VOL. 88

2001

NO. 1

AN ADDENDUM AND CORRIGENDUM TO "ALMOST FREE SPLITTERS"

(COLLOQ. MATH. 81 (1999), 193-221)

BҮ

RÜDIGER GÖBEL (Essen) and SAHARON SHELAH (Jerusalem and New Brunswick, NJ)

Abstract. Let R be a subring of the rational numbers \mathbb{Q} . We recall from [3] that an R-module G is a splitter if $\operatorname{Ext}^1_R(G, G) = 0$. In this note we correct the statement of Main Theorem 1.5 in [3] and discuss the existence of non-free splitters of cardinality \aleph_1 under the negation of the special continuum hypothesis CH.

1. Introduction. We refer to [3] for definitions and all details. Recall that an *R*-module *G* is a *splitter* if $\operatorname{Ext}_{R}^{1}(G, G) = 0$. We may also assume that splitters are torsion-free abelian groups; see [3, p. 194]. Hence the *nucleus R* of a torsion-free abelian group $G \neq 0$ is defined to be the (now fixed) subring *R* of the field of rational numbers \mathbb{Q} generated by all 1/p (*p* any prime) for which *G* is *p*-divisible, i.e. pG = G. Recall that *G* is an \aleph_1 -free *R*-module if any countably generated *R*-submodule is free.

Under the special continuum hypothesis CH, any \aleph_1 -free splitter of cardinality \aleph_1 is free over its nucleus as shown in [3]. Generally these modules are very close to being free but may not be free in particular models of set theory as explained below. This modification of a statement from [3] is due to an incomplete proof (noticed thanks to Paul Eklof) in [3, first paragraph on p. 207]. Assuming the negation of CH, it is shown in [6] that under Martin's axiom (MA) these splitters are free indeed. However there are models of set theory having non-free \aleph_1 -free splitters of cardinality \aleph_1 .

2. Reductions from [3] and the existence of non-free splitters. One of the main results in [3] needs CH and now should read as follows.

THEOREM 2.1. Under the assumption of the special continuum hypothesis CH any \aleph_1 -free splitter of cardinality \aleph_1 is free over its nucleus.

²⁰⁰⁰ Mathematics Subject Classification: Primary 13C05, 18E40, 18G05, 20K20, 20K35, 20K40; Secondary 13D30, 18G25, 20K25, 20K30, 13C10.

Key words and phrases: self-splitting modules, criteria for freeness of modules.

We must recall that G is of type I if there is an \aleph_1 -filtration $G = \bigcup_{\alpha < \omega_1} G_{\alpha}$ of pure, free R-submodules such that $G_{\alpha+1}/G_{\alpha}$ are minimal non-free for all $\alpha > 0$. Also recall that a non-free, torsion-free R-module of finite rank is minimal non-free if all submodules of smaller rank are free. Modules of type II and III are defined in [3]. The following statements are proved in [3, Sections 3, 5, 6 and 7]

(i) Any \aleph_1 -free R-module G of cardinality \aleph_1 is either of type I, II or III.

(ii) Modules of type II or III are splitters if and only if they are free over the nucleus R (hence of type II).

(iii) Modules of type I are not splitters if we assume CH.

So Theorem 2.1 follows from these statements. In order to characterize \aleph_1 -free splitters it remains to assume the negation of the special continuum hypothesis, hence $\aleph_1 < 2^{\aleph_0}$ and to consider modules G of type I. In this case it is not needed to assume \aleph_1 -freeness. In fact this is a consequence of an easy extension of a result of Hausen [4] (see also [2]). It also remains to consider splitters satisfying the following hypothesis:

• Let G be a splitter of type I with an \aleph_1 -filtration $G = \bigcup_{\alpha \in \omega_1} G_\alpha$ of pure and free R-submodules G_α such that nuc $G_\alpha = R$ for all $\alpha \in \omega_1$.

(See [3, p. 203].) For the remaining arguments let us assume that G is such a fixed R-module which is not free.

The next Proposition 2.3 depends on a condition about solving linear equations, which is closely related to the answer to the Whitehead problem.

DEFINITION 2.2. If X is an R-submodule of G, then we consider the set $\mathfrak{W} = \mathfrak{W}(X)$ of all finite sequences $\overline{a} = (a_0, a_1, \dots, a_n)$ such that:

- (i) $a_i \in G \ (i \leq n)$.
- (ii) $\bigoplus_{i < n} (a_i + X)R$ is pure in G/X.

(iii) $\langle (a_i + X)R : i \leq n \rangle_*$ is not a free *R*-module in G/X.

