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ACTIONS OF HOPF ALGEBRAS ON PRO-SEMISIMPLE
NOETHERIAN ALGEBRAS AND THEIR INVARIANTS

BY

ANDRZEJ TYC (Torur)

Abstract. Let H be a Hopf algebra over a field k such that every finite-dimensional
(left) H-module is semisimple. We give a counterpart of the first fundamental theorem of
the classical invariant theory for locally finite, finitely generated (commutative) H-module
algebras, and for local, complete H-module algebras. Also, we prove that if H acts on the
k-algebra A = k[[X1,...,Xn]] in such a way that the unique maximal ideal in A is
invariant, then the algebra of invariants Af s a noetherian Cohen—Macaulay ring.

Introduction and the main results. Let k be a field and let H be
a Hopf algebra over k. By analogy with the invariant theory of algebraic
groups, the following is of importance.

QUESTION. Let A be a commutative, finitely generated (resp., noethe-
rian) H-module algebra. When is the algebra of invariants A also finitely
generated (resp., noetherian)?

It is known that for rational actions of an algebraic group G the an-
swer is “yes” whenever the group G is linearly reductive, i.e. whenever each
finite-dimensional, rational G-module is semisimple. An important property
used in the proof of this result is that every rational G-module is a sum of its
finite-dimensional submodules. We say that the Hopf algebra H is finitely
semisimple if every finite-dimensional (left) H-module is semisimple; this
is an analogue of a linearly reductive algebraic group. An H-module al-
gebra A is said to be locally finite if A, as an H-module, is a sum of its
finite-dimensional submodules; this is a good analogue of the rational ac-
tions of algebraic groups on algebras. So, a precise counterpart of the above
mentioned classical result is the following.

THEOREM 1. Suppose that the Hopf algebra H is finitely semisimple,
and that A is a commutative, finitely generated (resp., noetherian), locally
finite H-module algebra. Then A™ is a finitely generated (resp., noetherian)
algebra.
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This theorem is a consequence of our Corollary 2.9 and Theorem 3.2,
and, as we mentioned in [2, p. 220], for cocommutative H it can be proved
exactly in the same manner as for the rational actions of linearly reductive
algebraic groups, using a Reynolds operator.

However, there are interesting noetherian H-module algebras which are
not locally finite. For example, if A is a noetherian H-module algebra and
[ is an invariant ideal in A, then the induced action of H on the completion
A=1limA /I™ is not, in general, locally finite even if H is finitely semisimple
and A is locally finite.

EXAMPLE 2. Let k = C and let L = sl(2, k). Then the universal envelop-
ing algebra U(L) is a finitely semisimple Hopf algebra and we have the well
known (locally finite) action of H on A = k[X,Y] determined by

a b X\ _ [aX+0bY

c d)\Y ) \eX+dY )’
Obviously, the induced action of H on the completion A = k[[X,Y]] of
A in the maximal (invariant) ideal (X,Y’) is given by the same formula.

In particular, the matrix ([1) Bl) € L C H acts on A via the derivation

D : A — A such that D(X) = X and D(Y) = =Y. It turns out that the
induced action is not locally finite. In order to see this, it clearly suffices to
show that there is an f € A such that the set {D7(f) : j > 0} is linearly
independent over k. Put f =", X" and suppose that Y »_,¢D"(f) =0
for some s and tg,...,ts € k. Then

S o o S

0= Zt(ZzX) = (th)x
r=0 i=1 i=1 r=0
whence in particular, Zi:o tri" =0,7=1,...,s+ 1. But the determinant
of this system of linear equations (with respect to ¢,’s) is the Vandermonde
determinant V(1,...,s + 1), which is clearly different from 0. Therefore,
to =t1 = ... =ts = 0. This means that the set {D7(f) : j > 0} is linearly
independent.

Another type of interesting noetherian H-module algebras which need
not be locally finite arises in the following situation. Suppose that the Hopf
algebra H is pointed [7, 9] (for instance, in characteristic 0 every cocom-
mutative Hopf algebra is pointed) and that A is a commutative H-module
algebra. Furthermore, let S be a multiplicative system in A such that gs € S
for any group-like element g € H and any s € S. Then, as shown in [11],
there exists a unique action of H on the localization Ag such that the natural
homomorphism of algebras A — Ag is a morphism of H-module algebras.
So, if A is noetherian, then we obtain a noetherian H-module algebra Ag.
Again it turns out that Ag, in general, is not locally finite.
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EXAMPLE 3. Let H, A and f be as in Example 2, and let S = {(1-X)" :
n > 0}. Since 1 is the unique group-like element in H, we have the action
of H on Ag. It is easy to see that if we look at Ag as a subalgebra of
E[[X,Y]], then the action of H on the localization Ag is the restriction
of the action of H on k[[X,Y]] considered in Example 2. Moreover, f =
Yis; Xt = (1—X)"! € Ag. This implies that f does not belong to any
finite-dimensional H-submodule of Ag, that is, the action of H on Ag is not
locally finite.

