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MULTIPLIERS OF THE HARDY SPACE H1

AND POWER BOUNDED OPERATORS

BY

GILLES PISIER (College Station, TX, and Paris)

Abstract. We study the space of functions ϕ : N → C such that there is a Hilbert
space H, a power bounded operator T in B(H) and vectors ξ, η in H such that ϕ(n) =
〈Tnξ, η〉. This implies that the matrix (ϕ(i + j))i,j≥0 is a Schur multiplier of B(ℓ2) or
equivalently is in the space (ℓ1 ⊗̌ ℓ1)

∗. We show that the converse does not hold, which
answers a question raised by Peller [Pe]. Our approach makes use of a new class of Fourier
multipliers of H1 which we call “shift-bounded”. We show that there is a ϕ which is
a “completely bounded” multiplier of H1, or equivalently for which (ϕ(i + j))i,j≥0 is a

bounded Schur multiplier of B(ℓ2), but which is not shift-bounded on H
1. We also give a

characterization of “completely shift-bounded” multipliers on H1.

0. Introduction. The main motivation of this paper is a question of
Peller on power bounded operators [Pe]. To state it, we need some specific
notation. For any c > 1 and any polynomial P (z) =

∑
anz

n, let

|||P |||c = sup
{∥∥∥
∑

anT
n
∥∥∥
}

where the supremum runs over all (power bounded) operators T in B(ℓ2)
such that supn≥1 ‖Tn‖ ≤ c. We also let

‖P‖L = inf{‖A‖ℓ1⊗̌ℓ1}
where the infimum runs over all elements A =

∑
Aijei ⊗ ej in the injective

tensor product ℓ1 ⊗̌ ℓ1 such that
an =

∑

i+j=n

Aij .

As observed by Peller, it follows from Grothendieck’s theorem that there is
a constant K such that for all c > 1 we have

|||P |||c ≤ Kc2‖P‖L.
Peller asked whether conversely there is any c > 1 for which ||| |||c and ‖ ‖L
are equivalent. We prove below that it is not so. Unfortunately, Peller’s basic
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question whether all the norms ||| |||c are equivalent for all c > 1 remains
open, although we propose a “new” approach for its solution, directly in-
spired by Peller’s ideas in [Pe] but revised in light of the recently developed
operator space theory (see especially [BRS, B, BP2]). As we show below, the
latter theory clearly suggests that one should replace the iterated injective
tensor products ℓ1 ⊗̌ . . . ⊗̌ ℓ1 (d times), which Peller uses, by the iterated
Haagerup tensor products ℓ1⊗h . . .⊗h ℓ1. (Actually, since N is commutative,
we should consider the “symmetrized” iterated Haagerup tensor products
of [OP], but this can be left implicit in this note.)
Peller observed that for any two polynomials P,Q we have

|||PQ|||c ≤ |||P |||c|||Q|||c.
In other words, ||| |||c is a Banach algebra norm. Moreover, its definition
clearly shows that it is an “operator algebra” norm, i.e. the resulting Banach
algebra can be isometrically embedded into the algebra B(H) of all bounded
operators on a Hilbert space H. Thus Peller was led to ask whether ‖ ‖L is
equivalent to an operator algebra norm, or merely even to a Banach algebra
one. In his review of Peller’s paper (Math. Rev. 1983i, 47019), G. Bennett
proved that ‖ ‖L is indeed a Banach algebra norm, but we will prove below
(see Corollary 2.2) that it is not equivalent to an operator algebra norm. As
Peller observed, it suffices to prove that for any c > 1 the norms ‖ ‖L and
||| |||c are not equivalent.
To prove this, we use a connection with bounded (Fourier) multipliers

on the Hardy space H1, as follows. Given a Banach space B, we denote
by H1(B) the completion the B-valued polynomials f(z) =

∑
xnz

n (here
xn ∈ B) for the norm

‖f‖H1(B) =
\
‖f(z)‖B dm(z)

where m denotes the normalized Lebesgue measure of the unit circle. When
B = C, this is the classical Hardy space, which we simply denote as usual
by H1.
Let ϕ : N→ C be a function in L∗, i.e. we assume there is a constant C

such that for any polynomial P (z) =
∑
anz

n (with an ∈ C) we have

(0.1)
∣∣∣
∑

ϕ(n)an

∣∣∣ ≤ C
∥∥∥
∑

anz
n
∥∥∥
L
.

Then ϕ defines a multiplier

Mϕ :
∑

anz
n →
∑

anϕ(n)z
n

which is bounded onH1. Actually,Mϕ is completely bounded onH
1 (see [P1,

§6]), which means that Mϕ defines a bounded multiplier on H1(S1) where
S1 denotes the Banach space of all trace class operators on ℓ2 (equipped
with the norm ‖x‖S1 = tr(|x|)). Conversely, as observed in [P1, Th. 6.2] any
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ϕ such that Mϕ is completely bounded on H
1 is in L∗, i.e. satisfies (0.1),

and the norms ‖ϕ‖L∗ and ‖Mϕ : H1(S1) → H1(S1)‖ are equivalent (see
(1.5) and (1.6) below). The main virtue of this note is the introduction of a
“restricted” class of completely bounded (in short c.b.) multipliers on H1.
We will say that Mϕ is shift-bounded on H

1 if for any x =
∑
n≥0 xnz

n in

H1 we have\
sup
k≥0
|Mϕ(zkx)| dm(z) =

\
sup
k≥0

∣∣∣
∑

n≥0

xnϕ(n+ k)z
n
∣∣∣ dm(z) <∞.

