VOL. 88

2001

NO. 1

WEAK* CONVERGENCE OF ITERATES OF LASOTA-MACKEY-TYRCHA OPERATORS

BҮ

WOJCIECH BARTOSZEK (Gdańsk)

Dedicated to the memory of Anzelm Iwanik

Abstract. We show that Lasota–Mackey–Tyrcha stochastic operators, which are used in mathematical modeling of cell cycles, have weak^{*} convergent iterates.

1. Introduction. Let (X, d) be a separable metric space such that all finite closed balls $K(x_0, r) = \{x \in X : d(x, x_0) \leq r\}$ are compact. Given a σ -finite measure μ on the Borel σ -algebra \mathcal{B} of subsets of (X, d) we denote by $(L^1(\mu), \|\cdot\|)$ the Banach lattice of μ -integrable functions on X. Functions from $L^1(\mu)$ which are equal μ -almost everywhere are identified. Then instead of \mathcal{B} we will rather think of its μ -completion $\widetilde{\mathcal{B}}$. If not stated otherwise also all inequalities are in the μ -a.e. sense. The convex set $\{f \in L^1(\mu) : f \geq 0, \int_X f d\mu = 1\}$ of all densities is denoted by \mathcal{D}_{μ} .

A linear operator $P: L^1(\mu) \to L^1(\mu)$ which preserves \mathcal{D}_{μ} (i.e. $P(\mathcal{D}_{\mu}) \subseteq \mathcal{D}_{\mu}$) is called *markovian* (or a *Markov operator*). If there exists a Borel measurable function $k: X \times X \to \mathbb{R}_+$ such that $Pf(x) = \int_X k(x,y)f(y) d\mu(y)$, then the Markov operator P is called a *kernel operator*. Clearly, in this case, for every $y \in X$ we have $\int k(x,y) d\mu(x) = 1$. Here we require $k(\cdot,y) \in \mathcal{D}_{\mu}$ for all y, instead of almost all, to extend P to all finite measures on X. Otherwise, this extension would be defined only on a set of full μ -measure. Now P is extended to a positive contraction (also denoted by P), acting on the Banach lattice $(\mathcal{M}(X), \|\cdot\|)$ of all bounded signed measures ν on (X, \mathcal{B}) , by

$$P\nu(A) = \int_X \int_X k(x, y) \mathbf{1}_A(x) \, d\mu(x) \, d\nu(y)$$

Obviously $P\nu \in L^1(\mu)$.

²⁰⁰⁰ Mathematics Subject Classification: Primary 47A35.

Key words and phrases: Markov operator, asymptotic stability, 0-2 law, Foguel alternative, cell cycle.

Financial support from the National Research Foundation (South Africa) is gratefully acknowledged.

The paper is devoted to Markov operators on $L^1([0,\infty))$, the Banach lattice of Lebesgue integrable functions on $[0,\infty)$, with kernels

(1)
$$k(x,y) = \begin{cases} -\frac{\partial}{\partial x} H(Q(\lambda(x)) - Q(y)) & \text{if } 0 \le y \le \lambda(x), \\ 0 & \text{otherwise.} \end{cases}$$

The functions $H, Q, \lambda : [0, \infty) \to [0, \infty)$ are absolutely continuous and satisfy:

(H)
$$H(0) = 1$$
, $\lim_{x \to \infty} H(x) = 0$, H is nonincreasing,

(Q λ) $Q(0) = \lambda(0) = 0$, $\lim_{x \to \infty} Q(x) = \lim_{x \to \infty} \lambda(x) = \infty$, and Q, λ are nondecreasing.

The class of Markov operators with kernels (1) such that H, Q, λ satisfy conditions (H), (Q λ) is denoted by LMT (after Lasota, Mackey and Tyrcha whose contribution to mathematical modeling of cell cycles is crucial; see [GL], [LM1], [LM2], [LM3], [LMT], [KT], [R2] and [T] for more details).

A kernel stochastic operator on $L^1(\mu)$ is called *strong Feller in the strict* sense if the mapping

(SFS)
$$(X, d) \ni y \mapsto k(\cdot, y) \in (\mathcal{D}_{\mu}, \|\cdot\|)$$

is continuous. We note that for the adjoint operator P^* the condition (SFS) implies that, whenever $h \in L^{\infty}(\mu)$, then the image P^*h is continuous. This easily follows from $P^*h(y) = \int_X k(x, y)h(x) d\mu(x)$.