The main goal of this paper is to find a counterpart of Theorem 1 for
H-module algebras arising from locally finite H-module algebras by means
of the operation of completion. The case of localizations will be investigated
elsewhere. R

Observe that the H-module algebra A from Example 2 is, as an H-
module, the inductive limit of the system {k[X,Y]/(X,Y)" : n > 1} of
semisimple H-modules. The same is obviously true for the induced actions
of a finitely semisimple Hopf algeba H on the completion A = lim A/I",
where A is a locally finite H-module algebra and [ is an invariant ideal in
A. This suggests the following.

DEFINITION. A pro-semisimple H-module algebra is an H-module alge-
bra A (not necessarily commutative) provided with a linear topology defined
by a family {I;} of (two-sided) invariant ideals in A satisfying the conditions:

(1) A/I; is a semisimple H-module for all ¢,
(2) the natural homomorphism of H-module algebras p : A — lim A/I;
is an isomorphism.

If the Hopf algebra H is finitely semisimple and A is a locally finite
H-module algebra with an invariant ideal I, then the completion of A in
the I-adic topology is a pro-semisimple H-module algebra. In particular,
A itself with the discrete topology is a pro-semisimple H-module algebra.
More generally, if {I,, : n > 0} is any admissible sequence of invariant ideals
in A (see Section 1), then the completion A= lim A/I,, endowed with the
natural action of H is also a pro-semisimple H-module algebra. The main
objective of this paper is to prove the following.

THEOREM 4. If A is a pro-semisimple, right noetherian H-module al-
gebra, then so is the algebra of invariants A™ .

THEOREM b. If I is an invariant ideal in a commutative, noetherian,
pro-semisimple H-module algebra A such that all its powers I™, n > 1, are
closed (as subsets of A), then the induced topology in AH given by the set
of ideals {(I™) : n > 0} is equivalent to the I -adic topology in A™.

As corollaries from these theorems we get
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THEOREM 6. Suppose that A is a noetherian H-module algebra which is
semisimple as an H-module. Then, for each invariant ideal I in A and the
induced action of H on the completion A = lim A/I", the algebra (A)H s
noetherian ﬁn\d the natural inclﬂon i: AT — A induces an isomorphism
of algebras AH ~ (A\)H, where AH is the completion of AH in the I -adic
topology.

THEOREM 7. Suppose that the Hopf algebra H is finitely semisimple and
(A,m) is a local, complete, noetherian H-module algebra satisfying the con-
ditions:

(1) the unique mazimal ideal m in A is invariant,
(2) the quotient field A/m is a finite field extension of k.

Then AH s a local, complete, noetherian algebra with the unique maximal
ideal m* . In particular, if A is of the form k[[X1, ..., X,]]/J for somen > 1
and some ideal J, then A" is of the same form.

The last statement in the above theorem can be vieved as a counterpart
of Theorem 1 for complete, local H-module algebras. Under the assumptions
of Theorem 7, we also prove that the ring A” is Cohen-Macaulay, whenever
A=Ek[[X1,...,X,]]

In the proof of Theorems 1 and 3, an essential role is played by a Reynolds
operator.

The content of the paper can be summarized as follows. Preliminaries
are presented in Section 1. In Section 2 we prove the above mentioned The-
orem 3 (in a more general setting and not only for commutative H-module
algebras). In Section 3, given a commutative noetherian ring A, we present
a description of all admissible sequences I = {I; : j > 0} of ideals in A satis-
fying the second Artin—Rees property, i.e., Io = A, I; D Ij1, I;1; C I;4; for
i,7 > 0, and the graded algebra G(I) = ®j>0 I; is noetherian. From this
description it follows that the topology in A defined by any such sequence
I is equivalent to the I;-adic topology. Hence one gets Theorem 5.

The definition of an admissible sequence satisfying the second Artin—Rees
property and its application in the proof of Theorem 5 come from [3, Sec-
tion 1]. Also, if H is the group algebra kG of some group G, then Theorems
4 and 6 were proved in [3] for H-module algebras that are semisimple as
H-modules. Section 2 of the paper was patterned upon [10, Section 2].

1. Preliminaries. Throughout the paper k denotes a field which will
serve as the ground field for all vector spaces and algebras under considera-
tion. All tensor products (unless otherwise stated) are defined over k. By H
we denote a fixed Hopf algebra with comultiplication A : H — H ® H and
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counity € : H — k. As in [9], we write A(h) = > h1)y ® h(g) for h € H. An
H-module is meant to be a left H-module. Given an H-module V, V¥ will
stand for the submodule of invariants V¥ = {v € V : hv = e(h)v, h € H}.
We say that V is trivial when V = VH_If f : V — U is a homomorphism
of H-modules, then f : V# — UH denotes the restriction of f to V.
An H-module V is called locally finite if it is a sum of its finite-dimensional
submodules.

DEFINITION 1.1. The Hopf algebra H is called (left) finitely semisimple
if each finite-dimensional H-module is semisimple.

