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Abstract. Consider the nonlinear heat equation (E): ut − ∆u = |u|
p−1u + b|∇u|q .

We prove that for a large class of radial, positive, nonglobal solutions of (E), one has

the blowup estimates C1(T − t)
−1/(p−1) ≤ ‖u(t)‖∞ ≤ C2(T − t)

−1/(p−1). Also, as an
application of our method, we obtain the same upper estimate if u only satisfies the
nonlinear parabolic inequality ut − uxx ≥ u

p. More general inequalities of the form
ut − uxx ≥ f(u) with, for instance, f(u) = (1 + u) log

p(1 + u) are also treated. Our
results show that for solutions of the parabolic inequality, one has essentially the same
estimates as for solutions of the ordinary differential inequality v̇ ≥ f(v).

1. Introduction. The first aim of this article is to determine the blowup
rates of nonglobal solutions for semilinear heat equations with gradient de-
pending nonlinearities. As a typical example, we shall consider the equation

(P)







ut −∆u = |u|p−1u+ b|∇u|q, 0 < t < T, x ∈ Ω,
u(t, x) = 0, 0 < t < T, x ∈ ∂Ω,
u(0, x) = φ(x), x ∈ Ω,

where p > 1, q ≥ 1 and b ∈ R (see Remark 1 in §2.3 for more general
gradient depending nonlinearities).
Many authors have studied the existence of global and nonglobal positive

solutions to (P), especially for b < 0 (see [1, 5, 7, 8, 12–13, 18, 26, 27,
31–38]). Also, the associated elliptic problem was studied in [1, 4, 5, 7–9,
25, 29, 30, 39]. In particular, it is known [36] that finite time blowup occurs
for large initial data whenever p > q, whereas all solutions are global and
bounded if q ≥ p, b < 0 and, for instance, if Ω is bounded (see [8, 27,
37, 34]).
A considerable amount of work has been devoted to the equation without

gradient term, that is, (P) with b = 0. In this case, the blowup behavior

2000 Mathematics Subject Classification: 35K60, 35B35, 35B60.
Key words and phrases: semilinear parabolic equations, gradient terms, blowup rate,

parabolic inequalities.

[135]



136 P. SOUPLET AND S. TAYACHI

of solutions is by now fairly well understood, and in particular there are
precise results on the blowup rate of solutions (see §2.3 for details and some
references).
On the other hand, relatively little is known on the blowup behavior of

nonglobal solutions of (P). For some results on self-similar blowup profiles,
see [35] in the case q = 2p/(p+1), b < 0, and [12, 13] in the case q = 2, b > 0.
Also, the blowup set was investigated in the latter case (see [12, 13, 18, 19]).
Let us also mention the work [10], which gives blowup rate estimates when
the nonlinear gradient term in (P) is replaced with a (u2)x term of Burgers
type (N = 1).
In the present paper, we consider nonnegative solutions u of (P) in a

ball or in R
N , such that u is nondecreasing in time, radially symmetric, and

nonincreasing as a function of |x|. We will prove under certain assumptions
on the parameters that the rate of blowup of u satisfies the estimate

(1) C1(T − t)−1/(p−1) ≤ ‖u(t)‖∞ ≤ C2(T − t)−1/(p−1).
Also, as an application of our method, we will prove that the upper

estimate in (1) still holds if u only satisfies the nonlinear parabolic inequality

(2) ut − uxx ≥ up.
This result is for now unfortunately restricted to the case of one space di-
mension (see Remark 3.2). However, the method can also apply to general
inequalities of the form

(3) ut − uxx ≥ f(u).
Under some mild assumptions on f , we obtain the estimate

(4) ‖u(t)‖∞ ≤ G−1(C(T − t)) with G(s) =

∞\
s

dσ

f(σ)
.

For instance, for the inequality

(5) ut − uxx ≥ (1 + u) logp(1 + u),
we obtain the upper estimate ‖u(t)‖∞ ≤ exp[C(T − t)−1/(p−1)]. Let us
mention that the blowup properties for the corresponding equation were
studied in [19, 12, 13].
We note that the blowup rate (4) is “natural” in the sense that solutions

of the corresponding ordinary differential inequality v̇ ≥ f(v) (resp. v̇ ≤
f(v)) satisfy v(t) ≤ G−1(T − t) (resp. v(t) ≥ G−1(T − t)). Actually, the
lower estimate ‖u(t)‖∞ ≥ G−1(T − t) can be easily obtained when the
inequality sign in (3) is reversed.
To our knowledge, there do not seem to be any results in the literature on

upper blowup estimates for nonlinear parabolic inequalities. Furthermore,
the proofs known for the case of problem (P) with b = 0 use in an essential
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way the equality sign in the equation, and do not carry over immediately to
the unilateral case, nor to problem (P) for b 6= 0 (see § 2.3).
Let us indicate that the methods in the present article can be adapted

to prove upper blowup estimates for coupled parabolic systems with no
variational structure. This will be treated in a forthcoming publication of
ours.
Finally, we would like to mention that, at the time we were completing

this paper, we received the work [6], where upper blowup estimates were
independently obtained for problem (P), under assumptions different from
ours. More precisely, the estimate (7) is obtained in [6] without any symme-
try or monotonicity assumptions on u, but only in Ω = R

N and under more
restrictive conditions on the parameters, namely, 1 ≤ q < 2p/(p + 1) and
p ≤ 1 + 2/N . Moreover, the method in [6], based on Fujita-type theorems,
is completely different from ours.
The outline of the article is as follows. The results are stated in §2, along

with some comments and further remarks. The upper blowup estimates are
proved in §3. The additional results are proved in §4.