In this paper Markov operators P are (SFS) with P^* preserving $C_0(X)$, the Banach lattice of continuous functions h vanishing at infinity (i.e. h is continuous and for every $\varepsilon > 0$ there exists a compact set $E_{\varepsilon} \subseteq X$ satisfying $|h(x)| \leq \varepsilon$ for all $x \notin E_{\varepsilon}$). As usual $C_0(X)$ is endowed with the sup-norm $\|\cdot\|_{\sup}$. If there exists x_0 such that for every $\varepsilon > 0$ there is a function $r_{\varepsilon} : [0, \infty) \to [0, \infty)$ such that $\lim_{t\to\infty} (t - r_{\varepsilon}(t)) = \infty$ and

$$\inf_{y \in X} \int_{K(y, r_{\varepsilon}(\mathbf{d}(x_0, y)))} k(x, y) \, d\mu(x) > 1 - \varepsilon,$$

and the kernel k(x, y) has property (SFS), then $P^*C_0(X) \subseteq C_0(X)$. It has been noticed in [B] that LMT operators satisfy (SFS) and P^* preserves $C_0([0, \infty))$.

We recall that the set of all subprobabilistic positive measures on Xis compact for the vague topology. We say that a variation norm bounded sequence of measures ν_n is vaguely convergent to ν if $\lim_{n\to\infty} \int_X h \, d\nu_n = \int_X h \, d\nu$ for all $h \in C_0(X)$. Since $\mathcal{M}(X)$ may be identified with the adjoint space $C_0(X)^*$, this is simply weak^{*} convergence.

A Markov operator P on $L^1(\mu)$ is said to be asymptotically stable if there exists a (unique) $f_* \in \mathcal{D}_{\mu}$ such that $\lim_{n\to\infty} \|P^n f - (\int f d\mu) f_*\| = 0$ for all $f \in L^1(\mu)$. Obviously f_* is P-invariant, i.e. $Pf_* = f_*$. The Banach sublattice of all P-invariant functions is denoted by $L^1_*(\mu)$. The opposite concept to stability is sweeping. Given a family \mathcal{A}_* of subsets of \mathcal{B} we say that P is \mathcal{A}_* -sweeping if $\lim_{n\to\infty} \int_A P^n f \, d\mu = 0$ for all $A \in \mathcal{A}_*$ and $f \in \mathcal{D}_{\mu}$. Here \mathcal{A}_* satisfies the natural conditions that $0 < \mu(A) < \infty$ for all $A \in \mathcal{A}_*$, \mathcal{A}_* is closed under finite unions, and $\bigcup_{j=1}^{\infty} A_j = X$ for some sequence $A_j \in \mathcal{A}_*$. In our case \mathcal{A}_* is the family of all compact subsets (balls) of (X, d). It has recently been proved in [M] (see also [KM], [KT], [LR], [R1] and [LM2]) that an LMT operator either has an invariant density f_* or it is sweeping with respect to compact sets (thus the Foguel alternative holds).

In this paper we obtain a stronger result. Namely, we show that the iterates $P^n f$ of an LMT operator P are weak^{*} convergent to Qf, where Q is a submarkovian projection onto $L^1_*(\mu)$ (i.e. $Q^2 = Q \ge 0$ and $\int_X Qf d\mu \le 1$ for every $f \in \mathcal{D}_{\mu}$). Moreover, if $F \in \mathcal{B}$ denotes the minimal (modulo sets of measure zero) set which carries supports of all P-invariant densities, then $Q_F = Q \upharpoonright_{L^1(F,\mu)}$ is a markovian projection onto P-invariant functions, and $||P^n f - Q_F f|| \to 0$ for all $f \in L^1(F,\mu)$. We note that $L^{1}(F,\mu)$ is P-invariant and that F is well defined, because $L^{1}(\mu)$ is separable. If $F_j = \text{supp}(f_{*j})$, where f_{*j} is an ergodic invariant density, then $P_j = P \upharpoonright_{L^1(F_j,\mu)}$ is simply asymptotically stable on its domain. We note that for each $f \in \mathcal{D}_{\mu}$ we have $\int_{F_i} Qf \, d\mu = \lim_{n \to \infty} \int_{F_i} P^n f \, d\mu = \Lambda_j(f)$, where the last sequence does converge as it is bounded and nondecreasing (F_i) is invariant). This implies $Qf = \Lambda_j(f)f_{*j}$ on F_j . If there are no invariant densities at all, then obviously $Q \equiv 0$, and $\lim_{n\to\infty} \int_0^\infty P^n fh \, d\mu = 0$ for every $h \in C_0[0,\infty)$. In particular, P is sweeping with respect to the family of compact sets.

