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NONCOMMUTATIVE POINCARÉ RECURRENCE THEOREM

BY

ANDRZEJ ŁUCZAK (Łódź)

Abstract. Poincaré’s classical recurrence theorem is generalised to the noncommuta-
tive setup where a measure space with a measure-preserving transformation is replaced by
a von Neumann algebra with a weight and a Jordan morphism leaving the weight invari-
ant. This is done by a suitable reformulation of the theorem in the language of L∞-space
rather than the original measure space, thus allowing the replacement of the commutative
von Neumann algebra L∞ by a noncommutative one.

Introduction. Poincaré’s celebrated recurrence theorem (see e.g. [2])
states that given a probability space (Ω,F , µ), a measure-preserving trans-
formation T and any set E in F , the set of those points ω in E for which
Tnω, n = 1, 2, . . . , does not return to E infinitely often has measure zero.
An equivalent (though seemingly weaker) version says that the set of those
ω in E for which Tnω, n = 1, 2, . . . , is never in E has measure zero. This
amounts to saying that for almost all ω in E, Tnω belongs to E for some n,
which in turn means that for almost all ω in Ω we have χE(T

nω) = 1 for
some n whenever χE(ω) = 1, χE being the indicator function of the set E.
This property can be stated in the form

χE(ω) ≤ sup
n

χE(T
nω) for almost all ω.

Now if we look at this problem from the “L∞ point of view”, and denote
by T̂n the transformation induced in L∞(Ω,F , µ) by Tn, i.e. (T̂nf)(ω) =
f(Tnω), we get the inequality

(1) χE ≤ sup
n

T̂nχE .

The last formulation allows a straightforward generalisation to the noncom-
mutative context by replacing L∞(Ω,F , µ) by a von Neumann algebra with

a finite trace, the transformation T̂ by a ∗-automorphism α of this algebra
leaving the trace invariant, and the function χE , which is a projection in
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L∞(Ω,F , µ), by a projection p in the von Neumann algebra. The inequality
(1) then reads

p ≤
∞∨

n=1

αn(p).

Now the more customary version of Poincaré’s recurrence theorem in the
noncommutative setup would be: Let M be a von Neumann algebra with a
finite trace, and let α be a ∗-automorphism ofM leaving the trace invariant.
Then for each projection p in M we have

(2) p ≤

∞∧

k=1

∞∨

n=k

αn(p).

It may appear a little surprising that this formulation allows a further gen-
eralisation in which the trace is replaced by a faithful weight, and the au-
tomorphism by a Jordan morphism. However, in this case inequality (2) is
proved only for projections with orthogonal complement “not too big” as
measured by the weight, and “not too big” themselves as measured by values
of the Jordan morphism on the identity of the algebra.

1. Preliminaries and notation. Throughout, M will stand for a von
Neumann algebra with identity 1. For a projection p in M we denote by p⊥

the orthogonal complement of p, i.e. p⊥ = 1− p.

A weight ψ on M is an additive and positively homogeneous map from
the positive partM+ ofM into [0,∞]. We call ψ faithful if for each x inM+
the condition ψ(x) = 0 implies x = 0. A fairly elaborated account of the
theory of (normal) weights can be found in [3]; however, for our purposes
we shall not need any of the usually assumed properties of such weights as,
for instance, normality or semifiniteness.

A Jordan morphism α on M is a linear map from M into M satisfying

(i) α(x∗) = α(x)∗ for x ∈M ;

(ii) α(xy + yx) = α(x)α(y) + α(y)α(x) for x, y ∈M .

In particular, we have α(x2) = α(x)2, so α is positive and transforms pro-
jections into projections. Moreover, using (ii) consecutively with y = x2,
y = x3, . . . we get α(xn) = α(x)n for every positive integer n.

α is called normal if it is continuous in the σ-weak topology on M .

Lemma 1. Let α be a normal Jordan morphism on M . Then for each
sequence {pn} of projections in M we have

α
( ∞∧

n=1

pn

)
=
∞∧

n=1

α(pn).
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Proof. Let p and q be projections in M . Since

lim
n→∞
(pq)n = p ∧ q σ-weakly,

we have

(3) lim
n→∞
(pqp)n = lim

n→∞
(pq)np = p ∧ q.

For all x, y ∈M ,
α(xyx) = α(x)α(y)α(x)

(cf. e.g. [1; p. 208]), thus

α((pqp)n) = α(pqp)n = [α(p)α(q)α(p)]n,

and taking limits on both sides yields, on account of the normality of α
and (3),

α(p ∧ q) = α(p) ∧ α(q).

