COLLOQUIUM MATHEMATICUM

DIFFERENTIATION AND SPLITTING FOR LATTICES OVER ORDERS

BY
WOLFGANG RUMP (Eichstätt)

Abstract

We extend our module-theoretic approach to Zavadskiú's differentiation techniques in representation theory. Let R be a complete discrete valuation domain with quotient field K, and Λ an R-order in a finite-dimensional K-algebra. For a hereditary monomorphism $u: P \hookrightarrow I$ of Λ-lattices we have an equivalence of quotient categories $\widetilde{\partial}_{u}: \Lambda$-lat $/[\mathcal{H}] \xrightarrow{\sim} \delta_{u} \Lambda$-lat $/[B]$ which generalizes Zavadskiu's algorithms for posets and tiled orders, and Simson's reduction algorithm for vector space categories. In this article we replace u by a more general type of monomorphism, and the derived order $\delta_{u} \Lambda$ by some over-order $\partial_{u} \Lambda \supset \delta_{u} \Lambda$. Then $\widetilde{\partial}_{u}$ remains an equivalence if $\delta_{u} \Lambda$-lat is replaced by a certain subcategory of $\partial_{u} \Lambda$-lat. The extended differentiation comprises a splitting theorem that implies Simson's splitting theorem for vector space categories.

Introduction. In a previous article [19] we generalized Zavadskii's differentiation algorithm [26-28] for representations of posets to lattices over orders Λ in a finite-dimensional algebra A over a field K with a complete discrete valuation. Instead of a pair of points in a poset, our differentiation depends on a hereditary monomorphism $u: P \hookrightarrow I$ of Λ-lattices, that is, I / P is of finite length and satisfies

$$
\operatorname{Hom}_{\Lambda}(P, I / P)=\operatorname{Ext}_{\Lambda}(I / P, I)=\operatorname{Ext}_{\Lambda}(H, L)=0
$$

for Λ-lattices H, L between P and I, and

$$
\begin{equation*}
P \text { and } I^{*} \text { are projective. } \tag{P}
\end{equation*}
$$

Then the isomorphism classes of Λ-lattices between P and I can be represented by a finite set \mathcal{H}_{u}. With each (left) Λ-lattice E, we associate a pair $\partial_{u} E=\binom{E^{+}}{E-}$ of Λ-lattices with $E_{-} \subseteq E \subseteq E^{+}$. Dually, the hereditary monomorphism $u^{*}: I^{*} \hookrightarrow P^{*}$ yields a pair $\binom{F^{-}}{F_{+}}$of right Λ-lattices with $F_{+} \subseteq F \subseteq F^{-}$for any given right Λ-lattice F. Then we can form the derived order

$$
\delta_{u} \Lambda:=\left(\begin{array}{cc}
\Lambda^{+} & \Lambda^{+} \Lambda^{-} \\
\Lambda_{-} & \Lambda^{-}
\end{array}\right) \subseteq \mathrm{M}_{2}(A)
$$

of Λ, and ∂_{u} becomes a functor

$$
\partial_{u}: \Lambda \text {-lat } \rightarrow \delta_{u} \Lambda \text {-lat }
$$

between Λ - and $\delta_{u} \Lambda$-lattices. Since $\Lambda_{+}=\Lambda_{-}$, the definition of $\delta_{u} \Lambda$ is selfdual.

In [19] we proved that ∂_{u} induces an equivalence of quotient categories

$$
\begin{equation*}
\widetilde{\partial}_{u}: \Lambda \text {-lat } /\left[\mathcal{H}_{u}\right] \xrightarrow{\sim} \delta_{u} \Lambda \text {-lat } /\left[\binom{I}{P}\right] \tag{0}
\end{equation*}
$$

which generalizes known versions of Zavadskiin's algorithm, e.g. Simson's algorithm for vector space categories [21-23] in case Λ is subhereditary, and Zavadskiu's algorithm for tiled orders [28] in case P and I are tame irreducible with I / P of length one ([19], §3).