The rest of our notation is consistent with [F1]. We also use some of its results. Let us briefly recall them. Given a stochastic operator P on $L^{1}(\mu)$, the space X may be divided into two disjoint parts $C \cup D = X$. The conservative part C is characterized by $C = \{x \in X : f \ge 0 \Rightarrow$ $\sum_{n=0}^{\infty} P^n f(x)$ is either 0 or ∞ }. Because $P^* \mathbf{1}_C \geq \mathbf{1}_C$, the markovian operator $P_C f = P(\mathbf{1}_C f)$ is well defined. D is called the *dissipative part*. Obviously $P^* \mathbf{1}_D \leq \mathbf{1}_D$ and $\sum_{n=0}^{\infty} P^n f(x) < \infty$ for all $f \in L^1(\mu)$ and $x \in D$. In particular, $\lim_{n\to\infty} P^n f(x) = 0$ for $x \in D$. If C = X then we say that the operator P is conservative. We denote by $\Sigma_i(P)$ the σ algebra of all invariant sets A, i.e. such that $P^* \mathbf{1}_A = \mathbf{1}_A$. If $\Sigma_i(P) = \{\emptyset, X\}$ then P is called *ergodic*. The *deterministic* σ -algebra $\Sigma_{\rm d}(P)$ is defined as $\{B \in \mathcal{B} : P^{*n}\mathbf{1}_B = \mathbf{1}_{B_n} \text{ for every natural } n\}$. We say that $B_0, B_1, \ldots, B_{d-1}$ (from $\Sigma_{d}(P)$) form a cycle if $P^{*d}\mathbf{1}_{B_{0}} = \mathbf{1}_{B_{0}}$ and $P^{*}\mathbf{1}_{B_{i}} = \mathbf{1}_{B_{i+1}}$ for all $0 \leq j \leq d-2$. Clearly $\Sigma_i(P) \subseteq \Sigma_d(P)$, but in general these two σ -algebras may differ. If it happens that $\Sigma_i(P) = \Sigma_d(P)$ then we say that the Markov operator P does not allow cycles.

2. Main result. In this section we describe the asymptotic properties of the iterates of (SFS) Markov operators acting on abstract $L^{1}(\mu)$ spaces. We start with

LEMMA 1. Let P be a (SFS) kernel Markov operator on $L^1(X, \mathcal{B}, \mu)$ such that P^* preserves $C_0(X)$. If P_C does not allow cycles then

(2)
$$\lim_{n \to \infty} \int_{K \cap (C \setminus F)} P^n f \, d\mu = 0$$

for every compact set $K \subseteq X$ and arbitrary $f \in L^1(X, \mathcal{B}, \mu)$.

Proof. Obviously $F \subseteq C$. Since $P_C^* \mathbf{1}_F \geq \mathbf{1}_F$, we have $P_C^* \mathbf{1}_{C \setminus F} \leq \mathbf{1}_{C \setminus F}$. It is well known that P_C , considered as a Markov operator on $L^1(C, \mathcal{B} \cap C, \mu \upharpoonright_C)$, is conservative. In particular, $P_C^* \mathbf{1}_{C \setminus F} = \mathbf{1}_{C \setminus F}$ and $P_C^* \mathbf{1}_F = \mathbf{1}_F$. Clearly P_C is a kernel operator. Hence P_C is Harris. This implies that $\Sigma_d(P_C)$ is atomic (see [F1] for all details). Let $B \subseteq C$ be an atom of $\Sigma_d(P_C)$. Consider the sequence $P_C^{*n} \mathbf{1}_B = \mathbf{1}_{B_n}$. Clearly $B_n \in \Sigma_d(P_C)$ are atoms as well. Since P_C is conservative, it follows that $\sum_{n=0}^{\infty} P_C^{*n} \mathbf{1}_B = \infty$ on B. In particular, for some n > 0 we have $\mu(B_n \cap B) > 0$. Hence $B_n \cap B = B$. This implies that $P_C^{*n} \mathbf{1}_B \geq \mathbf{1}_B$. By conservativity $P_C^{*n} \mathbf{1}_B = \mathbf{1}_B$. Since P_C does not allow cycles, we have $P_C \mathbf{1}_B = \mathbf{1}_B$. Now let P_B denote the restriction of P to $L^1(B, \mathcal{B}_B, \mu|_B)$. Again P_B is conservative.