Examples of finitely semisimple Hopf algebras are:

(a) Any H which is semisimple (e.g., H = kG, where G is a finite group
with (|G|, char k)= 1).

(b) H = kG), where p is a prime different from the characteristic of k
and G, is the group {z € C: 3,27" = 1} (an easy exercise).

(¢) H ="U(L), the universal enveloping algebra of a finite-dimensional,
semisimple Lie algebra L (k is supposed to have characteristic 0).

(d) H = U,y(sl(2, k)), the quantum enveloping algebra of the Lie algebra
sl(2, k), where k = C and ¢ is not a root of unity (see [5, Theorem VII.2.2]).

Notice that if the Hopf algebra H is finitely semisimple and V is a locally
finite H-module, then every submodule and every quotient module of V' is
semisimple.

Recall that a (left) action of H on a k-algebra A is an H-module structure
v:H®A— Aon A as a vector space (we write v(h ® a) = h.a) such that
h.la =¢e(h)1a and h.(zy) = > (h@)-z)(he).y) forall h € H, z,y € A, and
> hay ® hey = A(h). In other words, A together with 7 is an H-module
algebra (see 7, 9]). The action v (or the corresponding H-module algebra A)
is called locally finite if A is locally finite as an H-module. If H is a finite-
dimensional vector space, then clearly every action of H on a k-algebra A
is locally finite.

Given H-module algebras A and B, a homomorphism of algebras f :
A — B is called a homomorphism of H-module algebras if f(h.a) = h.f(a)
for all h € H and a € A. An H-module algebra A is said to be semisimple
when A is semisimple as an H-module. If A is an H-module algebra, then
AH is a subalgebra in A called the algebra of invariants of A. We say that
an ideal I in A is invariant if h.x € I for all h € H and x € I, i.e.,if [ is a
submodule of A, as an H-module. One readily checks that if an ideal I in
A is invariant, then all its powers I/ are also invariant, and so we have the
quotient H-modules A/I7, j > 1.

By a topological H-module we mean an H-module V provided with the
topology given by a family {V;} of submodules of V (as a fundamental
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system of neighborhoods of 0). When we want to indicate the topology of V/
we write (V,{V;}). The trivial H-module k will be treated as a topological
H-module with the discrete topology. A morphism of topological H-modules
is a continuous homomorphism of H-modules. All submodules and quotient
modules of a topological H-module will be viewed as topological H-modules
with the induced topology and quotient topology, respectively.

If (V,{V:}) and (W,{W;}) are topological H-modules, then the tensor
product V@ W will be considered as a topological H-module with the topol-
ogy defined by the family {V; ® W + V ® W;} (precisely, their images in
V@W). If (V,{V;}) is a topological H-module, then its completion V is de-
fined to be the inductive limit lim V/V; provided with the topology inherited
from the product topology in [[ V/V; (notice that V/V,’s have the discrete
topology). A topological H-module V' is said to be complete if the canonical
homomorphism p : V — V is an isomorphism of H-modules. It is easy to
see that the topology in V s glven by the family of submodules {V}} P
induces an isomorphism V/V; ~ 1% / V} for all ¢, and Vis complete. The cat-
egory of all complete H-modules will be denoted by cMod. Since for every
H-module U the topological H-module (U, {0}) is complete, the category of
H-modules will be identified with the full subcategory of cMod consisting
of all discrete H-modules. Observe that for any complete H-module V the
trivial submodule V¥ is also complete.

A topological H-module algebra is an H-module algebra A (not necessar-
ily commutative) provided with a topology given by a family of invariant
(two-sided) ideals. In the obvious manner, any topological H-module algebra
is a topological H-module. It is not difficult to see that a topological algebra
is nothing else (up to equivalence of topologies) than a triple (A, m,n), where
m:A®A — A and n: A — k are morphisms of topological H-modules
satisfying the appropriate associativity and unity axioms. Such an algebra
A is said to be complete if A is complete as a topological H-module. If
A is a topological H-module algebra, then its completion A is a complete
H-module algebra in the obvious manner.

In order to give examples of topological H-module algebras let us recall
that a sequence I = {Iy, I1,...} of ideals in a ring A is called admissible
ifIop=A, 1) DI, D ..., and I;I; C I;;; for all ,j > 0. Now if A is an
H-module algebra and I is an admissible sequence of invariant ideals in A,
then (A, I) and its completion are topological H-module algebras of special
interest for us. An important special case is when I = {I™ : m > 0}, where
I is an invariant ideal in A. Then the corresponding topology is the I-adic
topology.

If T ={I;:i> 0} is an arbitrary admissible sequence of ideals in a ring
A, then we denote by G(I) the graded ring @;° , I; with the multiplication
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“” defined as follows: if a € I;, b € I;, then a.b = ab € I;1; (see [3]). In
the case where I = {I':4 > 0} for some ideal I in A we write G(I) instead
of G(I). If A is an H-module algebra and I is an admissible sequence of
invariant ideals in A, then the algebra G(I) is an H-module algebra in a
natural way.