We show below that any ϕ such that |||ϕ|||∗c < ∞ for some c > 1 must
define a shift-bounded multiplier on H1. Thus to show that ‖ ‖L and ||| |||c
are not equivalent it suffices to produce a multiplier on H1 which is com-
pletely bounded but not shift-bounded. This follows from our main result
(see Theorem 2.1 below). In §3 we include some remarks on the class of
shift-bounded multipliers on H1 and a characterization of their analogue on
S1-valued H

1, the “completely shift-bounded” ones, which might be of inde-
pendent interest. Although this uses ideas and techniques from the recently
developed “operator space theory” ([BP2, ER1-3]), our formulation (espe-
cially in Theorem 3.3) hopefully will be accessible to readers not familiar
with it.

1. Notation and background. Let G be a semigroup with unit. Since
we mostly concentrate here on the case G = N, we denote the operation of
G additively with unit 0. However, most of our notation makes sense for a
general (non-commutative) semigroup. In particular we refer to [P5] for a
detailed treatment of the case whenG is a free group (see also [P2] for related
results). After some hesitation, we chose to write separate papers since,
although multipliers appear in both of these two cases, the same questions
require quite different techniques.

Let π : G→ B(H) be a uniformly bounded unital semigroup homomor-
phism, i.e. we have

π(s+ t) = π(s)π(t), π(0) = I.

We define

|π| = sup{‖π(t)‖B(H) | t ∈ G}.
Let c ≥ 1. We denote by Bc(G) the space of all “matrix coefficients” of

the unital semigroup homomorphisms which are uniformly bounded by c.
More precisely, Bc(G) is the space of functions ϕ : G → C for which there
is π : G→ B(H) as above with |π| ≤ c together with vectors ξ, η in H such
that

(1.1) ∀t ∈ G ϕ(t) = 〈π(t)ξ, η〉.
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Moreover, we define

‖ϕ‖Bc(G) = inf{‖ξ‖ · ‖η‖ | ϕ(·) = 〈π(·)ξ, η〉 with |π| ≤ c}.
Note that when c = 1 and G is a group, B1(G) coincides with the classical
space of coefficients of unitary representations of G, usually denoted by
B(G), with the same norm. Indeed, it is easy to check in the group case
that |π| = 1 iff π is a unitary representation.
The space Bc(G) is a Banach space (for the above norm). Moreover, for

any c′ ≥ 1 we have
f ∈ Bc(G), g ∈ Bc′(G) ⇒ f · g ∈ Bcc′(G).

Note moreover that if c ≥ c′ we have a norm one inclusion Bc′(G) ⊂ Bc(G).
In the main case of interest to us here, G = N, we have an isometric

identity

(1.2) B1(N) = A(D)
∗.

Here A(D) is the disc algebra which can be defined as the completion of the
space of (analytic) polynomials P under the sup-norm over the unit disc in
C. Indeed, by a well known inequality of von Neumann (see e.g. [P1, §1])
for any such P and for any contraction T in B(H) (meaning ‖T‖ ≤ 1), we
have

‖P (T )‖ ≤ ‖P‖A(D).
A unital homomorphism π : N → B(H) is in 1-1 correspondence with a
T ∈ B(H) such that π(n) = Tn for all n ∈ N, thus, for any ϕ : N → C, we
have ‖ϕ‖B1(N) ≤ 1 iff there is a contraction T and ξ, η in the unit ball of H
such that

(1.3) ϕ(n) = 〈Tnξ, η〉,
and by von Neumann’s inequality this holds iff ‖ϕ‖A(D)∗ ≤ 1. This verifies
(1.2). More generallly, for any c ≥ 1, we have ‖ϕ‖Bc(N) ≤ 1 iff there is a
power bounded T ∈ B(H) with supn ‖Tn‖ ≤ c and ξ, η in the unit ball of
H such that (1.3) holds.
Let d ≥ 1 be an integer. LetMd(G) be the space of all functions ϕ : G→

C such that there are bounded functions ξi : G→ B(Hi, Hi−1) (Hi Hilbert)
with H0 = C, Hd = C such that

(1.4) ∀ti ∈ G ϕ(t1 + t2 + . . .+ td) = ξ1(t1)ξ2(t2) . . . ξd(td).