We show that P_B is totally ergodic (i.e. for each natural n the operator P_B^n is ergodic). In fact, if $P_B^{*n} \mathbf{1}_A = \mathbf{1}_A$ for some $0 < \mu(A) < \mu(B)$ then $P_B^{*j} \mathbf{1}_A = \mathbf{1}_{A_j}$, as P_B is nondisappearing (see Lemma 0 of [KL]). Hence $A \in \Sigma_d(P_C)$, contradicting the assumption that B is an atom. A conservative and totally ergodic Markov operator P_B satisfies the assumptions of the 0-2 law, which says that either $||\!|P_B^n - P_B^{n+1}||\!| \to 0$ in the operator norm as $n \to \infty$, or for a fixed $y \in B$ the densities $k_n(\cdot, y)$, corresponding to $P^n \delta_y$, are pairwise orthogonal (see [OS] and [F2] for all details). The latter is excluded as P_B is conservative, and $P^n \delta_y \in \mathcal{D}_\mu$ for all $n \ge 1$. In particular

$$\sum_{n=1}^{\infty} P_B^n \delta_y(\cdot) = \infty \quad \text{on } B.$$

Hence, for all atoms $B \in \Sigma_{d}(P_{C})$,

(3)
$$\lim_{n \to \infty} \sup_{f \in \mathcal{D}_{\mu}} \|P_B^n f - P_B^{n+1} f\| = 0.$$

Now assume $B \subseteq C \setminus F$, and let K be an arbitrary compact subset of B. Suppose that

$$\overline{\lim_{n \to \infty}} \int_{K} P^{n} f \, d\mu > 0 \quad \text{ for some } f \in \mathcal{D}_{\mu}.$$

Since B is invariant we may assume that f is concentrated on B. Let

 $P^{n_j}f \to \nu$ as $j \to \infty$ for the vague topology, where ν is a nonzero positive measure. By (3) we have $||P\nu - \nu|| = 0$. In particular, $d\nu/d\mu = f_{\nu} \in L^1(\mu)$ and $\int_B f_{\nu} d\mu \geq \int_K d\nu > 0$, contradicting the inclusion $B \subseteq C \setminus F$. We conclude that

(4)
$$\lim_{n \to \infty} \int_{K} P^{n} f \, d\mu = 0$$

for every compact set K included in an atom $B \subseteq C \setminus F$. This convergence may be extended to (2) in the following way. Suppose that for some K, $f \in \mathcal{D}_{\mu}$ and $\varepsilon > 0$ we have

$$\overline{\lim}_{n \to \infty} \int_{K \cap C \setminus F} P^n f \, d\mu \ge \varepsilon.$$

Let $B_1, B_2, \ldots \in \Sigma_i(P_C)$ be atoms included in $C \setminus F$. Because they are P-invariant and disjoint, it follows that there exists a natural m such that

$$\lim_{n \to \infty} \sum_{j=m+1}^{\infty} \int_{B_j} P^n f \, d\mu < \frac{\varepsilon}{2}$$

Without loss of generality we may assume that

$$\overline{\lim}_{n \to \infty} \int_{K \cap B_1} P^n f \, d\mu > \frac{\varepsilon}{2m}.$$

Using again the fact that B_1 is invariant, we may assume that the density f is concentrated on B_1 . Now we choose a subsequence $n_j \nearrow \infty$ such that $\int_{K\cap B_1} P^{n_j} f \, d\mu > \varepsilon/(2m)$, and $P^{n_j} f \to \nu$ vaguely. We have already noticed that ν is absolutely continuous and its density f_{ν} is P-invariant. Hence $\nu(B_1) = 0$. Now let $\operatorname{supp_{top}}(\nu)$ be the topological support of ν , and let $y_0 \in \operatorname{supp_{top}}(\nu)$. Using the (SFS) condition we may find $\delta > 0$ small enough that

$$k(\,\cdot\,,y') \wedge k(\,\cdot\,,y'') \neq 0$$

for all $y', y'' \in K(y_0, \delta)$. Choosing j large enough we get

$$\int_{K(y_0,\delta)\cap K\cap B_1} P^{n_j} f \, d\mu > 0.$$

Hence

$$(P^{n_j+1}f) \wedge k(\,\cdot\,,y'') \ge \int_{K(y_0,\delta)\cap K\cap B_1} k(\,\cdot\,,y') P^{n_j}f(y')\,d\mu(y') \wedge k(\,\cdot\,,y'') \neq 0$$

for all $y'' \in K(y_0, \delta)$. Now, if f_1 is an arbitrary density concentrated on $K(y_0, \delta) \cap \operatorname{supp} f_{\nu} \subseteq F$, then

$$P^{n_j+1}f \wedge Pf_1 = (P^{n_j+1}f) \wedge \int k(\cdot, y'')f_1(y'') \, d\mu(y'') \neq 0,$$

contradicting the fact that B_1 and F are both invariant.