In the present article we show that a modified version of (0) remains valid when the projectivity condition (P) is dropped. To this end we consider pre-hereditary monomorphisms $u: P \rightarrow I$, i.e. such that $U:=I / P$ is lengthfinite with

$$
\begin{equation*}
\partial_{u} P=\partial_{u} I=\binom{I}{P} \tag{C}
\end{equation*}
$$

$\operatorname{End}_{\Lambda}(I) \rightarrow \operatorname{End}_{\Lambda}(U)$ surjective, and U is a Zavadski乞 module [19] over $B:=$ Λ / Λ_{-}, that is, a module ${ }_{B} U$ with the property that each submodule is U-projective and each factor module U-injective. The closure condition (C) implies that

$$
\partial_{u} \Lambda:=\left(\begin{array}{cc}
\Lambda^{+} & \Lambda^{+-}+\Lambda^{-+} \\
\Lambda_{-} & \Lambda^{-}
\end{array}\right) \subseteq \mathrm{M}_{2}(A)
$$

is an over-order of $\delta_{u} \Lambda$. If u is pre-hereditary, ∂_{u} induces an equivalence (Theorem 1)

$$
\widetilde{\partial}_{u}: \Lambda \text {-lat } /\left[\mathcal{H}_{u}\right] \xrightarrow{\sim} \partial_{u} \Lambda-\text { lat }^{s} /\left[\binom{I}{P}\right]
$$

where $\partial_{u} \Lambda$-lat ${ }^{s}$ consists of the $\partial_{u} \Lambda$-lattices $\binom{F}{G}$ with $F \supseteq G^{+}$and $G \subseteq F_{-}$. Moreover, $\partial_{u} \Lambda$-lat ${ }^{s}$ coincides with $\partial_{u} \Lambda$-lat if

$$
\Lambda^{-} P \text { and } I_{\Lambda^{+}}^{*} \text { are projective. }
$$

When the stronger projectivity condition (P) holds, the orders $\partial_{u} \Lambda$ and $\delta_{u} \Lambda$ coincide.

If $u: P \hookrightarrow I$ is pre-hereditary, then any decomposition of I / P induces a decomposition of u. The functor ∂_{u} does not change if multiplicities of indecomposable direct summands of u are reduced to one. For $u=$ $u_{1} \oplus \ldots \oplus u_{n}$ with u_{1}, \ldots, u_{n} indecomposable and pairwise non-isomorphic, $u_{1}^{\prime}:=\partial_{u_{2} \oplus \ldots \oplus u_{n}}(u)$ is pre-hereditary, and the functor ∂_{u} is equivalent to the composition $\partial_{u_{1}^{\prime}} \partial_{u_{2} \oplus \ldots \oplus u_{n}}$. Therefore, we may assume u to be indecomposable. In this case, I / P is uniserial.

Apart from the various Zavadskiĭ algorithms mentioned above, the modified equivalence $\left(0^{\prime}\right)$ generalizes D. Simson's splitting theorem ([24], Theorem 17.53) which extends previous results of Nazarova \& Roĭter ([24], Lemma 8.1), and Dlab \& Ringel ([2], Lemma 8.4). The splitting theorem has served as a basic tool in the theory of representation-finite Schurian vector space categories [7].

For our splitting theory (§5) which we are going to explain now, the use of $\partial_{u} \Lambda$ instead of $\delta_{u} \Lambda$ is indispensable (see $\S 7$, Example 6).

In dealing with orders in not necessarily semisimple algebras A, the concept of generalized over-order Γ of Λ introduced (for A semisimple) by the Kiev school (e.g. [3]) is important. Such a Γ is given by a ring homomorphism $\Lambda \rightarrow \Gamma$ with R-torsion cokernel. A pre-hereditary monomorphism $u: P \hookrightarrow I$ with $S:=K P=K I$ simple and $\Delta:=\operatorname{End}_{\Lambda}(P)=\operatorname{End}_{\Lambda}(I)$ the (unique) maximal order in the skew field $D:=\operatorname{End}_{A}(S)$ will be called splitting if $A=\operatorname{End}_{D}(S) \times A^{\prime}$ and $\operatorname{Hom}_{\Delta}(I, P \Pi) \subseteq \Lambda$. Our fundamental splitting lemma (Proposition 18) then says that in this case, the maximal order Γ_{0} in $\mathrm{M}_{2}\left(\operatorname{End}_{D}(S)\right)$ with indecomposable representation $\binom{I}{P}$ satisfies $\operatorname{Rad} \Gamma_{0} \subseteq \partial_{u} \Lambda$. (Hence $\partial_{u} \Lambda$ is subhereditary whenever A is simple.) Remarkably, that inclusion does not hold for $\delta_{u} \Lambda$ instead of $\partial_{u} \Lambda$.