Here of course we use the identification B(H0, Hd) = B(C,C) ≃ C. We
define

‖ϕ‖Md(G) = inf{ sup
t1∈G
‖ξ1(t1)‖ . . . sup

td∈G
‖ξd(td)‖}

where the infimum runs over all possible ways to write ϕ as in (1.4). It is
quite easy to see that Md(G) is a Banach algebra for the pointwise product
of functions on G.
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When G = N, we have ‖ϕ‖M2(N) ≤ 1 iff there are sequences (xn) and
(yn) in the unit ball of H such that

∀i, j ∈ N ϕ(i+ j) = 〈xi, yj〉.
Equivalently, if we denote by uϕ : ℓ1 → ℓ∞ the linear operator with (Hankel)
matrix (ϕ(i + j)), we have ‖ϕ‖M2(N) = γ2(uϕ) (here γ2(·) is the norm of
factorization through a Hilbert space). A fortiori we have

(1.5) K−1‖ϕ‖L∗ ≤ ‖ϕ‖M2(N) ≤ ‖ϕ‖L∗
where K denotes the Grothendieck constant. Moreover, we have

(1.6) ‖ϕ‖M2(N) = ‖Mϕ : H1(S1)→ H1(S1)‖ ≥ ‖Mϕ : H1 → H1‖.
For example, any bounded ϕ with support in a lacunary sequence such as
{2n | n ≥ 0} is in M2(N) (see Lemma 2.4 below for a more general fact).
See [Bo] and [P1, §§5–6] for more on all this.
The definition of the spaces Md(G) (and of the B(H)-valued version

of these spaces for which we refer to [P5]) is motivated by the work of
Christensen–Sinclair on “completely bounded multilinear maps” and the
so-called Haagerup tensor product (see [CS]). The connection is explained
in detail in [P3, P5], and is important for the results below, but we prefer
to skip this in the present, hopefully more accessible, exposition.
Note the following easily checked inclusions, valid when G is any semi-

group with unit:

B(G) = B1(G) ⊂
⋃

c>1

Bc(G) ⊂Md(G) ⊂Md−1(G) ⊂ . . .

⊂M2(G) ⊂M1(G) = ℓ∞(G),
and the estimate

(1.7) ∀m ≤ d ‖f‖Mm(G) ≤ ‖f‖Md(G).
Moreover, we have

(1.8) ∀ϕ ∈ Bc(G) ‖ϕ‖Md(G) ≤ cd‖ϕ‖Bc(G).
Indeed, if ϕ(·) = 〈π(·)ξ, η〉 with |π| ≤ c, then we can write

ϕ(t1 + . . .+ td) = 〈π(t1) . . . π(td)ξ, η〉 = ξ1(t1) . . . ξd(td)
where ξ1(t1) ∈ B(Hπ,C), ξd(td) ∈ B(C, Hπ) and ξi(ti) ∈ B(Hπ, Hπ) (1 <
i < d) are defined by ξ1(t1)h = 〈π1(t1)h, η〉 (h ∈ Hπ), ξd(td)λ = λπ(td)ξ
(λ ∈ C) and ξi(ti) = π(ti) (1 < i < d). Therefore, we have

‖ϕ‖Md(G) ≤ sup ‖ξ1‖ . . . sup ‖ξd‖ ≤ |π|d‖ξ‖ · ‖η‖ ≤ cd‖ξ‖ · ‖η‖,
which yields the announced inequality (1.8).

Let UB(G) =
⋃
c>1Bc(G). Then ϕ ∈ UB(G) iff supm≥1 ‖ϕ‖

1/m
Mm(G)

<∞.
More precisely, let c(ϕ) denote the infimum of the numbers c ≥ 1 for which
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ϕ ∈ Bc(G). Then (see [P5])
c(ϕ) = lim sup

m→∞
‖ϕ‖1/mMm(G).

Moreover, it follows from [BP2] (see also [P4, §7]) that
‖ϕ‖B1(G) = sup

m
‖ϕ‖Mm(G).

The definition of the spaces Bc(G) and Md(G) shows that they are dual
spaces. There is a natural duality between these spaces and the semigroup
algebra C[G] which we view as the convolution algebra of finitely supported
functions on G. Indeed, for any function f : G→ C and any g in C[G], we set

〈g, f〉 =
∑

t∈G

g(t)f(t),

and we define the spaces Xd(G) and Ãc as the completions of C[G] for the
respective norms

‖g‖Xd(G) = sup{|〈g, f〉| | f ∈Md(G), ‖f‖Md(G) ≤ 1}
and

|||g|||c = sup{|〈g, f〉| | f ∈ Bc(G), ‖f‖Bc(G) ≤ 1}.
Then the following isometric identities are rather easy to check:

Bc(G) = (Ãc)
∗ and Md(G) = (Xd(G))

∗.

Obviously, we can also write (here we can restrict to H = ℓ2 if we wish)

|||g|||c = sup
{∥∥∥
∑

g(t)π(t)
∥∥∥
∣∣∣π : G→ B(H), |π| ≤ c

}
.

Thus, when G = N, Ãc can be identified with the completion of the polyno-
mials (here a polynomial is identified with the sequence of its coefficients)

for the norm ||| |||c introduced in §0. The last formula shows that Ãc is nat-
urally equipped with an operator algebra structure under convolution: we
have |||g1 ∗ g2|||c ≤ |||g1|||c|||g2|||c.
However, the analogue for the spaces Xd(G) fails in general. (This is the

basic idea used by Haagerup to prove that M2(F∞) 6= Bc(F∞) for any c
(see Remark 1.2 below): he proves first in [H] that X2(F∞) is not a Banach
algebra under convolution.)
In sharp contrast, as we already mentioned, X2(N) is indeed a Banach

algebra!
Although Xd(G) is not in general a Banach algebra under convolution,

it has the following property: if g1 ∈ Xd(G) and g2 ∈ Xk(G), then g1 ∗ g2 ∈
Xd+k(G) and