The following lemma is an easy consequence of a result from [BB].

LEMMA 2. Let P be a kernel Markov operator. If $\Sigma_{d}(P) \cap F = \Sigma_{i}(P) \cap F$ then P_{F} has strong operator convergent iterates.

Proof. It is enough to show that each P_B is asymptotically stable on $L^1(B, \mathcal{B} \cap B, \mu)$, where $B \in \Sigma_d(P) \cap F$ is an atom. For this we notice that P_B satisfies the "0" alternative of the "0-2" law, and clearly it is mean ergodic (as P_B has an invariant density). Now by Corollary on page 22 of [BB] we conclude that for every density f concentrated on B, we have $P_B^n f \to f_{B*}$ in the L^1 norm, where f_{B*} is a unique P-invariant density concentrated on B. Finally we get $P_F^n f \to \sum_i (\int_{B_i} f \, d\mu) f_{B_j*}$ in the L^1 norm. ■

The next lemma describes the dynamics of the process $P^n f$ on the dissipative part.

LEMMA 3. Let P be a (SFS) Markov operator acting on $L^1(X, \mathcal{B}, \mu)$ such that P^* preserves $C_0(X)$. Then for every compact set $K \subseteq X$ and $f \in \mathcal{D}_{\mu}$ we have

$$\lim_{n \to \infty} \int_{K \cap D} P^n f \, d\mu = 0.$$

Proof. By [F1] there exists an increasing sequence of measurable sets $B_m \subseteq D$ such that $\bigcup_{m=1}^{\infty} B_m = D$ and $P^{*n} \mathbf{1}_{B_m} \to 0$ pointwise as $n \to \infty$. In particular, $\mathbf{1}_{B_m \cap K}(x) \nearrow \mathbf{1}_{D \cap K}(x)$ for μ -almost all x. Since P is a kernel operator, it follows that

$$P^* \mathbf{1}_{B_m \cap K}(y) = \int k(x, y) \mathbf{1}_{B_m \cap K}(x) \, d\mu(x)$$

$$\nearrow \int_X k(x, y) \mathbf{1}_{B \cap K}(y) \, d\mu(x) = P^* \mathbf{1}_{D \cap K}(y)$$

as $m \to \infty$, for all $y \in X$. We notice that $P^* \mathbf{1}_{B_m \cap K} \leq P^* \mathbf{1}_{D \cap K}$ and both functions belong to $C_0(X)$, as K is compact and the kernel k satisfies the (SFS) condition. By the Dini theorem and the assumption that all closed balls in (X, d) are compact we get the uniform convergence $P^* \mathbf{1}_{B_m \cap K} \Rightarrow$ $P^* \mathbf{1}_{D \cap K}$. Suppose that $\int_{D \cap K} P^{n_j} f \, d\mu \geq \varepsilon$ for some $f \in \mathcal{D}_{\mu}$, where $n_j \nearrow \infty$ and $\varepsilon > 0$. Choosing m large enough we obtain $\|P^* \mathbf{1}_{B_m \cap K} - P^* \mathbf{1}_{D \cap K}\|_{\sup} \leq \varepsilon/2$. Hence

$$\int_{B_m \cap K} P^{n_j} f \, d\mu = \left(\int_{B_m \cap K} - \int_{D \cap K} + \int_{D \cap K} \right) P^{n_j} f \, d\mu$$

$$\geq \varepsilon - \left| \int P^{n_j - 1} f \cdot \left(P^* \mathbf{1}_{B_m \cap K} - P^* \mathbf{1}_{D \cap K} \right) d\mu \right|$$

$$\geq \varepsilon - \int P^{n_j - 1} f \cdot \| P^* \mathbf{1}_{B_m \cap K} - P^* \mathbf{1}_{D \cap K} \|_{\sup} d\mu$$

$$\geq \varepsilon/2 \quad \text{for all } j = 1, 2, \dots$$

On the other hand, $f \cdot P^{*n_j} \mathbf{1}_{B_m \cap K} \to 0$ as $j \to \infty$ for μ almost all x. By the Lebesgue dominated convergence theorem we get

$$\lim_{j \to \infty} \int_{B_m \cap K} P^{n_j} f \, d\mu = 0,$$

a contradiction.