In order to apply this result, we define a splitting of Λ as a pair of generalized over-orders Λ_{1}, Λ_{2} such that $\Lambda_{1} \Lambda_{2}=\Lambda_{2} \Lambda_{1}$ is an order, and each indecomposable Λ-lattice is a Λ_{i}-lattice for some $i \in\{1,2\}$. (Here, the product $\Lambda_{1} \Lambda_{2}$ is an R-lattice in $K \Lambda_{1} \otimes_{K \Lambda} K \Lambda_{2}$.) The importance of this notion comes from the fact (Proposition 17) that a splitting is tantamount to an equivalence of categories

$$
\Lambda_{1} \text {-lat } /[\Gamma] \times \Lambda_{2} \text {-lat } /[\Gamma] \rightarrow \Lambda \text {-lat } /[\Gamma]
$$

with $\Gamma:=\Lambda_{1} \Lambda_{2}$. Of particular interest is the case where Γ is hereditary. We then speak of a hereditary splitting. Under some extra assumption, a splitting pre-hereditary monomorphism u gives rise to a hereditary splitting (Theorem 4). For orders Λ in a simple K-algebra, this result is equivalent to Simson's splitting theorem ([24], §17.53).

A special case of hereditary splitting will be characterized in Theorem 3: Here, $\Lambda_{\Lambda} \Lambda$ admits a decomposition $\Lambda=P_{1} \oplus P_{2}$ which yields an equivalence

$$
\Omega_{1} \text {-lat } /\left[\Gamma_{1}\right] \times \Omega_{2} \text {-lat } /\left[\Gamma_{2}\right] \xrightarrow{\sim} \Lambda \text {-lat } /[\Gamma]
$$

of categories with $\Omega_{i}:=\left(\operatorname{End}_{\Lambda} P_{i}\right)^{\mathrm{op}}$ and $\Gamma_{i}:=\left(\operatorname{End}_{\Gamma} \Gamma P_{i}\right)^{\mathrm{op}}$. Such type of splitting arises for generalized Brauer tree orders (Example 5 of $\S 7$).

For an R-order Λ, there always exist proper monomorphisms $u: P \hookrightarrow I$ with $S:=K P=K I$ simple, $\operatorname{End}_{\Lambda}(P)=\operatorname{End}_{\Lambda}(I)=: \Delta$ maximal, and I / P uniserial with pairwise non-isomorphic composition factors. Then u is prehereditary if and only if $P \nsubseteq I$. For $P \cong I$, however, there are cases where
$\left(0^{\prime}\right)$ still holds. Namely, if the identical morphism 1:I $\rightarrow I$ is splitting, and the projection of Λ into $\operatorname{End}_{K \Delta}(S)$ is a hereditary order Λ_{0}, Proposition 20 yields an equivalence

$$
\Lambda \text {-lat } /\left[\Lambda_{0}\right] \xrightarrow{\sim} \Lambda^{\prime} \text {-lat }
$$

for some R-order Λ^{\prime}. If $\partial_{u} \Lambda$ is an order (which is not always true here since (C) is no longer valid), then Λ^{\prime}-lat coincides with $\partial_{u} \Lambda$-lat $/\left[\partial_{u} P\right]$, and the equivalence is given by $\widetilde{\partial}_{u}$. Only the weak form $\left(\mathrm{P}^{\circ}\right)$ of the projectivity condition (P) is satisfied in that case.

Equivalences of type $\left(0^{\prime \prime}\right)$ with Λ_{0} not necessarily hereditary have recently been studied by Iyama [5] who defines Λ^{\prime} in terms of the AuslanderReiten quiver of Λ. The question arises whether a similar generalization of (0) or even $\left(0^{\prime}\right)$ is possible. We shall take up this problem in [20].

Some examples are collected in $\S 7$, chosen as small as possible, to illustrate the results of the paper.

1. The derivative. Throughout this article, let R be a complete discrete valuation domain with quotient field K, and Λ an R-order in a finitedimensional K-algebra A; that is to say, Λ is an R-subalgebra of A which is finitely generated over R such that $K \Lambda=A$. Unless otherwise stated, modules over a ring S will be assumed to be left modules. By S-mod we denote the category of finitely generated S-modules.