(1.9) ‖g1 ∗ g2‖Xd+k(G) ≤ ‖g1‖Xd(G)‖g2‖Xk(G).
See [P5] for a detailed proof.
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To explain the relevance of the spaces Md(G) for Peller’s question, we
quote

Theorem 1.1 ([P4, P5]). Let G be a semigroup with unit. The following
assertions are equivalent :

(i) There is a θ ≥ 1 such that Bθ(G) = Bc(G) for all c > θ.
(i)′ There is a θ ≥ 1 such that Bθ(G) = Bc(G) for some c > θ.
(ii) There are θ ≥ 1 and an integer d such that Bθ(G) =Md(G).
(iii) There is an integer d such that Md(G) =M2d(G).
(iv) There is an integer d such that Xd(G) is (up to isomorphism) a

unital operator algebra under convolution.

Thus to show that the norms ||| |||c and ||| |||θ are not equivalent whenever
c 6= θ, it suffices to prove the following
Conjecture. Md(N) 6=Md+1(N) for all d ≥ 1.
Remark 1.2. When d = 2, and G is a group, the space M2(G) is the

classical space of “Herz–Schur multipliers” on G. This space also coincides
(see [BoF] or [P2, p. 110]) with the space of all c.b. “Fourier multipliers”
on the reduced C∗-algebra C∗λ(G). The question whether M2(G) = UB(G)
remained open for a while but Haagerup [H] showed that it is not the case.
More precisely, he showed that if G = F∞, we have

∀c > 1 Bc(G)  M2(G).

In [P5] we give a different proof of this. More generally we show there that
if G is a non-commutative free group, then for any d ≥ 1, we have

Md(G) 6=Md+1(G),
and hence there are elements of Md(G) which are not coefficients of uni-
formly bounded representations.

2. Main results. We wish to prove here a special case of the above
conjecture, which answers a question of Peller in [Pe].

Theorem 2.1. M2(N) 6=M3(N).
Corollary 2.2. For any c > 1 the norms ‖ ‖L and ||| |||c are not equiv-

alent. More generally , ‖ ‖L is not equivalent to any operator algebra norm.
Proof. Note that by (1.5) we have for all polynomials P ,

K−1‖P‖X2(N) ≤ ‖P‖L ≤ ‖P‖X2(N).
So if ‖ ‖L and ||| |||c were equivalent, we would have (by duality) M2 = Bc,
hence a fortiori M2 = M3, which contradicts Theorem 2.1. The second
assertion follows from Theorem 1.1.
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Remark. This corollary is closely related to the more recent result due
to Kalton and Le Merdy [KLM] asserting that, for any c > 1, there are power
bounded operators which are not similar to operators with powers bounded
by c. Indeed, their result implies the operator space (= completely bounded)
analogue of the inequivalence of ||| |||c and ‖ ‖Xd(N) (hence in particular of
||| |||c and ‖ ‖X2(N)) for all c > 1 and d ≥ 1. It also implies the completely
bounded analogue of the above conjecture. Equivalently, this shows that
for any d there is a B(H)-valued function which is in the operator-valued
analogue of Md(N) but not in the corresponding analogue of Md+1(N).

We will consider the Hardy spaces Hp. We define Hp as the subspace
of all functions x ∈ Lp(T,m) such that the Fourier transform x̂ : Z →
C vanishes on the negative integers. We write abusively x =

∑
x̂(n)zn,

meaning that x admits
∑
x̂(n)zn as its formal Fourier series.

Lemma 2.3. Any ϕ in M3(N) defines a shift-bounded multiplier on H
1.

More precisely ,

(2.1) sup
x∈B

H1

{\
sup
k≥0

∣∣∣
∑

n≥0

x̂(n)znϕ(n+ k)
∣∣∣ dm
}
≤ ‖ϕ‖M3(N).

Proof. Note that for each fixed integer k the function n 7→ ϕ(n + k) is
in M2(N), hence defines a bounded multiplier on H

1. Therefore, for any x
in H1, the series

∑
n≥0 x̂(n)z

nϕ(n+ k) is in H1, so (2.1) expresses a sort of
uniform boundedness of this family of multipliers. Now assume ‖ϕ‖M3(N) < 1
so that there are ξi ∈ ℓ∗2, ηj ∈ ℓ2, Tk ∈ B(ℓ2) with
(2.2) max(‖ξi‖, ‖ηj‖, ‖Tk‖) < 1
such that

(2.3) ϕ(i+ k + j) = 〈ξi, Tkηj〉.
Let x ∈ BH1 . Then, by a classical result (cf. e.g. [Ga, p. 87] or [Ni]) we can
write x = gh with g, h ∈ BH2 . Then

x̂(n) =
∑

i+j=n

ĝ(i)ĥ(j).