2. Statement of results

2.1. Equations with gradient terms. In what follows, we assume p > 1,
q ≥ 1, b ∈ R, and either Ω is the ball BR, of center 0 and radius R
(0 < R < ∞) in R

N , or Ω = R
N . As for the initial data, we assume

φ ≥ 0, and φ ∈ C1(BR) with φ(x) = 0 on ∂BR if Ω = BR. If Ω = R
N , we

suppose φ ∈ C1(RN ) with lim|x|→∞ φ(x) = 0, and the boundary condition
in (P) is then understood in the sense u(t, x) → 0, |x| → ∞. Under these
assumptions, there exists a unique, maximal in time, classical solution u ≥ 0
of (P). Denote by T = T (φ) ∈ (0,∞] the maximal existence time of u. If we
assume in addition q ≤ 2, then gradient blowup cannot occur, that is, we
have limt→T ‖u(t)‖∞ =∞ whenever T <∞ (see, e.g., [20, 21, 1]).
We will consider solutions of (P) with the following properties:

(6) u(t, x) = u(t, r) ≥ 0, r = |x|, ut ≥ 0, ur ≤ 0 in (0, T )×Ω.
It is well known from previous work on problem (P) that the value

q = 2p/(p+1) plays a critical role in the study of this problem. We will dis-
tinguish between the cases where q is subcritical, critical, and supercritical.

Theorem 1. Let Ω = BR or Ω = R
N . Let u be a solution of (P) such

that u satisfies (6) and T <∞. Assume that
1 ≤ q < 2p/(p+ 1), b ∈ R and (N − 2)p < N + 2.

Then

(7) lim sup
t→T

(T − t)1/(p−1)‖u(t)‖∞ <∞.
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Theorem 2. Let Ω = BR or Ω = R
N . Let u be a solution of (P) such

that u satisfies (6) and T <∞. Assume that q = 2p/(p+ 1). Then:
(i) There exists b1 = b1(p,N) > 0 such that (7) holds for all b ≥ b1.
(ii) If (N − 2)p ≤ N , then (7) holds for all b > 0.
(iii) If (N − 2)p < N + 2, then there exists b0 = b0(p,N) > 0 such that

(7) holds for all −b0 ≤ b ≤ b0.

Theorem 3. Let Ω = BR or Ω = R
N . Let u be a solution of (P) such

that u satisfies (6) and T <∞. Assume that

q > 2p/(p+ 1), b > 0 and N = 1.

Then (7) holds.

If in Theorems 1–3 we relax the assumption ut ≥ 0, and if we assume
N = 1, b > 0, p > 1 and q ≥ 1, then u still satisfies the weaker estimate

lim inf
t→T

(T − t)1/(p−1)‖u(t)‖∞ <∞.

This is a consequence of Theorem 4(ii) below. Theorems 1–3 are comple-
mented with the following lower estimate.

Proposition 1. Let p > 1, 1 ≤ q ≤ 2, Ω = BR or Ω = R
N . Let u ≥ 0

be a radially symmetric solution of (P), with T < ∞, such that ur ≤ 0.
Then

(8) lim inf
t→T

(T − t)1/(p−1)u(t, 0) ≥ κ ≡ (p− 1)−1/(p−1).

It is not a priori clear if there actually exist initial data such that the
corresponding solution of (P) satisfies the assumptions of Theorems 1–3.
The next proposition provides such initial data.

Proposition 2. (i) Let Ω = BR, p > 1, q ≥ 1, b ∈ R, and assume that
φ ≥ 0 is radially symmetric nonincreasing , with φ ∈ C2(Ω ) and φ|∂Ω = 0.
Assume in addition that

(9) ∆φ+ φp + b|∇φ|q ≥ 0 in Ω.

Then the corresponding solution u of (P) satisfies (6).

(ii) Let Ω = BR, p > 1, q ≥ 1 and b ∈ R. Assume in addition b > 0 if
q > 2p/(p + 1), and b ≥ −b3 if q = 2p/(p + 1), where b3 = b3(N, p) > 0 is
sufficiently small. Then there exist functions φ satisfying the assumptions
of (i) and such that T (φ) <∞. Moreover , if b > 0 and q > 1, then for all
ψ ≥ 0, radially symmetric nonincreasing , with ψ ∈ C2(Ω ), ψ|∂Ω = 0 and
ψr(R) < 0, one may take φ = λψ for all sufficiently large λ.
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(iii) Let Ω = R
N , p > 1, q ≥ 1, b ∈ R and let φ be as in (i) for some

R > 0. Then the solution of (P) with initial data

φ(x) =

{

φ(x), |x| < R,

0, |x| ≥ R,
satisfies (6) and T <∞.
2.2. Parabolic inequalities. Concerning the nonlinear parabolic inequal-

ity (2), we obtain the following upper blowup estimate.

Theorem 4. (i) Let QT = (0, T )×(−R,R) and p > 1. Let u ∈ C1,2(QT )
satisfy

ut − uxx ≥ up in QT ,

where u is symmetric as a function of r = |x| and satisfies u ≥ 0, ut ≥ 0,
ur ≤ 0 in QT . Then u satisfies the estimate (7).
(ii) If we relax the assumption ut ≥ 0 above, then u still satisfies the

weaker estimate

lim inf
t→T

(T − t)1/(p−1)‖u(t)‖∞ <∞.