DEFINITION 1.2(see [3]). An admissible sequence I of ideals in a ring A
has right AR 2 (the second right Artin—Rees property) if the ring G(I) is
right noetherian. If A is commutative, then clearly G(I) is commutative and
we say that A has AR 2 whenever G(I) is noetherian. An ideal I in the ring
A has right AR 2 if the sequence {I?} has right AR 2.

It is obvious that if I is an admissible sequence with right AR 2, then
the ring A is right noetherian. The significance of AR 2 is expressed by the
following.

THEOREM 1.3 ([3, Corollary 1.4)). If A is a ring and I is an admissible
sequence of ideals which has right AR 2, then the completion of A in the
topology given by I is a right noetherian ring.

If A is a commutative, noetherian ring, then any ideal in A has AR 2
[1, Chap. 10]. In Section 3 we give other examples of admissible sequences
of ideals with AR 2 (see Examples 3.7 and 3.10). If L is a finite-dimensional,
nilpotent Lie algebra and A = U(L) is the universal enveloping algebra of
L, then the augmentation ideal I = LA has right AR 2 (see [8]).

2. The category of pro-semisimple H-modules

DEFINITION 2.1. A pro-semisimple H-module is a complete topological
H-module (V,{V;}) such that V/V} is a semisimple H-module for all ¢.

It is not difficult to show that any closed submodule of a pro-semisimple
H-module is also pro-semisimple. If the Hopf algebra H is finitely semi-
simple, then the completion of any locally finite, topological H-module is a
pro-semisimple H-module. Let p(H) denote the full subcategory of the cate-
gory of topological H-modules whose objects are pro-semisimple H-modules.
Notice that the category s(H) of all semisimple H-modules equipped with
the discrete topology is a subcategory of the category p(H). Observe also
that if V is a pro-semisimple H-module, then the trivial submodule V' is
also a pro-semisimple H-module. Moreover, if f : V — W is a morphism in
p(H), then so is f7 : VH — WH,

Now we define the category of pro-semisimply graded H-modules which
plays an important role in what follows. A pro-semisimply graded H-module
is a pair (W, {W,}), where W is an H-module and {W,} is a family of pro-
semisimple H-modules (indexed by an arbitrary set) such that the H-module
W is the direct sum of the H-modules {W,}. The family {IW,} is called a
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pro-semisimple grading of W. As usual, we write W = @ W, instead of the
pair (W, {W,}). f W = @ W, and U = @ U, are pro-semisimply graded
H-modules and i, : Wy — W (p; : U — Uj) denote the natural injections
(natural projections), then a morphism from W = @ W, to U = @QU;
is a morphism of H-modules f : W — U such that all the compositions
pjfiq : Wq — U; are morphisms of pro-semisimple H-modules. The category
of pro-semisimply graded H-modules will be denoted by pg(H). Providing
each pro-semisimple H-module V' with the trivial grading {V; = V'} one
can consider the category p(H) as a subcategory of the category pg(H). If
W = @ W, is an object of pg(H), then WH = P Wf is also an object of
pg(H), because, as we mentioned above, V is a pro-semisimple H-module if
V is. Moreover, if f : W — U is a morphism in pg(H), then f# : W — U is.

DEFINITION 2.2. Let C be a subcategory of the category pg(H )-modules
having the property: if f : V' — W is a morphism in C, then f# : VH — W#
is. We say that on the category C there exists a Reynolds operator R if for
each V € obC a morphism R(V) : V — V¥ in C is given such that the
following conditions hold:

(1) if V€ obC and v € VH then R(V)(v) = v,
(2) if f:V — W is a morphism in C, then the diagram

v VL

V7
R(W)

W——wH
is commutative.

REMARK. It is easy to see that on every C there exists at most one
Reynolds operator.

THEOREM 2.3. On the category pg(H) there exists a Reynolds opera-
tor R.

Proof. We shall construct R in three steps using the inclusions s(H) C
p(H) C pg(H). The construction is a simple modification of what has been
done in [10, proof of Theorem 3.11].

First we show that there exists a Reynolds operator R on s(H). Let
Ht ={h € H :¢(h) =0}. If U is a simple H-module, then clearly H*U = 0
if U is trivial and HTU = U otherwise. Hence U = U @ H*U for each
semisimple H-module U. This in turn implies that the natural projections
RWU) : U — U, U € s(H), define a Reynolds operator R on s(H). Now
exactly in the same manner as in [10] one shows that the Reynolds operator
R on s(H) can be extended first to p(H) and then to pg(H).
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COROLLARY 2.4. If f: W — U is a surjective morphism in pg(H), then
sois f1 W —U.

Proof. This follows easily from the definition of a Reynolds operator.

COROLLARY 2.5. Let (V,{V4}) be a topological H-module which is semi-
sim]ie\as an H-module. Then the natural morphism of complete H-modules
FeVH — (MH (v + VH)) = (v + Vo), is an isomorphism (i.e., the
operations of completion and taking invariants commute).