Hence
∑

n

x̂(n)znϕ(n+ k) =
∑

i,j

ĝ(i)ĥ(j)zi+j〈ξi, Tkηj〉 = 〈G(z), TkH(z)〉

where G(z) =
∑
i ĝ(i)z

iξi ∈ H2(ℓ∗2) and H(z) =
∑
j ĥ(j)z

jηj ∈ H2(ℓ2) with

‖G‖H2(ℓ∗2) =
(∑

|ĝ(i)|2‖ξi‖2
)1/2
≤ 1
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and similarly ‖H‖H2(ℓ2) ≤ 1. Thus we obtain (by Cauchy–Schwarz)\
sup
k

∣∣∣
∑

n

x̂(n)znϕ(n+ k)
∣∣∣ dm ≤ sup

k
‖Tk‖

\
‖G(z)‖ℓ∗2‖H(z)‖ℓ2 dm(z)

≤ ‖G‖H2(ℓ∗2)‖H‖H2(ℓ2) ≤ 1.
Remark. Actually (see Theorem 3.1 below), it is possible to show that

‖ϕ‖M3 coincides with the c.b. norm of the “multiplier” defined by ϕ as above
but acting from H1 to H1(ℓ∞).

We will use the following well known lemma (see e.g. [Bo]).

Lemma 2.4. For any ϕ : N→ C we have

‖ϕ‖M2(N) ≤ 4 sup
n≥0

( ∑

2n≤i<2n+1

|ϕ(i)|2
)1/2
+ |ϕ(0)|.

Proof. Let (ei)i≥0 be the canonical basis of ℓ2. We can write

ϕ(i+ j) = 〈xi, ej〉+ 〈xj , ei〉+ 〈yi, ej〉
where xi =

∑
i≤k<2i ϕ(k)ek−i and yi = ϕ(2i)ei. Therefore

‖ϕ‖M2(N) ≤ 2 sup
i≥0
‖xi‖+ sup

i
‖yi‖.

Let

C = sup
n≥0

( ∑

2n≤i<2n+1

|ϕ(i)|2
)1/2

.

We have x0 = 0, ‖xi‖ ≤
√
2C and ‖yi‖ ≤ C + |ϕ(0)|. Hence

‖ϕ‖M2(N) ≤ (2
√
2 + 1)C + |ϕ(0)|.

Lemma 2.5. Let F1, . . . , FK be analytic trigonometric polynomials with
degree ≤ 2K−1. Let ϕ = F̂ with

F =
∑

K/2<p<K

z2
2p

Fp.

Then \
sup

K/2<p<K

|Fp| dm ≤ 3‖ϕ‖M3(N).

Proof. Let x ∈ H1 be the (La Vallée Poussin type) kernel such that:
x̂ ≡ 1 on the interval [2K , 2K+1], x̂(0) = 0, x̂ ≡ 0 on the interval [3 · 2K ,∞)
and x̂ is linear on the remaining intervals [0, 2K ] and [2K+1, 3 · 2K ]. A well
known computation shows that ‖x‖1 ≤ 2. By Lemma 2.3 we have\

sup
k≥0

∣∣∣
∑

n≥k

x̂(n− k)ϕ(n)zn
∣∣∣ dm ≤ 2‖ϕ‖M3(N).
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For each p with K < 2p < 2K we let k(p) = 22p − 2K . Hence we have\
sup

K/2<p<K

∣∣∣
∑

n≥k(p)

x̂(n− k(p))ϕ(n)zn
∣∣∣ dm ≤ 2‖ϕ‖M3(N).

Let Ap = {n | x̂(n − k(p)) 6= 0}. We have Ap ⊂ k(p) + [0, 3 · 2K ], hence
Ap ⊂ [22p − 2K , 22p + 2 · 2K ]. Therefore (since ϕ is supported in the union
of the intervals [22p, 22p + 2K−1]) we find

Ap ∩ {n | ϕ(n) 6= 0} ⊂ [22p, 22p + 2K−1].
Now since

[22p, 22p + 2K−1]− k(p) ⊂ [2K , 2K+1]
we have x̂(n − k(p)) = 1 for all n ∈ Ap ∩ {n | ϕ(n) 6= 0}. Since Ap ∩ {n |
ϕ(n) 6= 0} ⊂ [22p, 22p + 2K−1] we must have simply

∑

n≥k(p)

x̂(n− k(p))ϕ(n)zn = z22pFp

and we conclude that\
sup

K/2<p<K

|Fp| dm ≤ 2‖ϕ‖M3(N).

Let q be an integer and let P(q) denote the space of all analytic trigono-
metric polynomials with degree at most q. We define

C(q) = sup
{\
sup
1≤p≤q

|Fp| dm
∣∣∣Fp ∈ P(q), sup

1≤p≤q
‖Fp‖2 ≤ 1

}
.

Lemma 2.6. For each even integerK > 1 there is a function ϕK : N→ C

with support in [0, 22K ] such that ‖ϕK‖M2(N) ≤ 1 but
‖ϕK‖M3(N) ≥ (1/8)C(K/2− 1).

Proof. Let q = K/2−1. Let F1, . . . , Fq ∈ P(q) be such that supp≤q ‖Fp‖2
≤ 1 and \

sup
p≤q
|Fp| dm = C(q).

We consider the function

F =
∑

K/2<p<K

z2
2p

Fp−K/2,

and we let ϕ = F̂ . Then by Lemma 2.5 (note that q = K/2− 1 ≤ 2K−1) we
have

C(q) ≤ 2‖ϕ‖M3(N),
and on the other hand by Lemma 2.4 we have

‖ϕ‖M2(N) ≤ 4 sup
p≤q
‖Fp‖2 ≤ 4,

whence ϕK = ϕ/4 has the announced property.
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The following fact is elementary and well known:

Lemma 2.7. There is a number δ > 0 such that for any q ≥ 1,
δ
√
q ≤ C(q) ≤ √q.