Now consider a general nonlinear parabolic inequality of the form

ut − uxx ≥ f(u).
We assume that

(10) f : (a,∞)→ (0,∞) is of class C1 for some a ≥ 0, with
∞\ ds

f(s)
<∞,

and we set G(s) =
T∞
s
dσ/f(σ). Note that G−1(y) is well defined for y > 0

small. Also, we assume that there exists a real α > 0 such that

(11) f ′G ≥ 1 + α for s > a.

We obtain the following result.

Theorem 5. (i) Assume that f satisfies (10) and (11). Let QT = (0, T )
× (−R,R), and let u ∈ C1,2(QT ) satisfy

ut − uxx ≥ f(u) for all (t, x) ∈ QT such that u(t, x) > a,

where u is symmetric as a function of r = |x| and satisfies ut ≥ 0, ur ≤ 0
in QT . Then u satisfies the estimate

‖u(t)‖∞ ≤ G−1(C(T − t)) as t→ T

for some C > 0.
(ii) If we relax the assumption ut ≥ 0 above, and instead only assume

u > a in QT , then u still satisfies the weaker estimate

lim inf
t→T

‖u(t)‖∞
G−1(C(T − t)) <∞

for some C > 0.
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The hypothesis (11) means, roughly speaking, that f(s) does not grow
faster than some power of s as s→∞, but it allows arbitrarily slow growth
(provided

T∞
ds/f(s) < ∞). It is satisfied, for instance, if f is as in (5),

or if f(s) = s log s(log log s)p for s large and some p > 1, or also if f(s) =
sp logq s for s large and some p > 1, q ≥ 0. It is not satisfied for f(s) = es.
For the three aforementioned examples, after some tedious but elementary
calculations, we deduce from Theorem 5 the following estimates: ‖u(t)‖∞ ≤
exp[C(T − t)−1/(p−1)], ‖u(t)‖∞ ≤ exp exp[C(T − t)−1/(p−1)] and ‖u(t)‖∞ ≤
C((T − t)| log(T − t)|q)−1/(p−1), respectively.
Theorems 4 and 5 are complemented with the following lower estimate.

Proposition 3. Assume that f satisfies (10) and u ∈ C1,2((0, T )×BR)
satisfies

ut −∆u ≤ f(u) for all (t, x) ∈ QT such that u(t, x) > a,

with u radially symmetric, ur ≤ 0, and limt→T u(t, 0) =∞. Then u satisfies
the lower estimate

u(t, 0) ≥ G−1(T − t).
2.3. Comments and remarks. For problem (P) in the case b = 0, the

upper bound (7) is well known for p subcritical, i.e. (N − 2)p < N + 2,
when Ω is a smoothly bounded convex domain or Ω = R

N (see [41, 14], and
also [23, 24] for further recent results). If Ω is a smoothly bounded convex
domain, it is valid for all p > 1 provided ut ≥ 0 (see [11], and also [22] for a
partial result in the case Ω = R

N ). However, (7) may fail for large p in high
dimensions (see [16]). On the other hand, the lower bound (8) holds for all
p > 1 (see, e.g., [11]).

As usual, the upper estimate will be much harder to obtain than the
lower one. Among the classical techniques known for b = 0, the method in
[11], relying on maximum principle arguments, and that in [14], using scaling
and energy methods, do not seem applicable here. In particular, unlike in
the case b = 0, the equation (P) has no variational structure. We will get
back to the approach of [41], the first one historically, which relies mainly
on scaling arguments. However, unlike [11] and [14], this method has the
disadvantage of being limited to radial solutions.

In order to handle gradient terms or to treat the case of parabolic in-
equalities, new ideas in comparison with the proof in [41] are needed. One
of them is to consider a time-average of the spatially rescaled solution (see
Lemma 3.1 and formula (15)). By doing so, we actually improve the original
proof of [41] even in the case b = 0, by relaxing the assumption that ut be
radially nonincreasing.

On the other hand, let us remark that in previous work, the proof of up-
per blowup estimates relies on a reduction to some Liouville-type theorem
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for an autonomous elliptic equation (or ODE) in the whole space, after de-
riving some a priori estimates on ∇u and applying a compactness argument
(see, e.g., [41, 14]). Instead of that, we here use a reduction to a (nonau-
tonomous) ODE or differential inequality on a finite interval (see Lemma 3.2
and Proposition 3.3). An advantage is that we need no compactness argu-
ment, and consequently much less a priori estimates. And indeed, in the
present case, it does not seem possible to obtain suitable a priori estimates
in order to apply the usual procedure.
Concerning Theorem 5, let us point out that it can handle nonlinearities

f which do not enjoy any homogeneity properties (see the examples after
Theorem 5), although the method indirectly relies on scaling. If we compare
with the method of [11], which also works for general nonlinearities when
ut ≥ 0 (but only for equations), the latter has the advantage of being appli-
cable also in higher dimensions and in nonradial situations. However, it re-
quires f not growing up too slowly, in order that the blowup set be a compact
subset of Ω. For instance, it does not apply when f(u) = (1+u) logp(1+u)
with 1 < p < 2, in which case blowup is known to occur globally in Ω
(see [19]).