THEOREM 1. Let (X, d) be a metric space such that all closed balls are compact. If a kernel Markov operator P on $L^1(X, \mathcal{B}, \mu)$ satisfies (SFS), P^* preserves $C_0(X)$, and $\Sigma_i(P_C) = \Sigma_d(P_C)$, then for every compact set $K \subseteq X$ and every $f \in L^1(X, \mathcal{B}, \mu)$ we have

$$\lim_{n \to \infty} \int_{K} P^{n} f \, d\mu = \int_{K} Sf \, d\mu,$$

where S is a substochastic projection onto the sublattice of P-invariant functions. Moreover, on $L^1(F, \mathcal{B}_F, \mu|_F)$ the above convergence holds for the L^1 norm.

Proof. Given a density $f \in \mathcal{D}_{\mu}$ and an atom B in $\Sigma_{d}(P_{F}) = \Sigma_{i}(P_{F})$, we define

$$S_B f = \left(\lim_{n \to \infty} \int_B P^n f \, d\mu\right) \cdot f_{B*},$$

where f_{B*} is a (unique) *P*-invariant density concentrated on *B*. The limit $\lim_{n\to\infty} \int_B P^n f \, d\mu$ is well defined, as the sequence $\int_B P^n f \, d\mu$ is nondecreasing and bounded by 1. Finally we set

$$Sf = \sum_{B \in \Sigma_{i}(P_{F})} S_{B}f.$$

On each atom $B \in \Sigma_i(P_F)$ the operator P_B is asymptotically stable. We obtain $\lim_{n\to\infty} ||(P^n f - S_B f) \cdot \mathbf{1}_B|| = 0$. This convergence can be extended to the whole of F in an obvious way. Finally by Lemmas 1 and 3 we get

$$\lim_{n \to \infty} \int_{K} P^{n} f \, d\mu = \lim_{n \to \infty} \left(\int_{K \cap F} + \int_{K \cap (C \setminus F)} + \int_{K \cap D} \right) P^{n} f \, d\mu$$
$$= \lim_{n \to \infty} \int_{K \cap F} P^{n} f \, d\mu = \int_{K \cap F} Sf \, d\mu = \int_{K} Sf \, d\mu.$$

Since each $f \in L^1(\mu)$ is a linear combination of densities the theorem is proved. \blacksquare

The following corollary is an immediate consequence of (SFS) and $P^*C_0(X) \subseteq C_0(X)$. Such operators are actually defined on $\mathcal{M}(X)$. We have

COROLLARY 1. Let P be a (SFS) kernel Markov operator defined on $L^1(\mu)$ such that $P^*C_0(X) \subseteq C_0(X)$. If P_C does not allow cycles, then there

exists a substochastic projection $S^{**} = S : \mathcal{M}(X) \to L^1_*(\mu)$ onto the sublattice of P-invariant functions such that $P^n \mu \cong P^{**n} \mu \to S\mu$ as $n \to \infty$ for the vague (weak^{*}) topology.

3. LMT operators. The last section of the paper is devoted to LMT operators. The result we present has been proved in [B] with some restrictions on P. This also generalizes [KM], [M] as it is obvious that in the absence of invariant densities, the projection S is zero. In particular, for every compact K we have the convergence $\lim_{n\to\infty} \int_K P^n f \, d\mu = 0$ whenever $L^1_*(\mu)$ is trivial. In other words, an LMT operator P satisfies the Foguel alternative, i.e. either P has an invariant density, or it is sweeping with respect to the family of compact sets. We have

THEOREM 2. Let P be an LMT operator on $L^1([0,\infty))$, where H, Q, λ satisfy conditions (H) and $(Q\lambda)$. Then for every compact set $K \subseteq [0,\infty)$ we have

$$\lim_{n \to \infty} \int_{K} P^{n} f \, d\mu = \int_{K} Sf \, d\mu,$$

where S is a substochastic projection onto the Banach sublattice of P-invariant functions. Moreover $||(P^n f - Sf)\mathbf{1}_F|| \to 0$ as $n \to \infty$.