Proof. The upper bound is an easy exercise (use supp |Fp|≤(
∑ |Fp|2)1/2).

For the lower bound, we use the following well known consequence of S. Bern-
stein’s inequality: There is a finite subset Bq ⊂ T such that for any function
F in P(q) we have

‖F‖∞ ≤ a sup
t∈Bq

|F (t)|

and moreover |Bq| ≤ bq where a ≥ 1 and b ≥ 1 are absolute constants. We
then set S(z) =

∑q
i=0 z

i and for each ξ in Bq we set

Fξ(z) = S(ξz).

We then have for any z in T,

sup
ξ∈Bq

|Fξ(z)| ≥ (q + 1)/a,

hence
T
supξ∈Bq |Fξ(z)| dm(z) ≥ (q + 1)/a, and on the other hand

sup
ξ∈Bq

‖Fξ‖2 ≤ (q + 1)1/2.

Hence (assuming without loss of generality that b is an integer ≥ 1) this
shows that

C(bq) ≥ (q + 1)1/2/a.
On the other hand it is easy to check that C(bq) ≤ bC(q), hence we finally
obtain the announced result with δ = (ab)−1.

Proof of Theorem 2.1. From the preceding two lemmas, it is clear that
the norms of M2(N) and M3(N) are not equivalent, which proves Theo-
rem 2.1.

To reformulate Theorem 2.1 more precisely, we need more notation: For
any integer d ≥ 2 we define, for any ϕ : N→ C,

‖ϕ‖[d] = sup{‖ϕψ‖Md(N)}
where the supremum runs over all ψ in ℓ∞(N) with ‖ψ‖∞ ≤ 1. It is well
known that ‖ϕ‖[2] < ∞ iff Mϕ maps H1 boundedly into H2, which gives
(see [Ru, §8.6], see also [Bo]) the following characterization:

4−1‖ϕ‖[2] ≤ |ϕ(0)|+ sup
n≥0

( ∑

2n≤k<2n+1

|ϕ(k)|2
)1/2
≤ 4‖ϕ‖[2].

(The left side follows from Lemma 2.4, the other one from a routine averaging
argument and Khinchin’s inequality, which show that if ‖ϕ‖[2] < ∞ then
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Mϕ maps H
1 into H2; then using, say, La Vallée Poussin kernels, one can

obtain the right side.)
We do not know how to characterize the functional ‖ϕ‖[3] in an analogous

fashion. However, the preceding results show:

Theorem 2.8. For any q ≥ 1, let
α(q) = sup{‖ϕ‖[3]/‖ϕ‖[2]}

where the supremum runs over all non-zero functions ϕ : N → C with

support in [0, q]. Then

(2.4) a1
√
q ≤ α(2q) ≤ a2

√
q

where a1, a2 are positive absolute constants.

Proof. By the preceding equivalent description of ‖ϕ‖[2], if ϕ is supported
by [0, 2q], we clearly have ‖ϕ‖2 ≤ a3‖ϕ‖[2]

√
q. Recall that by (1.8) and

(1.2), ‖ϕ‖M3(N) ≤ ‖ϕ‖B1(N) ≤ ‖ϕ‖2. Hence ‖ϕ‖M3(N) ≤ a3
√
q ‖ϕ‖[2]. This

yields the right side of (2.4). The converse follows from a combination of
Lemmas 2.6 and 2.7.

3. M3(N) viewed as a space of completely bounded multipli-
ers. It is known (see [P1, p. 109]) that ‖ϕ‖M2(N) is equal to the c.b. norm
ofMϕ viewed as a multiplier from H

1 to H1. Analogously, we now show that
‖ϕ‖M3(N) coincides with the c.b. norm of the “shifted multiplier” defined by
ϕ as above but acting from H1 to H1(ℓ∞). A somewhat similar statement
can also be proved for general discrete groups or semigroups, but the next
statement uses the commutativity of N.
To state this result, we need some background on operator space theory

from [P6]. Following [P6], we call the operator space (o.s. for short) structure
on L1(T) natural if the o.s. dual of L1(T) is completely isometric to L∞(T).
Since H1 is a subspace of L1(T), this also induces a natural o.s. structure
on H1. More generally, for any o.s. E, we equip the space L1(T;E) with the
o.s. structure defined by the “o.s. projective” tensor product L1(T) ⊗∧ E
introduced by Effros–Ruan [ER1–2] and Blecher–Paulsen [BP1] (see also
[P6]). As a Banach space, L1(T;E) is the same as the classical projective
tensor product L1(T) ⊗̂ E in Grothendieck’s sense, but the o.s. structure
encodes additional information that the norm alone does not carry. We define
H1(E) as the closed subspace generated by H1 ⊗ E (or span(zn) ⊗ E) in
L1(T;E) = L1(T) ⊗∧ E. Again, we will call the o.s. structure induced by
the embedding H1(E) ⊂ L1(T)⊗∧ E natural.
For any bounded function ϕ : N→ C, let

Φ(n) =
∑

k≥0

ϕ(n+ k)ek ∈ ℓ∞
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where (ek)k≥0 denotes the canonical basis of ℓ∞. Then for any polynomial
x in H1 we have

sup
k≥0

∣∣∣
∑

x̂(n)znϕ(n+ k)
∣∣∣ =
∥∥∥
∑

x̂(n)znΦ(n)
∥∥∥
ℓ∞
.