Proof. Tt is obvious that f is injective. Let & = (v, + V;) € (V)H. This
means that v; + V; € (V/V;)H for each t. Applying Corollary 2.4 to the
natural projections V — V/V;, we can assume that v; € V¥ for all t. Hence
v e Imf.

DEFINITION 2.6. A pro-semisimple H-module algebra is a topological
H-module algebra which is pro-semisimple as a topological H-module. A
pg(H)-algebra is an H-module algebra A together with a pro-semisimple
grading of A as an H-module such that for each y € A” themap 7 : A — A,
y(a) = ya, is a morphism in the category pg(H) (it is easy to see that y is
always a homomorphism of H-modules).

If A is a pg(H)-algebra, then A” is a pg(H)-algebra in a natural way.
Also it is clear that each pro-semisimple H-module algebra A provided with
the trivial grading {A4; = A} is a pg(H)-algebra.

Any semisimple H-module algebra equipped with the discrete topology
is a pro-semisimple H-module algebra. In order to give other examples of
pro-semisimple H-module algebras and pg(H)-algebras, assume that the
Hopf algebra H is finitely semisimple. It is easy to verify that the following
statements hold:

(1) Any locally finite H-module algebra (with the discrete topology) is
a pro-semisimple H-module algebra.

(2) The completion A of a locally finite, topological H-module algebra
A is a pro-semisimple H-module algebra. Moreover, if the topology in A is
given by an admissible sequence of ideals with right AR 2, then A is right
noetherian.

(3) Any linearly compact H-module algebra, i.e., a complete topological
H-module algebra (A,{I;}) such that A/I; is a finite-dimensional vector
space for all ¢, is a pro-semisimple H-module algebra. For instance, if H
acts on the algebra of formal power series A = k[[X1,...,X,]] in such a
way that its unique maximal ideal m is invariant, then A together with the
m-~adic topology is a linearly compact H-module algebra.

(4) If I = {I,, : n > 0} is any admissible sequence of closed and invariant
ideals in a pro-semisimple H-module algebra A, then the graded H-module
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algebra G(I) = @; I; is a pg(H)-algebra. Moreover, it is right noetherian
whenever I has right AR 2.

COROLLARY 2.7. Let R denote the Reynolds operator on the category
pg(H) and let A be a pg(H)-algebra. Then for R = R(A) and all y € A,
a € A we have R(ya) = yR(a), that is, R: A — A™ is a homomorphism of
(left) A" -modules.

Proof. Apply condition (2) of Definition 2.2 to the morphism of pro-
semisimply graded H-modules f =7: A — A.

THEOREM 2.8. If A is a right noetherian pg(H)-algebra, then AM is
also a right noetherian pg(H)-algebra.

Proof. Let R = R(A). Since, by Corollary 2.7, R(ya) = yR(a) and
R(y) =y fory € AH and a € A, TAN A" = [ for any right ideal I in
AH  Hence A" is right noetherian, because so is A.

An immediate consequence of the above theorem is the following.

COROLLARY 2.9. If A is a right noetherian, semisimple H-module alge-
bra, then AH is right noetherian. In particular, if H is finitely semisimple
and A is a locally finite, right noetherian H-module algebra, then AY is
right noetherian.

From Theorem 2.8 we also get generalizations of Donkin’s results [3,
Corollary 2.2, Theorem 2.3, and Corollary 2.4].

COROLLARY 2.10. Let A be a pro-semisimple H-module algebra and let
I ={I,:r >0} be an admissible sequence of closed invariant ideals with
right AR 2. Then the admissible sequence T = {I* : r > 0} of ideals in
AH also has right AR 2.

Proof. 1In view of the assumptions, G(I) is a right noetherian pg(H )-
algebra. From Theorem 2.8 it follows that G(I”) = G(I)¥ is also right
noetherian. This means that I” has right AR 2, as was to be proved.

THEOREM 2.11. Let A be a semisimple H-module algebra, and let T =
{I; : j > 0} be an admissible sequence of invariant ideals with right AR 2.

Furthermore, let A denote the completion of A in the topology determined
by I.

(1) The natural homomorphism of (complete) topological algebras f :
AH — (A)H f((a; +If")) = (a; + I;), is an isomorphism.

-~

(2) The ring (A)H is right noetherian.

__1n particular, if H is finitely semisimple and A is locally finite, then
(A is right noetherian.
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Proof. From Corollary 2.5 we know that f is an isomorphism. Part (2)
follows from part (1), by Corollary 2.10 and Theorem 1.3.

3. Commutative H-module algebras. Let VV be an H-module. Then
the tensor algebra T'(V') is an H-module algebra via

h(vi®...®vn) =Y hayv1 @...® hnyv,.

It is obvious that the action of H on T'(V') preserves the natural grading of
T(V). Let I = I(V) denote the ideal in T'(V') generated by the set

{h.(v@v —v ®v):he H, v,o' e V}.