A Λ-submodule E of a left A-module M is said to be a (full) Λ-lattice in M if ${ }_{R} E$ is finitely generated and $K E=M$. Since M can be identified with $K \otimes_{R} E$, the embedding $E \hookrightarrow M$ is determined by the Λ-module E, which is also called a Λ-representation. Every homomorphism $f: E \rightarrow F$ of Λ-lattices has a unique A-linear extension $K E \rightarrow K F$, which we again denote by f. Therefore, the inverse image $f^{-1}(F)$ will be regarded as a Λ submodule of $K E$ which may strictly contain E. The category of Λ-lattices is denoted by Λ-lat. Recall that a (left) Λ-lattice E is said to be injective if the right Λ-lattice $E^{*}:=\operatorname{Hom}_{R}(E, R)$ is projective. When ${ }_{\Lambda} E$ is projective and injective, then E is also called bijective. Moreover, a Λ-lattice E is said to be irreducible if $K E$ is a simple A-module. If $K E$ decomposes into two simple A-modules, we call E binomial. An irreducible Λ-lattice E with $\operatorname{End}_{\Lambda}(E)$ a maximal order in $\operatorname{End}_{A}(K E)$ is said to be tame. For the general theory of lattices over orders we refer to [12].

Let $u: P \hookrightarrow I$ be a monomorphism of Λ-lattices with $K P=K I$. In [19] we defined for any Λ-lattice E the u-trace and u-cotrace:

$$
\begin{aligned}
\operatorname{trc}_{u} E & :=\sum\left\{f(I) \mid f \in \operatorname{Hom}_{\Lambda}(P, E)\right\} \\
\operatorname{ctr}_{u} E & :=\bigcap\left\{f^{-1}(P) \mid f \in \operatorname{Hom}_{\Lambda}(E, I)\right\}
\end{aligned}
$$

Thus $\operatorname{trc}_{u} E$ is R-finite, and $\operatorname{ctr}_{u} E$ is full in $K E$, i.e. $K\left(\operatorname{ctr}_{u} E\right)=K E$. Hence

$$
\begin{equation*}
E^{+}:=E+\operatorname{trc}_{u} E, \quad E_{-}:=E \cap \operatorname{ctr}_{u} E \tag{1}
\end{equation*}
$$

are Λ-lattices in $K E$ with $E_{-} \subseteq E \subseteq E^{+}$. Dually, with respect to the monomorphism $u^{*}: I^{*} \hookrightarrow P^{*}$ of $\Lambda^{\text {op }}$-lattices, for $F \in \Lambda^{\text {op }}$-lat we define

$$
\begin{equation*}
F^{-}:=F+\operatorname{trc}_{u^{*}} F, \quad F_{+}:=F \cap \operatorname{ctr}_{u^{*}} F \tag{2}
\end{equation*}
$$

Then $F_{+} \subseteq F \subseteq F^{-}$, and

$$
\begin{equation*}
\left(E^{+}\right)^{*}=\left(E^{*}\right)_{+}, \quad\left(E_{-}\right)^{*}=\left(E^{*}\right)^{-} \tag{3}
\end{equation*}
$$

Since every homomorphism ${ }_{\Lambda} \Lambda \rightarrow I$ is of the form $a \mapsto a x$ with $x \in I$, we obtain $\Lambda_{-}=\{a \in \Lambda \mid a I \subseteq P\}=\left\{a \in \Lambda \mid P^{*} a \subseteq I^{*}\right\}$ and thus

$$
\begin{equation*}
\Lambda_{-}=\Lambda_{+} \tag{4}
\end{equation*}
$$

which is a (two-sided) ideal of Λ.
The following closure condition:

$$
\begin{equation*}
I^{+}=I, \quad P_{-}=P \tag{C}
\end{equation*}
$$

has been introduced in [19]. Since the identity $1: P \rightarrow P$ carries I to I, we have $I \subseteq P^{+}$. On the other hand, $P \hookrightarrow I$ gives $P^{+} \subseteq I^{+}$. Therefore, condition (C) implies that P and I determine each other:

$$
\begin{equation*}
P^{+}=I, \quad I_{-}=P \tag{5}
\end{equation*}
$$

Note, however, that (C) does not imply the minimality condition

$$
\begin{equation*}
I=\Lambda^{+} P, \quad P=\operatorname{Hom}_{\Lambda}\left(\Lambda^{-}, I\right) \tag{M}
\end{equation*}
$$

which states that there are no Λ^{+}- or Λ^{-}-lattices strictly between P and I. Moreover, we shall see that (C) does not even imply the weak minimality condition

$$
I=\Lambda^{-+} P, \quad P=\operatorname{Hom}_{\Lambda}\left(\Lambda^{+-}, I\right)
$$

Here, the second equations in (M) and $\left(\mathrm{M}^{\circ}\right)$ assume that P is identified with $\operatorname{Hom}_{\Lambda}(\Lambda, P)$.