Remarks. 1. The result of Theorem 1 remains valid for the more general
equation

ut −∆u = |u|p−1u+ F (u, |∇u|),
where F is locally Lipschitz continuous and satisfies the growth condition

|F (u, |∇u|)| ≤ C(1 + |u|q) + ε|∇u|2p/(p+1)

with 1 ≤ q < p, C > 0, ε > 0 sufficiently small, and p < (N + 2)/(N − 2) if
N ≥ 3.
2. The proofs of Theorems 1–3 show that the lim sup appearing in the

estimate (7) is bounded independently of the solution u. Under the assump-
tions of Theorems 1–3, we also obtain the following information on the
blowup profile: there exists a constant C > 0 (independent of u) such that

u(t, |y|
√
T − t)

u(t, 0)
≥ 1− C|y|

for t close to T and |y| sufficiently small. This follows from formulae (12),
(13) and Lemma 3.5.
3. Let us recall that the value q = 2p/(p + 1) is critical with respect to

scaling arguments (see [5, 1, 35, 31] and formula (13) below). In particular,
equation (P) for q = 2p/(p+1) enjoys the same scale invariance as for b = 0.
This partly explains the difference in our results of Theorems 1–3. Also, we
note that when q ≥ 2p/(p+1), the gradient term is not scaled out from the
equation (see formula (13)), so that our results are not mere perturbations
of the case b = 0.
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4. One can be more precise concerning the admissible values of b < 0 in
Theorem 2 (q = 2p/(p+1)), if we further assume N = 1, 2 or p < N/(N−2).
Namely, we may then take −bp,N < b < 0, where

bp,N = (p+ 1)

(

N

2p
− N − 2
2

)p/(p+1)

.

Moreover, if also N ≥ 2, we may take b = −bp,N − ε with ε ≥ 0 small. (See
the proof of Proposition 3.3 in §3.3.)
5. In the nonmonotone case (ii) of Theorem 4, we actually prove a bit

more. Namely, setting t = (t+ T )/2, we have

1

t− t

t\
t

u(s, 0) ds ≤ C(T − t)−1/(p−1) as t→ T .

In other words, the upper estimate (7) is satisfied “on average”.

6. The conclusion of Proposition 1 actually holds for any solution (not
necessarily radial) in any domain, with ‖u(t)‖∞ instead of u(t, 0). This can
be proved by the technique of [11, Theorem 4.5] (see also [40] for a different
approach). On the other hand, the hypothesis φ ∈ C2(Ω ) in Proposition 2
can be weakened to φ ∈ C1(Ω ) with (9) being then understood in the weak
sense.

3. Proofs of the upper estimates

3.1. Proof of Theorems 1 and 2. We define the following auxiliary func-
tions:

(12) α(t) = [u(t, 0)](p−1)/2 and v(t, r) =
u(t, rα−1(t))

u(t, 0)
,

for 0 < t < T and 0 ≤ r < Rα(t) (with R = ∞ if Ω = R
N ). Under the

assumptions of Theorem 1, we may obviously suppose that limt→T α(t) =∞,
since otherwise (7) is trivially satisfied. Moreover, we have

0 ≤ v(t, r) ≤ 1, vr(t, r) ≤ 0, v(t, 0) = 1 and vr(t, 0) = 0.

We first observe that

(13) a(t, r) ≡ ∆v + vp + bα−m(t)|∇v|q = ut(t, rα
−1(t))

up(t, 0)
≥ 0,

where m = (2p− q(p+ 1))/(p− 1) ≥ 0.
A key step of the proofs of Theorems 1, 2 and 4 is the following lemma,

which enables one to relate the blowup rate of u with a time-average of the
right-hand side of (13).
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Lemma 3.1. For all t ∈ (0, T ) and all r ∈ [0, Rα(t)), we have

1

T − t

T\
t

ut(s, rα
−1(s))

up(s, 0)
ds ≤ p

p− 1
u1−p(t, 0)

T − t ≡ g(t).

Proof. For a fixed r, let γ(t) = u(t, rα−1(t)), which is defined for all t
such that Rα(t) > r. We note that

γ′(t) = ut(t, rα
−1(t))− rα′(t)

α2(t)
ur(t, rα

−1(t)) ≥ ut(t, rα−1(t)),

since ut ≥ 0 and ur ≤ 0. Let τ ∈ (t, T ). Integrating by parts and using
γ(s) ≤ u(s, 0) (since ur ≤ 0), we obtain
τ\
t

ut(s, rα
−1(s))

up(s, 0)
ds ≤

τ\
t

γ′(s)

up(s, 0)
ds =

[

γ(s)

up(s, 0)

]τ

t

+ p

τ\
t

γ(s)ut(s, 0)

up+1(s, 0)
ds

≤ γ(τ)

up(τ, 0)
+ p

τ\
t

ut(s, 0)

up(s, 0)
ds

≤ u1−p(τ, 0)− p

p− 1[u
1−p(s, 0)]τt ≤

p

p− 1u
1−p(t, 0).

The lemma then follows by letting τ → T .

From Lemma 3.1 we next deduce the following lemma, which allows us to
reduce the proof of Theorems 1 and 2 to a nonexistence result for a certain
ODE.

Lemma 3.2. For all R′ > 0 and all t ∈ (0, T ) sufficiently close to T ,
there exists t′ ∈ (t, T ) such that w(r) ≡ v(t′, r), h(r) ≡ a(t′, r) and β =
α−m(t′)b satisfy

(14)



















wrr +
N − 1
r

wr + |w|p + β|wr|q = h(r), 0 < r < R′,

w(0) = 1, wr(0) = 0,

w ≥ 0, wr ≤ 0, 0 < r < R′,

with h ≥ 0 and
TR′
0
h(r) dr ≤ R′g(t).

