20+1, ie.
i+j+k > 20+2. For such a triple we have ¢ > 0. Hence by () each aj;, is a
linear combination of certain c,q,’s with p+¢+r < i+ j+ k. Consequently,
each a;ji, is a linear combination of the ayq.’s satisfying p + q +r = 2 + 2.
Since there are [(I — 1)/2]+1 of them (just solve the equations p+2¢+3r =0
and p+ g+ r = 20+ 2) it follows that dim (M) < [(I — 1)/2] + 1, where for
any g € A, m(g) denotes the sum of all monomials of g of degree > 21 4 2.
(ii) Put N := AP* N A, ;1. Then N is the k-span of all “monomials”

ny = TPP20 =@l where 0 < p < [(1—1)/2].
CrLAIM. The m(np) are linearly independent over k.

It then follows from (i) and the inclusion 7(N) C 7(M) that «(N) =
(M), which proves the lemma.
(iii) To see the claim put

wy 1= (_2)3p+23l_(2p+1)7r(np)|T:O,U:%S — W((52)3p+2(5 + SS)Z_(2p+1)).

Observe that

—(2p+1)
(52)3p+2(5 + 53)1—(2p+1) — Z (l - (2;'9 + 1)>SSI+1—2j.
§=0
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Since 31 +1—2j > 20 +2iff 0 < j < [(I —1)/2] we get

a1/
2+l .
w= (l Cr+ ))53”1—%

j=0 J

Then the linear independence of the w, (and hence of the m(n,)) follows

since (9 )
- +
aer (177 0.
J 0<p,j<[(1-1)/2]
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