In [19] we proved the following
Proposition 1. If $I^{+}=I$ (resp. $\left.P_{-}=P\right)$, then $\Lambda^{+}\left(\right.$resp. $\left.\Lambda^{-}\right)$is an over-order of Λ, and for any Λ-lattice E we have $E^{+}=\Lambda^{+} E^{+}$(resp. $E_{-}=\Lambda^{-} E_{-}$). Moreover, (C) implies $\Lambda_{-} E^{+} \subseteq E_{-}$.

Proposition 2. If (C) is satisfied, then $\Lambda_{-} E^{+} \subseteq E_{-} \subseteq\left(\Lambda^{+-}+\Lambda^{-+}\right) E_{-}$ $\subseteq E^{+}$for every Λ-lattice E.

Proof. The inclusion $\Lambda^{-+} E_{-} \subseteq E^{+}$follows since Λ^{-+}is mapped into E^{+}by each homomorphism $\Lambda^{-} \rightarrow E_{-}$. Dually, $\left(E^{*}\right)_{+} \Lambda^{+-} \subseteq\left(E^{*}\right)^{-}$and thus $\left(E^{+}\right)^{*} \Lambda^{+-} \subseteq\left(E_{-}\right)^{*}$, which gives $\Lambda^{+-} E_{-} \subseteq E^{+}$.

In particular, (C) implies:

$$
\begin{gather*}
\Lambda^{-} \Lambda_{-} \Lambda^{+}=\Lambda_{-}, \quad \Lambda^{+} \Lambda^{-+} \Lambda^{-}=\Lambda^{-+} \\
\Lambda^{-+} \Lambda_{-} \subseteq \Lambda^{+}, \quad \Lambda_{-} \Lambda^{-+} \subseteq \Lambda^{-} \tag{6}
\end{gather*}
$$

Here the first equation follows by (4) and Proposition 1 ; the second follows since the functor ()$^{+}$respects right Λ^{-}-lattices; thirdly, $\Lambda^{-+} \Lambda_{-} \subseteq$ $\left(\Lambda^{-} \Lambda_{-}\right)^{+} \subseteq \Lambda^{+}$, and the fourth equation follows by Proposition 2. By duality, the last three equations also hold for Λ^{+-}instead of Λ^{-+}.

Thus under the assumption (C) we can define the u-derivative of Λ as the R-order:

$$
\Lambda^{\prime}=\partial_{u} \Lambda:=\left(\begin{array}{cc}
\Lambda^{+} & \Lambda^{+-}+\Lambda^{-+} \tag{7}\\
\Lambda_{-} & \Lambda^{-}
\end{array}\right) \subseteq \mathrm{M}_{2}(A)
$$

Then a Λ^{\prime}-lattice is suitably given by a column $\binom{F}{G}$ with $F \in \Lambda^{+}$-lat, $G \in$ Λ^{-}-lat, and $\Lambda_{-} F \subseteq G \subseteq\left(\Lambda^{+-}+\Lambda^{-+}\right) G \subseteq F$. Hence, the map $E \mapsto\binom{E^{+}}{E_{-}}$ gives rise to a functor

$$
\begin{equation*}
\partial_{u}: \Lambda \text {-lat } \rightarrow \Lambda^{\prime} \text {-lat }^{s} \tag{8}
\end{equation*}
$$

into the full subcategory

$$
\begin{equation*}
\Lambda^{\prime}-\text { lat }^{s}:=\left\{\binom{F}{G} \in \Lambda^{\prime} \text {-lat } \mid F \supseteq G^{+}, G \subseteq F_{-}\right\} \tag{9}
\end{equation*}
$$

of Λ^{\prime}-lat. We shall call (8) the differentiation functor with respect to u, or simply the u-differentiation. (For representations of partially ordered sets, a similar functor is known as "refinement functor"; see [24], Definition 9.14.) Note that the order $\partial_{u} \Lambda$ has to be distinguished from the Λ-lattice $\partial_{u}(\Lambda \Lambda)$, which is a proper direct summand of $\Lambda\left(\partial_{u} \Lambda\right)$.