Proof. From (13) and Lemma 3.1, we deduce that

1

T − t

T\
t

R′\
0

a(s, r) dr ds ≤ R′g(t)

for all t ∈ (0, T ) such that Rα(t) > R′. Therefore there exists t′ ∈ (t, T )
such that

TR′
0
a(t′, r) dr ≤ R′g(t) and the lemma follows.
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The proof of Theorems 1 and 2 then relies on the following ODE result,
whose proof is postponed to §3.3.

Proposition 3.3. Let p > 1, q ≥ 1, R′, ε > 0, β ∈ R, and let h ∈
C([0, R′]) satisfy

TR′
0
|h(r)| dr ≤ ε. Then there does not exist any solution

w ∈ C2([0, R′]) of (14), under each of the following circumstances:

−b0 < β < b0, p <
N + 2

N − 2 (if N> 2), R′ ≥ R0, ε ≤ ε0;(a)

β > 0, q > 1, q ≤ N

N − 1 (if N> 1), h ≥ 0, R′ ≥ R1, ε ≤ ε1;(b)

β ≥ b1, q > 1, R′ ≥ 4, ε ≤ ε2,(c)

where the numbers b0, R0, ε0, b1 > 0 depend only on p, q, N , the numbers
R1, ε2 > 0 depend only on p, q, N , β, and the number ε1 > 0 depends only
on p, q, N and R′.

End of proof of Theorems 1 and 2. If q < 2p/(p + 1) (hence m > 0)
and b ∈ R, or if q = 2p/(p + 1) and −b0 < β < b0, we have −b0 < b < b0
for t close to T . If we assume p < (N + 2)/(N − 2) if N ≥ 3, and choose
R′ = R0(p, q,N), it follows from Lemma 3.2 and Proposition 3.3(a) that we
must have R′g(t) > ε0(p, q,N) for t close to T . The results of Theorems 1
and 2(iii) follow.

Assume q = 2p/(p + 1) and b = β ≥ b1. By choosing R
′ = R2(p, q,N),

it follows from Proposition 3.3(c) that we must have R′g(t) > ε2(p, q,N, b)
for t close to T . The result of Theorem 2(i) follows.

The result of Theorem 2(ii) follows in the same way from Proposi-
tion 3.3(b). (Note that when q = 2p/(p + 1) and N > 2, p ≤ N/(N − 2) is
equivalent to q ≤ N/(N − 1).)

Remark 3.1. If the number ε2 in Proposition 3.3(c) were independent
of β, then this would give the result of Theorem 3 (q > 2p/(p + 1)) for all
N ≥ 1. Actually, we will prove Theorem 3 (only for N = 1) in the next
section by a different argument.

3.2. Proof of Theorems 3, 4 and 5

Proof of Theorem 4(i). We first treat the case ut ≥ 0. In addition to α
and v (see formula (12)), we define the auxiliary function

(15) z(t, r) =
1

t− t

t\
t

v(s, r) ds,

where t = (t + T )/2, which is defined for 0 < t < T and 0 ≤ r < Rα(t).
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From the assumptions of Theorem 2, v satisfies

∆v + vp ≤ ut(t, rα
−1(t))

up(t, 0)
.

By using Lemma 3.1 and Hölder’s (or Jensen’s) inequality, it follows easily
that z satisfies











∆z + zp ≤ 2p

p− 1
u1−p(t, 0)

T − t = 2g(t), 0 < r < Rα(t),

z(0) = 1, zr(0) = 0.

We now assume N = 1. The result of Theorem 4(i) is then an immediate
consequence of the following differential inequality lemma.

Lemma 3.4. Let p ≥ 1 and ε,R′ > 0, and consider the problem

(16)











wrr + w
p ≤ ε, 0 < r < R′,

w ≥ 0, wr ≤ 0, 0 < r < R′,

w(0) = 1, wr(0) = 0.

Then there does not exist any solution w ∈ C2([0, R′]) of (16) whenever
R′ ≥ R3 and ε ≤ ε3, where R3 and ε3 > 0 depend only on p.
Proof. From (16), we have

(17) wr(r) +

r\
s

wp(τ) dτ ≤ wr(s) + ε(r − s), 0 ≤ s < r < R′.

By further integrating, we get

−1 ≤ w(r)− w(s) ≤ (r − s)wr(s) +
ε

2
(r − s)2, 0 ≤ s < r < R′,

hence

|wr(s)| ≤
1

r − s +
ε

2
(r − s), 0 ≤ s < r < R′.

Now assume ε ≤ 1/2 and R′ ≥ 2/ε. By choosing r = s + 1/ε in the above
inequality, it follows that, for all s ∈ [0, 1/2], we have |wr(s)| ≤ ε+1/2 ≤ 1,
hence w(s) ≥ 1/2. But then applying (17) with s = 0, we deduce that

wr(r) ≤ εr −
r\
0

wp(τ) dτ ≤ εr − 1

2p+1
≤ − 1
2p+2

for all r ∈
[

1

2
,
1

2p+2ε

]

,

where we have assumed ε ≤ 1/2p+1. One more integration yields

w

(

1

2p+2ε

)

≤ 1− 1

4p+2ε
,

a contradiction for ε < 1/4p+2. Lemma 3.4 follows.
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Proof of Theorem 4(ii). Fix t0 ∈ (0, T ) and let

V (t, r) =
1

T − t0

t\
t0

u(s, r) ds.