Then [ is an invariant homogeneous ideal in T'(V'). Set Sy (V) = T(V)/I
(the definition of Sy (V) comes from [12]). Recall that a graded algebra
A=, A; is called connected if Ag = k. With the above notation, one
has the following.

LEMMA 3.1. (1) Sg(V) is a graded, connected, commutative H-module
algebra such that all its homogeneous components Sy (V);, i > 0, are H-
submodules of A and S (V)1 = V. Furthermore, if H is cocommutative,
then Sg (V') is the ordinary symmetric H-module algebra S(V).

(2) If V is finite-dimensional, then the algebra Sy (V') is finitely gen-
erated and all its homogeneous components are finite-dimensional H -sub-
modules of Sy (V). In particular, Sy (V') is a locally finite H-module alge-
bra.

(3) Let A be any commutative H-module algebra and let g : V — A be
a homomorphism of H-modules. Then there exists a unique homomorphism
of H-module algebras g : Sg(V) — A (called the induced homomorphism)
such that its restriction to V.= Sy (V)1 equals g. Moreover, if the set g(V)
generates the algebra A, then the morphism ¢ is surjective.

Proof. This is a straightforward computation.

From now on, we assume that all H-module algebras under consideration
are commutative.

THEOREM 3.2. Suppose that the Hopf algebra H is finitely semisimple
and A is a finitely generated, locally finite H-module algebra. Then the al-
gebra A s finitely generated.

Proof. As A is locally finite and finitely generated, there exist linearly
independent generators yi,...,¥y, of the algebra A such that V = ky; +
...+ ky, is an H-submodule of A. From Lemma 3.1(3) it follows that the
inclusion g : V' — A induces a surjective morphism of H-module algebras
g:Su(V) — A. Moreover, Si (V) is locally finite, by Lemma 3.1(2). Hence
both A and Sy (V') are semisimple H-module algebras, because H is finitely
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semisimple. Applying Corollary 2.4 (to g) and Theorem 2.8, we see that
the homomorphism of algebras g% : Sg(V)# — A is surjective and that
Su(V)H is a noetherian ring. Since Sg(V)* is a connected graded algebra,
the latter implies that Sg (V) is a finitely generated algebra. Since A¥ =
g(Su(V)H), this shows that AH is finitely generated.

Let A’ be a subring of a commutative ring A and let i : A’ — A be the
natural inclusion. Recall that A is called pure over A’ if the map i ® 4+ M :
A" @40 A — A®y M is injective for any A’-module M. It is obvious that
A is pure over A’, whenever i splits over A’, i.e., whenever ti = id4s for
some homomorphism of A’-modules ¢t : A — A’. In particular, if A is a pro-
semisimple H-module algebra, then A is pure over A” . In fact, by Corollary
2.7, the Reynolds operator R = R(A) : A — Af is a homomorphism of
AH_modules such that R(a) = a for a € AY.

THEOREM 3.3. Let A be a finitely generated H-module algebra which is
a reqular integral domain. Then A™ is a Cohen—Macaulay ring in each of
the following cases:

(1) H is finitely semisimple and A is locally finite.
(2) A = D, A4i is a connected graded algebra such that all A;’s are
semisimple H-submodules of A.

Proof. In both cases A is a semisimple H-module algebra. If condition
(1) holds, then, according to Theorem 3.2, A is a finitely generated algebra.
Moreover, A is pure over A”. Hence A¥ is a Cohen-Macaulay ring, by [6,
Theorem 0.2]. Now suppose that (2) holds. It follows from Theorem 2.8
that the ring A is noetherian. Furthermore, A is obviously a connected
graded algebra. Therefore, A is finitely generated. As A is pure over AY,
we conclude that A is a Cohen—Macaulay ring, again by [6, Theorem 0.2].

We now describe all admissible sequences with AR 2 in any commutative,
noetherian ring.

LEMMA 3.4. Let A be a commutative noetherian ring and let I = {I; :
i > 0} be an admissible sequence of ideals in A. Then I has AR 2 if and
only if I satisfies the following condition:

(¥)  There exists an n > 1 such that I,,4; = Zlilnﬂ'*i forall j > 1.
i=1
Proof. Let J =@,~, I; C G(I) = @,~( I; and let J,; denote the ideal in
G(I) generated by @7_, I; C G(I),q=1,2,... Then J, C Jy4; for all g and
J is the union of all J,’s. If the algebra G(I) is noetherian, then there exists
an n such that J = J,,. But J,, is a graded ideal in G(I) whose (n + j)th
component is equal to Y ., I;I,1j—;, j > 1. This proves the implication
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“=7.If I satisfies the condition (%), then clearly J = J,,. Hence the ideal J
is finitely generated, because I1 ® ... @ I, is a finitely generated A-module.
Let aq,...,as be homogeneous generators of J. Then G(I) = Alaq,...,as].
Consequently, G(I) is noetherian, because so is A.