Moreover, z 7→ ∑ x̂(n)znΦ(n) can be viewed as an element of H1 ⊗ ℓ∞ ⊂
H1(ℓ∞). Thus, ϕ defines a mapping Tϕ : span[z

n, n ≥ 0] → H1(ℓ∞) such
that

(3.1) Tϕ

(∑
x̂(n)zn

)
=
∑

x̂(n)znΦ(n).

Note that ϕ is shift-bounded onH1 iff Tϕ is bounded fromH
1 toH1(ℓ∞). As

observed in [P1, §6], ϕ ∈ M2(N) iff Mϕ : H1 → H1 is completely bounded
and

‖ϕ‖M2(N) = ‖Mϕ : H1 → H1‖cb.
For M3(N), the analogous result is as follows:

Theorem 3.1. Let H1 and H1(ℓ∞) be equipped with their natural o.s.
structures as above. Let ϕ : N→ C be a bounded function. Then ϕ ∈M3(N)
iff Tϕ : H

1 → H1(ℓ∞) is completely bounded. Moreover

‖ϕ‖M3(N) = ‖Tϕ : H1 → H1(ℓ∞)‖cb.
Proof. Let us write L∞ instead of L∞(T). Let S = (H

1)⊥ ⊂ L∞ and let
q : L∞ → L∞/S be the quotient map. As is well known (see [P1, §6]) we
have a completely isometric embedding j : L∞/S → B(ℓ2) taking q(z

n) to
the Hankel operator

γn =
∑

i+j=n

eij .

Assume Tϕ : H
1 → H1(ℓ∞) is completely bounded. We clearly have a

completely contractive (restriction) map r : L∞⊗min ℓ1 → (H1(ℓ∞))∗ where
ℓ1 is equipped with its natural (= maximal) o.s. structure. Then let

v = j(Tϕ)
∗r : L∞ ⊗min ℓ1 → B(ℓ2).

We clearly have ‖v‖cb ≤ ‖Tϕ‖cb.
We can assume that ℓ1 = span[Un | n ≥ 0] with Un ∈ B(H), ‖Un‖ = 1.

By the fundamental factorization of c.b. maps (see e.g. [Pa1, p. 105] or [P1,
p. 57]), we can find suitable operators α, β with ‖α‖ · ‖β‖ = ‖v‖cb and a
representation

π : L∞ ⊗min B(H)→ B(Ĥ)

such that
∀y ∈ L∞ ⊗ ℓ1 v(y) = απ(y)β.

This implies
∀n, k ≥ 0 v(zn ⊗ Uk) = απ(zn ⊗ Uk)β.
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For any polynomial x in H1, we have

〈r(zn ⊗ Uk), Tϕ(x)〉 = x̂(n)〈Uk, Φ(n)〉 = x̂(n)ϕ(k + n).
Hence we find

v(zn ⊗ Uk) = γnϕ(k + n).
Letting U = π(z ⊗ I) and Ûk = π(I ⊗ Uk), we obtain

γnϕ(k + n) = αU
nÛkβ,

hence denoting by S the classical unilateral shift (note U and Ûk commute)

ϕ(i+ k + j) = 〈αU i+jÛkβej , ei〉 = 〈αU iÛkU jβej , ei〉
= 〈Si∗αU iÛkU jβSje0, e0〉,

which clearly shows that ‖ϕ‖M3(N) ≤ ‖α‖ · ‖β‖. So we conclude
‖ϕ‖M3(N) ≤ ‖Tϕ‖cb.

The converse inequality can be proved by an extension of the argument
given above for Lemma 2.3. We simply mention that the c.b. norm of Tϕ
is the norm of the “same” multiplier acting from H1(S1) to H

1(S1[ℓ∞]).
Here S1[ℓ∞] = S1 ⊗∧ ℓ∞; moreover, if we are given g, h in the unit ball of
S2 (= the Hilbert–Schmidt class), and operators yk in the unit ball of B(ℓ2),
then the sequence of products (gykh)k≥0 defines an element of the unit ball
of S1[ℓ∞], and conversely any element of the unit ball is of this form. We
leave the details to the reader. See the proof of Theorem 3.3 below for more
on this point.

Remark 3.2. More generally, let d ≥ 2. We denote by ⊗h the Haagerup
tensor product for which we refer the reader to either [CS], [BP1] or [P6].
Let

L(∞, d) = (ℓ1 ⊗h . . .⊗h ℓ1)∗ (d times).

Consider ϕ in Md(N). Let Φ : N→ L(∞, d− 2) be defined by
Φ(n) =

∑
ϕ(n+ i1 + . . .+ id−2)ei1 ⊗ . . .⊗ eid−2 ∈ L(∞, d− 2)

(note that this series is meant only in the weak-∗-sense). Now, consider again
the multiplier defined in (3.1),

Tϕ : H
1 → H1(L(∞, d− 2)).