For t ∈ (t0, T ), we compute

Vt −∆V =
1

T − t0

(

u(t, r)−
t\
t0

∆u(s, r) ds
)

≥ 1

T − t0

t\
t0

(ut(s, r)−∆u(s, r)) ds ≥
1

T − t0

t\
t0

up(s, r) ds

≥
(

T − t0
t− t0

)p−1

V p(t, r) ≥ V p(t, r),

where we used Jensen’s inequality. Note that Vt ≥ 0 and Vr ≤ 0. By setting

g(t) =
p

p− 1
V 1−p(t, 0)

T − t and α(t) = V (p−1)/2(t, 0)

it thus follows from the proof of case (i) and from Lemma 3.4 that either
Rα(t) ≤ R3 or 2g(t) ≥ ε3. In other words, we have

V (t, 0) ≤ max
((

R3
R

)2/(p−1)

,

(

2p

(p− 1)ε3

)1/(p−1)

(T − t)−1/(p−1)
)

≤ C(T − t)−1/(p−1),
with C independent of t0. In particular, we get

inf
t0<t<T

u(t, 0) ≤ 2

T − t0

(t0+T )/2\
t0

u(s, 0) ds

= 2V

(

t0 + T

2
, 0

)

≤ 2C
(

T − t0
2

)−1/(p−1)

,

and the conclusion follows.

Theorem 3 is an immediate consequence of Theorem 4(i).

Proof of Theorem 5. (i) We may assume that limt→T u(t, 0) = ∞, since
otherwise the conclusion is immediate. In particular, there exists t0 ∈ (0, T )
such that u(t0, 0) ≥ a+1. By continuity, it follows that for some R′ ∈ (0, R),
we have u(t0, x) > a whenever |x| < R′. Since ut ≥ 0, up to replacing R
with R′ and (0, T ) with (t0, T ), we may therefore assume that u > a in QT .
Noting that G is strictly decreasing and maps (a,∞) onto (0, c) with

0 < c = G(a+ 0) ≤ ∞, we may set
γ = 1/α, h(s) = G−1(α/sγ) and H(y) = 1/Gα(y) = γαh−1(y),
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and in particular h−1(y) is well defined for y > a. The functions G, h and
H are of class C2 and we have

G′ =
−1
f

< 0, H ′ = −α G′

Gα+1
=

α

fGα+1
> 0,

hence h′ > 0. Moreover, H ′′ has the same sign as −(fGα+1)′, that is, the
same sign as −f ′G− (α+1)fG′ = α+1−f ′G, which is ≤ 0 by assumption.
It follows that H is concave increasing, so that h is convex. On the other
hand, we have G ◦ h(s) = α/sγ , hence

1

s1+γ
= −G′ ◦ h(s) · h′(s) = h′(s)

f ◦ h(s) .

Now setting U = h−1(u), and using h′ > 0 and h′′ ≥ 0, we obtain

f(h(U)) ≤ ut − uxx = h′(U)(Ut − Uxx)− h′′(U)(Ux)2

≤ h′(U)(Ut − Uxx),

hence

Ut − Uxx ≥
f(h(U))

h′(U)
= U1+γ .

Since h′ > 0, the assumptions on u entail Ur ≤ 0 and Ut ≥ 0. It follows from
Theorem 4(i), applied to U with p = 1+γ, that ‖U(t)‖∞ ≤ C(T − t)−1/γ as
t→T . We then conclude that ‖u(t)‖∞≤h[C(T−t)−1/γ ]=G−1[αC−γ(T−t)]
as t→ T .

(ii) This follows similarly from Theorem 4(ii).

Remark 3.2. The only reason why our results on parabolic inequalities
(and also Theorem 3) are restricted to one space dimension is that we are
unable to prove the higher-dimensional analogue of Lemma 3.4 (with an
additional ((N − 1)/r)wr term on the left-hand side of (14)1).
Note that the nonexistence of nonnegative nontrivial C2 solutions to

∆u + up ≤ 0 in the whole space was proved in [3] under the assumption
(N − 2)p ≤ N . But it does not seem possible to extend the proof therein to
obtain a higher-dimensional analogue of Lemma 3.4.

Actually, we can prove that the conclusion of Theorem 3 remains valid
in dimension N ≥ 2, provided q > N . However, since then q > 2, one cannot
discard the possibility of gradient blowup, i.e. ‖u(t)‖∞ remaining bounded
while limt→T ‖ur(t)‖∞ =∞, in which case the estimate (7) has no interest.

3.3. Proof of Proposition 3.3. The proof is rather technical. We have to
consider the three cases (a), (b), (c) separately.
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Case (a). Denote by w the solution of

(18)







wrr +
N − 1
r

wr + |w|p−1w = 0, r > 0,

w(0) = 1, wr(0) = 0.

Since E(r) = w2r/2 + |w|p+1/(p+ 1) is nonincreasing, w exists for all r > 0.
Under the assumption p < (N +2)/(N − 2) (if N > 2), it is well known (see
[17] or [15, Theorem 4]) that there exists r0 > 0 such that w(r0) < 0. The
conclusion follows by continuous dependence, with R0 = r0.

To prove the assertion of Remark 4 concerning the case q = 2p/(p+ 1),
b < 0, we may use the sharp results of [5, 9, 39]. These results state that the
solution of (18) with an additional b|wr|q term on the left-hand side achieves
some negative values, provided b, p, N are as described in Remark 4. (See
[5, Proposition 4.11], [9, Theorem 1] and [39, Theorem IV.1].)

Case (b). We will need the following lemma (which, in turn, is used in
Remark 2).