COROLLARY 3.5. Let I = {I;} be an admissible sequence of ideals in A
which has AR 2.

(1) There exists an n such that I,,; C If C I for all 5 > 0. In partic-
ular, the topology determined by the sequence I is equivalent to the I1-adic
topology.

(2) The completion of A in the topology determined by the sequence I is
isomorphic to the completion of A in the I-adic topology.

Proof. By Lemma 3.4, the sequence I satisfies the condition (x). This
implies that

Ij € Tng-vysn—ili €Y _ Lyl forall j > 1,
=1 =1

whence, by induction on j,
LnC >, H'..I) forallj>0.
.71++.7n:]
Since all the ideals I; are contained in Iy, it follows that I, C I { for j > 0.

Obviously, I f C I, because the sequence I is admissible. This proves part
(1). Part (2) is a consequence of (1).

The following theorem gives a description of all admissible sequences of
ideals with AR 2.

THEOREM 3.6. Let (Iy,I1,...,1,) be a sequence of ideals in a commu-
tative ring A satisfying the condition:
(1) IOZA, LDOILD>...D>1I, and I;1; CIZ'Jrs fOT’i-FSSn.

Moreover, let Inyj = Y."  Iil,ij—; for j > 1 (inductive formula). Then
the sequence I(Iy,...,1,) = {I; : ¢ > 0} is admissible and has AR 2.
Conversely, if I = {I;} is an admissible sequence of ideals with AR 2, then

there exists an n such that the sequence of ideals (I, I1, ..., I,) satisfies the
condition (i) and I = I(Iy,...,I,).
Proof. Two simple inductions show that I(Iy,...,I,) is an admissible

sequence. The rest of the theorem follows from Lemma 3.4.

ExXAMPLE 3.7. Let A be a commutative ring. If I is an ideal in A, then
clearly the sequence (Iyp = A,I; = I) satisfies condition (i) in the above
theorem and I(Io,I;) = {I7 : j > 0}. If I;, 5 are ideals in A such that
I D Iy and I? C I, then the sequence (Iy = A, I1, I5) also satisfies condition
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(i), and one easily checks that I(lo,I1,I2) = {I;}, where I; = I{I} for
j=2+r, 0<r<l1.

The next example shows that if I is an admissible sequence of ideals and
the topology defined by I is equivalent to the I;-adic topology, then I need
not have AR 2.

EXAMPLE 3.8. Let A = k[X,Y] and let J; = (X,Y), Jo = (X,Y?).
Further, let Iy = A and let I; = JiJ; for i > 1. Then I = {I; : i > 0} is
obviously an admissible sequence of ideals in A and the topology defined
by I and the I;-adic topology are equivalent, because Io; C I{ C I; for all
j > 0. Suppose that I satisfies the condition (%) from Lemma 3.4, i.e., there
exists an n > 1 such that I,,; j = I1 I,,4j_1+...+1,1; for j > 1. This means
that 1771, = I/ 12, which is impossible. By Lemma 3.4, I does not have
AR 2.

REMARK 3.9. Let I = {I;} be an admissible sequence of ideals in a
commutative ring A which has AR 2. Since I1I; C I;4; for all ¢, I is an I;-
filtration of the ring A in the sense of [1, Chap. 10]. However, in general, it is
not a stable I-filtration, i.e., there does not exist an s such that I11; = I;,41
for ¢ > s. This is illustrated by the following

ExaMPLE 3.10. Let A, I, and I be as in Example 3.8. Set I5; 4, = Iﬁ[{
for i > 1 and r = 0,1. It is easy to verify that I = {I;, : i > 0} ([ = A)
is an admissible sequence satisfying the condition (x) from Lemma 3.4 for
n =2, and so I has AR 2. But I112;11 # Iz(i41) for all i, because the first
ideal equals (X,Y)?(X,Y?)" and the second one (X,Y?)"*L

Now we show some applications of the above results. By a local ring we
mean a commutative, noetherian ring with the unique maximal ideal.

THEOREM 3.11. Let A be a noetherian, pro-semisimple H-module alge-
bra and let I be an invariant ideal in A such that all the ideals I',i > 0,
are closed. Then the I -adic topology in A™ is equivalent to the topology
defined by the admissible sequence of ideals {(I")* : r > 0}.

Proof. Let I = {I" : r > 0}. By Corollary 2.10, the admissible sequence
I = {(I")"} has AR 2. Now the theorem follows from Corollary 3.5.

THEOREM 3.12. Suppose that A is a noetherian H-module algebra and 1
s an invariant ideal in A such that A is complete in the I-adic topology and
the H-modules A/I' are semisimple for all i > 0. Then A® is a noetherian
ring, complete in the I -adic topology.

Proof. The algebra A together with the I-adic topology is a pro-semi-
simple H-module algebra. Therefore, according to Theorem 2.8, A¥ is a
noetherian ring, complete in the topology given by the admissible sequence
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{(I;)"}. Furthermore, all the ideals I’ are closed (in the I-adic topology),
by [1, Proposition 10.15,(II)]. Hence we get the assertion, by Theorem 3.11.