Proof. By Theorem 1 it is sufficient to show that P_C does not allow cycles. Since P_C is conservative it follows that given an atom $B \in \Sigma_d(P_C)$, there exists n such that $P_C^{*n} \mathbf{1}_B = \mathbf{1}_B$. Set $\mathbf{1}_{B_j} = P_C^{*j} \mathbf{1}_B$ for $j = 0, 1, \ldots, n-1$ $(B_n = B_0 = B)$. To show that the cycle B_j is trivial we use essentially the same arguments as in the proof of Theorem 2 of [B]. Namely, it follows directly from the formula (1) of LMT kernels that

$$P^* \mathbf{1}_{[c,d)}(y) = \begin{cases} H(Q(\lambda(c)) - Q(y)) - H(Q(\lambda(d)) - Q(y)) & \text{if } 0 \le y < \lambda(c), \\ 1 - H(Q(\lambda(d)) - Q(y)) & \text{if } \lambda(c) \le y < \lambda(d), \\ 0 & \text{if } \lambda(d) \le y. \end{cases}$$

Substituting $d = \infty$ we get

$$P^* \mathbf{1}_{[c,\infty)}(y) = \begin{cases} H(Q(\lambda(c)) - Q(y)) & \text{if } 0 \le y < \lambda(c), \\ 1 & \text{otherwise.} \end{cases}$$

Let $c_j = \operatorname{ess\,inf} B_j$, $j = 0, 1, \ldots, n-1$. Then we have (by continuity of $P^* \mathbf{1}_{B_j}$)

$$P^* \mathbf{1}_{B_j}(y) = \begin{cases} 1 & \text{if } y \in \overline{B}_{j+1}, \\ 0 & \text{if } y \in \overline{B}_s \text{ for all } 0 \le s \le n-1 \text{ and } s \ne j+1. \end{cases}$$

In particular, all c_j must be different. Without loss of generality we assume that $c_0 = \max\{c_0, c_1, \ldots, c_{n-1}\}$. Note that $c_0 < \lambda(c_0)$. Otherwise we would have $P^* \mathbf{1}_{[c_0,\infty)} \geq \mathbf{1}_{[c_0,\infty)}$. On the conservative part we get $P_C^* \mathbf{1}_{[c_0,\infty)\cap C} =$

 $\mathbf{1}_{[c_0,\infty)\cap C}$. This implies $0 \leq P_C^* \mathbf{1}_{B_0} = P_C^* \mathbf{1}_{[c_0,\infty)\cap B_0} \leq \mathbf{1}_{[c_0,\infty)\cap C}$. Hence $P_C^* \mathbf{1}_{B_0}(y) \equiv 0$ for all $0 \leq y < c_0$, contradicting $P_C^* \mathbf{1}_{B_0} = \mathbf{1}_{B_1}$ and $c_1 < c_0$. We also have $1 \geq H(Q(\lambda(c_0)) - Q(c_1)) = P^* \mathbf{1}_{[c_0,\infty)}(c_1) \geq P^* \mathbf{1}_{B_0}(c_1) = 1$, as $P^* \mathbf{1}_{B_0}$ is continuous, $P_C^* \mathbf{1}_{B_0} = \mathbf{1}_{B_1}$ and $c_1 \in \overline{B}_1$. Combining these facts we conclude that $H(Q(\lambda(c_0)) - Q(y)) = 1$ if $c_1 \leq y \leq \lambda(c_0)$, as H is nonincreasing, and Q and λ are nondecreasing. In particular,

$$P^*\mathbf{1}_{[c_0,\infty)} \ge \mathbf{1}_{[c_1,\infty)} \ge \mathbf{1}_{[c_0,\infty)},$$

which means that $P_C^* \mathbf{1}_{[c_0,\infty)\cap C} = \mathbf{1}_{[c_0,\infty)\cap C}$ on the conservative part. Therefore, $P_C^* \mathbf{1}_{B_0} \leq \mathbf{1}_{[c_0,\infty)}$, contradicting $P_C^* \mathbf{1}_{B_0} = \mathbf{1}_{B_1}$ if n > 1 and $c_1 < c_0$. The resulting contradiction forces n = 1 and the triviality of the cycle B_0, \ldots, B_{n-1} .