Lemma 3.5. Assume that w solves (14) with h ≥ 0 and β ∈ R. Then
there exists r1 = r1(p, q, β) > 0 such that |wr| ≤ 1 and w ≥ 1/2 on [0, r1].
Moreover , r1 is bounded away from 0 when β remains bounded above.

Proof. Let E(r) = w2r/2 + w
p+1/(p+ 1). Multiplying by wr ≤ 0, we get

Er(r) = (wrr + w
p)wr ≤ β|wr|q+1 ≤ β(2E)(q+1)/2.

Since E(0) = 1/(p+ 1) < 1/2, we deduce that w2r ≤ 2E(r) ≤ 1 for r ≤ r1
where r1 = r1(p, q, β) > 0 is small (bounded away from 0 when β remains
bounded above). Since w(0) = 1, by further assuming r1 ≤ 1/2, it follows
that w ≥ 1/2 on [0, r1].

Let

Θ(r) =

r\
0

sN−1(wp + β|wr|q)(s) ds.

By integrating (14) and using the assumption on h, we obtain

rN−1|wr(r)| ≥ Θ(r)− rN−1ε, 0 < r < R′.

On the other hand, Lemma 3.5 implies that Θ(r1) ≥ rN1 2
−pN−1. Now as-

sume ε ≤ ε1 ≡ rN1 2−(p+1)N−1R′1−N . Then

Θr(r) ≥ βrN−1|wr(r)|q ≥ βr−(N−1)(q−1)2−qΘq, r1 < r < R′.
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By integrating, it follows that

1

q − 1

(

rN1
2pN

)1−q

≥ Θ1−q(r1)

q − 1 ≥
r\
r1

Θr(s)

Θq(s)
ds

≥ β2−q
r\
r1

s−(N−1)(q−1) ds, r1 ≤ r < R′.

Since (N−1)(q−1) ≤ 1 by assumption, this last integral diverges as r →∞.
Therefore, we must have R′ ≤ R1 for some R1(N, p, q, β) > 0, and the
conclusion follows.

Case (c). This is more involved. We first need the following lemma.

Lemma 3.6. Assume that w solves

(19)







wrr +
N − 1
r

wr + |w|p + β|wr|q = 0, 0 < r < R∗,

w(0) = 1, wr(0) = 0,

with q > 1 and R∗ ∈ (0,∞] the maximum existence time of w. Then there
exists b1 = b1(N, p, q) > 0 such that if β ≥ b1, then R∗ < 2, and w satisfies

(20) lim
r→R∗

wr(r) = −∞ and

R∗\
0

|wr(s)|q ds =∞.

Proof. Step 1. We first prove (20) assuming R∗ <∞. We have

(21) −rN−1wr(r) =
r\
0

sN−1(|w|p + β|wr|q)(s) ds,

hence wr < 0 for all r ∈ (0, R∗). Moreover, rN−1|wr(r)| is nondecreasing.
Therefore, if R∗ <∞, we must have wr(r)→ −∞ as r → R∗. On the other

hand,
TR∗
0
|wr(s)|q ds =∞, since otherwise w would be bounded on [0, R∗),

and (21) would imply wr bounded, a contradiction.

Since for N = 1 the result of Lemma 3.6 follows from Lemma 3.4, we
may now assume N > 1.

Step 2. We claim that wrr ≤ 0 for all r ∈ (0, R∗) such that r ≤
((N − 1)/p)1/2. To prove this, first note that wrr(0) = −1/N < 0. By
differentiating (19)1, we obtain

wrrr +

(

N − 1
r
− βq|wr|q−1

)

wrr +

(

p|w|p−2w − N − 1
r2

)

wr = 0.

Assume that there is a first r > 0 such that wrr(r) = 0. Then wrrr(r) ≥ 0,
hence (N − 1)/r2 ≤ p|w(r)|p−2w(r) ≤ p, which proves the claim.
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Step 3. Let r2 = min(1, ((N − 1)/p)1/2
)

. By (19), we have

(22) |wr(r)| ≥ Θ(r), r2 ≤ r ≤ 2r2,

where

Θ(r) =

r2\
0

(

s

2r2

)N−1

(|w|p + β|wr|q)(s) ds+
β

2N−1

r\
r2

|wr(s)|q ds.

Assume β ≥ 1. We then claim that Θ(r2) ≥ η(N, p, q) > 0. If w(r2/2) ≥ 1/2,
then Θ(r2) ≥ 2−1−(2N+p)N−1 r2. Otherwise, by the Mean Value Theorem,
there exists r′ ∈ (0, r2/2) such that |wr(r′)| ≥ 1/r2. But then |wr| ≥ 1/r2
on [r2/2, r2] by Step 2, so that Θ(r2) ≥ 21−2Nr1−q2 .
Step 4. Thanks to (22) and Step 3, Θ satisfies







Θr =
β

2N−1
|wr|q ≥

β

2N−1
Θq, r2 ≤ r ≤ 2r2,

Θ(r2) ≥ η(N, p, q) > 0.

It follows easily that if β ≥ b1, where b1 = b1(p, q,N) is sufficiently large,
then Θ has to blow up before r = 2r2. This contradiction concludes the
proof of Lemma 3.6.