THEOREM 3.13. Suppose that the Hopf algebra H 1is finitely semisimple
and that A is a noetherian H-module algebra.

(1) If A is locally finite, I is an invariant ideal in A, and A is the com-
pletion of A in the I-adic topology, then the algebra (A\)H is noetherian and
the natural inclusion i : AH — A induces an isomorphism of the completion
of AH in the I -adic topology with (A\)H

(2) If A is a complete local ring with the invariant maximal ideal m and
A/m is a finite field extension of k, then A™ is a complete local ring with
the unique mazimal ideal m™ . In particular, if A = Kk[[X1,...,X,]]/J (for
somen and an ideal J) and the ideal m = (X1+J,..., X, +J) is invariant,
then AH is of the same form.

Proof. In the situation of (1), we know from Corollary 2.5 that the in-
clusion 7 : A” — A induces an isomorphism of the completion of A
in the topology given by the ideals {(I")¥ : i > 0} with the algebra
(A\)H . The conclusion now follows from Theorem 3.11 applied to A with
the discrete topology. As for part (2), a simple induction shows that the
H-modules A/m?, j > 1, are finite-dimensional vector spaces. Hence A is
a pro-semisimple H-module algebra, because H is finitely semisimple. By
Theorem 3.12, this implies that A¥ is a noetherian ring, complete in the
m™-adic topology. Furthermore, one easily verifies that m* is the unique
maximal ideal in A*. Thus we obtain the first statement in (2). The second
one is a consequence of the Cohen classification of complete local rings.

THEOREM 3.14. Fiz n > 0 and suppose that H acts on the algebra A =
E[[X1,...,X4]] in such a way that the (unique) mazimal ideal m in A is
invariant and the H-modules m/m?, j > 1, are semisimple. Then A® is a
complete, local Cohen—Macaulay ring.

Proof. In view of Theorem 3.13, A¥ is a complete local ring. So, it
remains to prove that A is Cohen-Macaulay. By [2, Thm. 4(2)], we can
assume (possibly changing variables) that h.X; € kX; + ... + kX, for all
h € H and i = 1,...,n. It follows that the action of H on the algebra A
preserves the subalgebra B = k[X1,...,X,], so that we have the induced
action of H on B. Moreover, if B = >0 Bj is the natural grading in B
(given by degree), then all B;’s are H-submodules of B. We show that B is
semisimple as an H-module. First observe that for each 5 > 0 the H-module
m? /m?T1 is semisimple, because it is a submodule of the semisimple H-
module m/m/T1. On the other hand, the natural inclusion B; C m? induces
an isomorphism of H-modules B; ~ m//m/*!. Hence B = @5, B; is a
semisimple H-module. Now making use of Theorem 3.3(2), we see that B
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is a Cohen-Macaulay ring. It is clear that A is the completion of B in
the topology defined by the admissible sequence of ideals {(m')*}, where
m’ is the (maximal) ideal in B generated by the variables X7, ..., X,,. From
Theorem 3.11 (applied to B with the discrete topology and I = m/) it follows
that the topology in B given by the sequence {(m'®)} is equivalent to
the m/H-adic topology. Hence A is isomorphic to the completion of B¥ in
the m’H-adic topology. The conclusion now follows from [4, Theorem 18.8],
because m’ is the maximal ideal in the Cohen-Macaulay ring B

COROLLARY 3.15. If the Hopf algebra H 1is finitely semisimple and H
acts on the algebra A = k[[X1,...,X,]] in such a way that the mazximal
ideal m in A is invariant, then AY is a complete local Cohen—Macaulay
TIng.

Proof. The corollary is a consequence of the theorem, because the H-
modules m/m?, j > 1, are finite-dimensional.

REMARK 3.16. Part (2) of Theorem 3.11 together with Theorem 3.14
can be viewed as an analogue of Theorem 3.2 for complete local H-module
algebras.

The following example is an application of Corollary 3.15.

EXAMPLE 3.17. Assume that the field k is algebraically closed and fix a
prime p # char k. Moreover, let V), ... a(™ be arbitrary p-adic numbers,
and let 2 = {a = (a1,...,a,) € N : aya® + ... a,a™ = 0}. It turns
out that A" = {}°  otaX® € K[[X1,..., Xp]]}, X = X{"... X" is a
complete, local Cohen-Macaulay subring of k[[X1,...,X,]]. To see this,
let H = kG, be the finitely semisimple Hopf algebra from example (b)
of Section 1, and let ¢; be the primitive root of unity of degree p/*!, j > 0.

Then the formulas
NO)
Cj’XiZCjJ Xj, izl,...,n,ij,

where a® = (a,a{”, .. ), agi) € Z/p'*1, determine an action of H on the
algebra A = k[[X1,..., X,]] such that the maximal ideal in A is invariant.
One simply checks that A = A’. So, we are done, by Corollary 3.15.
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