Consequently, for a sequence {pn} of projections, we have

α
( k∧

n=1

pn

)
=

k∧

n=1

α(pn),

and again passing to the limit as k →∞ gives the conclusion.

2. Noncommutative Poincaré recurrence theorem. Recalling our
discussion from the introduction, we can now formulate the first version of
this theorem.

Theorem 2. Let α be a normal Jordan morphism on a von Neumann
algebra M with a faithful weight ψ such that ψ · α = ψ. For each projection
p in M satisfying (i) ψ(p⊥) <∞ and (ii) p ≤

∧
∞

n=1 α
n(1), we have

p ≤
∞∨

n=1

αn(p).

Proof. Put en = α
n(1). Since e1 ≤ 1, we have en+1 ≤ en. Let

q =

∞∧

n=1

αn(p⊥) =

∞∧

n=1

[en − α
n(p)].

Then

(4) q ≤ α(p⊥) = e1 − α(p) ≤ α(p)
⊥,

so
ψ(q) ≤ ψ(α(p⊥)) = ψ(p⊥) <∞.

Furthermore,

α(q) =
∞∧

n=2

αn(p⊥) ≥ q,
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and the finiteness of ψ(q) = ψ(α(q)) yields ψ(α(q)− q) = 0. Since α(q)− q
≥ 0, we infer, by the faithfulness of ψ, that α(q) = q.

Now put

x = pqp.

Then

α(x) = α(p)α(q)α(p) = α(p)qα(p) = 0,

by inequality (4). Consequently, ψ(x) = ψ(α(x)) = 0, which, again by the
faithfulness of ψ, means that x = 0, and thus pq = 0. Hence

(5) p ≤ q⊥ =
∞∨

n=1

[en − α
n(p)]⊥ =

∞∨

n=1

[e⊥
n
+ αn(p)].

For each positive integer m assumption (ii) yields

αm(p) ≤

∞∧

n=1

αm(en) =

∞∧

n=m+1

en =

∞∧

n=1

en,

where the last equality follows from the fact that the sequence {en} of
projections is nonincreasing. Thus we get

∞∨

n=1

αn(p) ≤
∞∧

n=1

en,

which means that

0 =
( ∞∨

n=1

αn(p)
)( ∞∧

n=1

en

)⊥
=
( ∞∨

n=1

αn(p)
)( ∞∨

n=1

e⊥
n

)
.

Accordingly,

∞∨

n=1

[e⊥
n
+ αn(p)] =

∞∨

n=1

e⊥
n
+
∞∨

n=1

αn(p) =
( ∞∧

n=1

en

)⊥
+
∞∨

n=1

αn(p),

so (5) reads

p ≤
( ∞∧

n=1

en

)⊥
+

∞∨

n=1

αn(p).

Since p ≤
∧
∞

n=1 en, the above inequality yields

p ≤
∞∨

n=1

αn(p).

Remark. Obviously, assumption (i) of the theorem is satisfied if ψ is a
positive linear functional on M , and assumption (ii) if α is unital.
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Observe that (ii) also holds for p ∈
⋂
∞

n=1 α
n(M). Indeed, if p ∈ αn(M),

then p = αn(x) for some x ∈M , and putting

z =
x∗x+ xx∗

2
≥ 0,

we get αn(z) = p. Now z ≤ ‖z‖1, so

p = αn(z) ≤ ‖z‖αn(1),

and since αn(1) is a projection, it follows that p ≤ αn(1), giving condition
(ii).

The second version of noncommutative Poincaré recurrence theorem is

Theorem 3. Let α and ψ be as in Theorem 2, and assume that a pro-
jection p satisfies conditions (i) and (ii) of Theorem 2. Then

p ≤

∞∧

k=1

∞∨

n=k

αn(p).

Proof. Fix a positive integer k. Then αk is a normal Jordan morphism
leaving ψ invariant, and

∞∧

n=1

(αk)n(1) =
∞∧

n=1

αkn(1) ≥
∞∧

n=1

αn(1) ≥ p,

and thus we can apply Theorem 2 to αk, which gives

p ≤

∞∨

n=1

(αk)n(p) =

∞∨

n=1

αkn(p) ≤

∞∨

n=k

αn(p).

As k is arbitrary, we get

p ≤

∞∧

k=1

∞∨

n=k

αn(p).
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