We instantly get

COROLLARY 2. Given an LMT Markov operator P on $L^1([0,\infty))$, there exists a substochastic projection $S : \mathcal{M}([0,\infty)) \to L^1([0,\infty))$ onto $L^1_*(\mu)$, the sublattice of all P-invariant functions, such that

$$\lim_{n \to \infty} P^n \mu(K) = S\mu(K)$$

for every compact set $K \subseteq [0,\infty)$. In particular, if P has no invariant density (i.e. $L^1_*(\mu)$ is trivial), then

$$\lim_{n \to \infty} P^n \mu(K) = 0$$

for every compact set $K \subseteq [0, \infty)$; in particular, P is sweeping.

REMARK. If there exists a compact set $K(\subseteq F)$ such that for every density $f \in \mathcal{D}_{\mu}$ we have

(5)
$$\overline{\lim_{n \to \infty}} \int_{K} P^{n} f \, d\mu > 0$$

(compare [B] and [BL]) then S is finite-dimensional, being a compact projection. For this we note that $S = S \circ P = P \circ S$. Now the operator $S_K^* : L^{\infty}(\mu) \to C(K)$ defined by $S_K^* f = (S^* f)|_K$ is compact. Therefore $\Sigma_i(P) \cap K$ must be finite. Clearly dim $(S^*) = \dim(S_K^*)$ by the assumption (5).

REFERENCES

- [BL] K. Baron and A. Lasota, Asymptotic properties of Markov operators defined by Volterra type integrals, Ann. Polon. Math. 57 (1993), 161–175.
- [B] W. Bartoszek, Convergence of iterates of Lasota-Mackey-Tyrcha operators, ibid. 63 (1996), 281–292.
- [BB] W. Bartoszek and T. Brown, On Frobenius-Perron operators which overlap supports, Bull. Polish Acad. Sci. 45 (1997), 17–24.

38	W. BARTOSZEK
[F1]	S. R. Foguel, <i>The Ergodic Theory of Markov Processes</i> , Van Nostrand Reinhold, New York, 1969.
[F2]	—, More on the "zero-two" law, Proc. Amer. Math. Soc. 61 (1976), 262–264.
[GL]	H. Gacki and A. Lasota, Markov operators defined by the Volterra type integrals with advanced argument, Ann. Polon. Math. 51 (1990), 155–166.
[KM]	J. Komornik and I. Melicherčik, <i>The Foguel alternative for integral Markov operators</i> , in: World Sci. Ser. Appl. Anal. 4, World Sci., River Edge, NJ, 1995, 441–452.
[KT]	T. Komorowski and J. Tyrcha, Asymptotic properties of some Markov operators, Bull. Polish Acad. Sci. Math. 37 (1989), 221–228.
[KL]	U. Krengel and M. Lin, On the deterministic and asymptotic σ -algebras of a Markov operator, Canad. Math. Bull. 32 (1989), 64–73.
[LM1]	A. Lasota and M. C. Mackey, <i>Chaos, Fractals and Noise: Stochastic Aspects of Dynamics</i> , Appl. Math. Sci. 97, Springer, New York, 1993.
[LM2]	—, —, Statistical stability and strongly perturbed dynamical systems, Fields Inst. Comm. 21 (1999), 363–376.
[LM3]	-, -, Cell division and the stability of cellular populations, J. Math. Biol. 38 (1999), 241-261.
[LMT]	A. Lasota, M. C. Mackey and J. Tyrcha, <i>The statistical dynamics of recurrent biological events</i> , ibid. 30 (1992), 775–800.
[LR]	K. Łoskot and R. Rudnicki, <i>Sweeping of some integral operators</i> , Bull. Polish Acad. Sci. Math. 137 (1989), 229–235.
[M]	I. Melicherčik, Asymptotic behaviour of some Markov operators appearing in mathematical models of biology, Math. Slovaca 48 (1998), 303–314.
[OS]	D. Ornstein and L. Sucheston, An operator theorem on L_1 convergence to zero with applications to Markov kernels, Ann. Math. Statist. 41 (1970), 1631–1639.
[R1]	R. Rudnicki, On asymptotic stability and sweeping for Markov operators, Bull. Polish Acad. Sci. 43 (1995), 245–262.
[R2]	—, Stability in L^1 of some integral operators, Integral Equations Operator Theory 24 (1996), 320–327.
[T]	J. Tyrcha, Asymptotic stability in a generalized probabilistic/deterministic model of the cell cycle, J. Math. Biol. 26 (1988), 465–475.
Departr	nent of Mathematics

Technical University of Gdańsk Narutowicza 11/12 80-952 Gdańsk, Poland E-mail: bartowk@mifgate.mif.pg.gda.pl

> Received 24 March 2000; revised 26 June 2000

(3905)