The same argument as above shows that

‖ϕ‖Md(N) = ‖Tϕ‖cb.
Remarks. (i) It is easy to check that ‖ϕ‖M3(N) ≤ 1 iff the mapping

(generalized Schur multiplier) taking eij ⊗ Uk to ϕ(i+ k + j)eij extends to
a complete contraction from B(ℓ2)⊗min ℓ1 to B(ℓ2) (or from K(ℓ2)⊗min ℓ1
to K(ℓ2)).
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(ii) Since ‖Tϕ‖cb ≥ ‖Tϕ‖, Lemma 2.3 is a corollary of Theorem 3.1.
(iii) The multivariable Schur products have been studied in [ER3] mainly

with the group case in mind. Our arguments can be viewed as a variation
on the same theme.
(iv) The preceding proof is reminiscent of the main point in [J].

One unpleasant feature of Theorem 3.1 is that it is not obvious from it
that M3(N) is a Banach algebra for the pointwise product, although this is
clear from the definition ofM3(N). However, this “defect” is corrected in the
next statement, for which we use the following notation: Let x = (xk)k≥0
be a sequence in H1(S1). We write |||(xk)||| < c if there are factorizations
xk = gykh with g, h ∈ H2(S2), yk ∈ B(ℓ2) and

‖g‖H2(S2) sup
k
‖yk‖B(ℓ2)‖h‖H2(S2) < c.

Then we set
|||(xk)||| = inf{c | |||(xk)||| < c}.

This norm is nothing but an explicit description of the norm in the space
H1 ⊗∧ S1 ⊗∧ ℓ∞.
Theorem 3.3. For any ϕ : N→ C we define

|||ϕ|||M3
= sup{|||(zkMϕ(zkxk))k≥0|||}

where the supremum runs over all sequences (xk)k≥0 in H
1(S1) with |||(xk)|||

< 1. Then
‖ϕ‖M3(N) = |||ϕ|||M3

.

Proof. Assume ‖ϕ‖M3(N) < 1 so that (2.3) and (2.2) hold. Let xk = gykh
as above. Then

Mϕ(z
kxk) =

∑

n≥0

zk+nϕ(k + n)(gykh)
∧(n) =

∑

i,j

zkzizj〈ξi, Tkηj〉giykhj

=
(∑

i

ξi ⊗ gizi
)
(zkTk ⊗ yk)

(∑

j

ηj ⊗ zjhj
)
.

Hence

|||(zkMϕ(zkxk))|||
≤
∥∥∥
∑

ξi ⊗ gizi
∥∥∥
H2(ℓ∗2⊗2S2)

sup
k
‖Tk ⊗ yk‖

∥∥∥
∑

ηj ⊗ zjhj
∥∥∥
H2(ℓ2⊗2S2)

< 1.

This shows that ‖ϕ‖M3(N) ≥ ‖ϕ‖M3
. For the converse, note that, if ‖ϕ‖M3

≤ 1, then a fortiori we clearly have ‖(Mϕ(zkx))‖L1⊗∧S1⊗∧ℓ∞ ≤ 1 for any
x in the unit ball of H1(S1), and therefore (see [P6, Lemma 1.7, p. 23])
‖Tϕ : H1 → H1(ℓ∞)‖cb ≤ 1. Thus we conclude by Theorem 3.1 that
‖ϕ‖M3(N) ≤ ‖ϕ‖M3

.

Remark. Theorem 3.3 shows that if we denote by Mϕ : H1 ⊗∧ ℓ∞
→ H1 ⊗∧ ℓ∞ the mapping taking zn ⊗ α (n ≥ 0, α = (αk)k≥0 ∈ ℓ∞) to
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zn ⊗ (ϕ(n+ k)αk)k≥0, then
‖ϕ‖M3(N) = ‖Mϕ‖cb.

Remark. At this point, we are unable to prove that M3(N) 6= M4(N).
The main difficulty is the lack of a “good” sufficient condition for ϕ ∈M3(N)
analogous to Lemma 2.4.

Final remarks on shift-boundedness. The notion of shift-bounded mul-
tiplier obviously makes sense also for multipliers from Hp to Hq (0 < p, q
≤ ∞). More generally, if Mϕ is a multiplier which is bounded from Lp(T)
to Lq(T), we will say that it is shift-bounded if, for any x in Lp(T), the
“maximal function” (two-sided this time)

sup
k∈Z

|Mϕ(zkx)|

is in Lq(T). This definition has an obvious extension to more general function
spaces than Lp(T) and Lq(T), for instance it makes sense also if Lq(T) is
replaced by the so-called weak-Lq space which we denote by Lq,∞(T).

By the Nikishin–Maurey theorems (see [M]), any shift-bounded multi-
plier from L1(T) to L1,∞(T) is automatically shift-bounded from L2(T) to
L2,∞(T), and hence by interpolation it is shift-bounded from Lp(T) to Lp(T)
for all 1 < p < 2. A similar result holds for multipliers on the corresponding
Hardy spaces.

In passing, it is amusing to observe that Carleson’s celebrated theorem
on the a.s. convergence of Fourier series in L2(T) is essentially equivalent
to the assertion that the Hilbert transform is shift-bounded from L2(T) to
L2,∞(T) (and actually it is known [Hu] to be shift-bounded from Lp(T) to
Lp(T) for all 1 < p <∞).
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