If $G_{\bar{a}}$ is the pure submodule of G (purely) generated by $\{X, a_i R : i \leq n\}$, that is to say,

$$G_{\bar{a}} = \langle X, a_i R : i \leq n \rangle_* \subseteq G,$$

then it is clear that $G_{\bar{a}}/X$ is a minimal non-free *R*-module of rank *n*. Hence there are natural numbers $p_{\bar{a}m}$ which are not units of *R* and elements $k_{\bar{a}im} \in R$ (i < n) and $g_{\bar{a}m} \in G_{\bar{a}}$ such that

(2.1)
$$y_{\bar{a}m+1}p_{\bar{a}m} = y_{\bar{a}m} + \sum_{i < n} a_i k_{\bar{a}im} + g_{\bar{a}m} \quad (m \in \omega).$$

If we choose a sequence $\overline{z} = (z_m : m \in \omega) \subset G$, then the \overline{z} -inhomogeneous counterpart of (2.1) is by definition the system of equations

(2.2)
$$Y_{m+1}p_{\bar{a}m} \equiv Y_m + \sum_{i < n} X_i k_{\bar{a}im} + z_m \mod X \quad (m \in \omega).$$

We say that $\overline{a} \in \mathfrak{W}$ is *contra-Whitehead* if (2.2) has no solutions y_m ($m \in \omega$) in G (hence in $G_{\overline{a}}$) for some \overline{z} and $X_i = a_i$. Otherwise we say that \overline{a} is *pro-Whitehead*. In this terminology, the following was shown in [3, Proposition 4.4].

PROPOSITION 2.3. If $G = \bigcup_{\alpha \in \omega_1} G_\alpha$ and $S = \{ \alpha \in \omega_1 : \exists \overline{a} \in \mathfrak{W}(G_\alpha), \ \overline{a} \text{ is contra-Whitehead} \}$

is stationary in ω_1 , then G is not a splitter.

By the above assumption on G, the set S is not stationary in ω_1 and hence we may assume that all modules G_{α} are pro-Whitehead in G.

This case is covered by our next result, which needs the extra assumption that nuc(G/X) = R.

THEOREM 2.4. Let G be a splitter of cardinality $\langle 2^{\aleph_0} with \operatorname{nuc} G = R$. If X is a pure, countable R-submodule of G with $\operatorname{nuc}(G/X) = R$ which is also pro-Whitehead in G, then G/X is an \aleph_1 -free R-module.

The proof given in [3, p. 206 (first case)] applies.

Let $C = \{\alpha \in \omega_1 : \operatorname{nuc}(G/G_\alpha) = R\}$. If $C = \emptyset$, then $G_{\alpha+1}/G_\alpha$ is free by Theorem 2.4 and the last assumption on G, hence G is a free R-module. But we assumed above that G is not free, hence $C \neq \emptyset$ and there is an ordinal $\alpha_0 < \omega_1$ such that $C = (\alpha_0, \omega_1)$ is an interval, a final segment of ω_1 . We get the following

COROLLARY 2.5. Any non-free splitter of type I and cardinality at most $\aleph_1 < 2^{\aleph_0}$ has a countable R-submodule X such that $\operatorname{nuc}(G/X)$ is strictly larger than R.

If R is a local ring then by Corollary 2.5 the module G is free-by-free, an extension of a countable free R-module by a divisible module, that is, a free module over the field \mathbb{Q} of rational numbers.

It remains to consider splitters as in Corollary 2.5 under $\aleph_1 < 2^{\aleph_0}$:

If we assume now, in addition (to negation of CH), Martin's axiom, then \aleph_1 -free splitters of cardinality \aleph_1 are free, as shown by Shelah [6]. On the other hand there is a model of set theory with non-free \aleph_1 -free splitters of cardinality \aleph_1 . Hence freeness of (\aleph_1 -free) splitters (of type I) cannot be decided in ordinary set theory ZFC, even under Martin's axiom MA.

REFERENCES

- P. Eklof and A. Mekler, Almost Free Modules, Set-Theoretic Methods, North-Holland, Amsterdam, 1990.
- [2] R. Göbel and S. Shelah, Cotorsion theories and splitters, Trans. Amer. Math. Soc. 352 (2000), 5337–5379.
- [3] —, —, Almost free splitters, Colloq. Math. 81 (1999), 193–221.
- [4] J. Hausen, Automorphismen gesättigte Klassen abzählbaren abelscher Gruppen, in: Studies on Abelian Groups, Springer, Berlin, 1968, 147–181.
- [5] P. Schultz, *Self-splitting groups*, preprint, Univ. of Western Australia at Perth, 1980.
- [6] S. Shelah, On uniformization and splitters, in preparation.

Department of Mathematics Rutgers University New Brunswick, NJ 08854, U.S.A.

Received 4 July 2000

(3952)