We can now complete Case (c). Let β ≥ b1 and let w0 be the correspond-
ing solution of (19). Let A > 1 to be fixed later. By Lemma 3.6, the maximal
existence time R∗ of w0 satisfies R

∗ < 2, and there exists r ∈ (R∗/2, R∗)
such that

Tr
R∗/2

β|w0,r(s)|q ds ≥ 2NA+ 1.
Assume that w exists for r ∈ [0, 2R∗]. By continuous dependence, there

exists ε2 = ε2(N, p, q, β) ∈ (0, 1) such that for all ε ∈ (0, ε2],
r\
R∗/2

β|wr(s)|q ds ≥
r\
R∗/2

β|w0,r(s)|q ds− 1 ≥ 2NA.

It follows that for all r ∈ [R∗, 2R∗],

|wr(r)| ≥
r\
0

(

s

r

)N−1

(wp(s) + β|wr(s)|q) ds− ε

≥ 1

2N−1

r\
R∗/2

β|wr(s)|q ds− ε+
β

4N−1

r\
r

|wr(s)|q ds

≥ A+ β

4N−1

r\
r

|wr(s)|q ds ≡ Λ(r),
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hence






Λr ≥
β

4N−1
Λq, R∗ ≤ r ≤ 2R∗,

Λ(R∗) ≥ A.
But if A is taken sufficiently large (depending on N , q, R∗, β), then Λ has
to blow up before r = 2R∗, a contradiction. The result follows.

4. Proof of Propositions 1, 2 and 3

Proof of Proposition 1. The assumptions on u imply ∇u(t, 0) = 0 and
∆u(t, 0) ≤ 0. Therefore,
(23) ut(t, 0) ≤ up(t, 0).
Moreover, since q ≤ 2, gradient blowup is excluded, so that limt→T u(t, 0)
=∞. The conclusion then follows immediately by integrating the differential
inequality (23) between t and T .

Proof of Proposition 3. From the assumptions, we have u(t, 0) ≥ a for t
close to T and ∆u(t, 0) ≤ 0. Therefore, ut(t, 0) ≤ G(u(t, 0)) and the conclu-
sion follows by integrating between t and T .

Proof of Proposition 2. (i) This is proved e.g. in [2, Theorem 3.3 and
p. 64] in the case b = 0. The proof immediately carries over to the case
b 6= 0.
(ii) We may assume b < 0, the case b ≥ 0 being much easier. For all

δ ∈ (0, R/4) it is clear that there exists a unique function χ ∈ C2([0, R])
such that

χ′′(r) =







−2 in [0, δ],
0 in [2δ,R− 2δ],
2 in [R− δ,R],

χ′′ is linear on [δ, 2δ] and on [R−2δ,R−δ], and χ′(R) = χ(R) = 0. One easily
verifies that χ′(0) = 0, χ(r) ≥ 0, −4δ < χ′(r) ≤ 0, χ′′(r) ≥ −2 on [0, R],
−4δ < χ′(r) ≤ −2δ on [δ,R−δ], hence χ(r) ≥ Rδ on [0, R/4], χ(r) = (R−r)2
on [0, R − δ], and χ(r) ≥ δ2 on [R − δ,R]. Setting φ(x) = kχ(r), r = |x|,
with k > 0, we get, for r ∈ [R− δ,R],

∆φ+ φp + b|∇φ|q = k
[

2 +
N − 1
r
2(r −R)− |b|(2(R− r))qkq−1 + kp−1χp

]

.

By choosing δ = 12 |b|−1/qk(1−q)/q with k large enough if q > 1, or δ small
with any k > 0 if q = 1, it follows that

∆φ+ φp + b|∇φ|q ≥ k
[

2− N − 1
r
2δ − |b|(2δ)qkq−1

]

≥ 0, r ∈ [R− δ,R].
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For r ∈ [0, R− δ), the assumptions on χ imply that ∆χ ≥ N minχ′′ ≥ −2N
and that

∆φ+ φp + b|∇φ|q ≥ k[−2N − |b|(4δ)qkq−1 + kp−1δ2p]
= k[−2N − 2q + (2|b|1/q)−2pkp−1−2p(q−1)/q].

The latter expression is positive either if p − 1 − 2p(q − 1)/q > 0, that
is, q < 2p/(p + 1), and k is large, or if p − 1 − 2p(q − 1)/q = 0, that is,
q = 2p/(p+1), and |b| is small enough (depending on p, N). It follows that
φ satisfies (9).

On the other hand, we observe that φ(r) ≥ Rkδ on [0, R/4], with Rkδ =
1
2R|b|−1/qk1/q if q > 1. The fact that T (φ) < ∞ for k large is then a
consequence of [36, Theorem 1].

If b > 0, with ψ as in the statement of Proposition 2(ii), we have |ψ′(r)|
≥ ε > 0, R − η ≤ r < R, for some ε, η > 0. Thus we get ∆φ+ φp + b|∇φ|q
≥ λ(∆ψ + bεqλq−1) for r ∈ [R − η,R], and ∆φ + φp + b|∇φ|q ≥ λ(∆ψ +
ψp(R − η)λp−1) for r ∈ [0, R − η). Since p > 1 and q > 1, the conclusion
follows when λ is sufficiently large, the fact that T (λψ) <∞ being again a
consequence of [36, Theorem 1].

(iii) Since φ still satisfies (9) in the weak sense, the fact that ut ≥ 0
follows from a straightforward modification of the proof of [2, Theorem 3.1].
On the other hand, if u denotes the solution of (P) in BR with initial data
φ, by the maximum principle we have u(t, x) ≥ u(t, x) for all x ∈ BR as long
as u and u exist. Since ‖u(t)‖∞ → ∞ as t → T (φ) < ∞, we conclude that
T (φ) <∞.
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Département de Mathématiques
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