Let us call $u: P \hookrightarrow I$ pre-hereditary (cf. [19], $\S 2$) if the following holds:
(Z) Condition (C) is valid, and for Λ-lattices $H, H^{\prime}, L, L^{\prime}$ with $P \subseteq H^{\prime} \subseteq$ $H \subseteq I$ and $P \subseteq L^{\prime} \subseteq L \subseteq I$, every isomorphism $\bar{h}: H / H^{\prime} \xrightarrow{\sim} L / L^{\prime}$ is induced by a homomorphism $h: H \rightarrow L$ with $h\left(H^{\prime}\right) \subseteq L^{\prime}$.

An analysis of this condition will be given in $\S \S 2-3$.
For a class \mathcal{C} of objects in an additive category, let $[\mathcal{C}]$ denote the ideal of morphisms which factor through a finite direct sum of objects in \mathcal{C}. By add \mathcal{C} we denote the full subcategory consisting of direct summands of finite direct sums of objects isomorphic to those in \mathcal{C}. In particular, define

$$
\begin{equation*}
\mathcal{H}_{u}:=\operatorname{add}\left\{H \in \Lambda \text {-lat } \mid P^{s} \subseteq H \subseteq I^{s} \text { for some } s \in \mathbb{N}\right\} \tag{10}
\end{equation*}
$$

As usual, ind Λ denotes a representative system of isomorphism classes of indecomposable Λ-lattices. The following theorem generalizes [19], Theorem 2:

Theorem 1. If $u: P \hookrightarrow I$ is pre-hereditary, then the u-differentiation (8) induces an equivalence of categories

$$
\widetilde{\partial}_{u}: \Lambda \text {-lat } /\left[\mathcal{H}_{u}\right] \xrightarrow{\sim} \Lambda^{\prime}-\operatorname{lat}^{s} /\left[\binom{I}{P}\right]
$$

Moreover, Λ^{\prime}-lat $^{s}=\Lambda^{\prime}$-lat if and only if the weak minimality condition $\left(\mathrm{M}^{\circ}\right)$ is satisfied.

We shall prove in $\S 3$ that $\left(\mathrm{M}^{\circ}\right)$ follows by the weak projectivity condition

$$
\Lambda^{-} P \text { and } I_{\Lambda^{+}}^{*} \text { are projective, }
$$

and that $\left(\mathrm{P}^{\circ}\right)$ and $\left(\mathrm{M}^{\circ}\right)$ are equivalent whenever u has no direct summands $u_{1}: P_{1} \hookrightarrow I_{1}$ with $u_{1}\left(P_{1}\right)=I_{1} \neq 0$.

Thus if $\left(\mathrm{M}^{\circ}\right)$ holds, the theorem yields a bijection:

$$
\operatorname{ind} \Lambda \backslash \operatorname{ind} \mathcal{H}_{u} \xrightarrow{\sim} \operatorname{ind} \Lambda^{\prime} \backslash \operatorname{ind} \text { add }\left\{\binom{I}{P}\right\}
$$

Here, ind add $\left\{\binom{I}{P}\right\}$ consists of the indecomposable direct summands of $\binom{I}{P}$. An explicit determination of ind \mathcal{H}_{u} will be given in $\S 2$.

REmARK. If the u-derivative (7) of Λ is replaced by the suborder (see [19])

$$
\delta_{u} \Lambda:=\left(\begin{array}{cc}
\Lambda^{+} & \Lambda^{+} \Lambda^{-} \tag{11}\\
\Lambda_{-} & \Lambda^{-}
\end{array}\right)
$$

we gain some simplification in return for a slightly weaker statement of the main theorem. Then a $\delta_{u} \Lambda$-lattice is just given by a pair $\binom{F}{G}$ with $\Lambda_{-} F \subseteq$ $G \subseteq F$, and the u-differentiation (8) induces an equivalence Λ-lat $/\left[\mathcal{H}_{u}\right] \xrightarrow{\sim}$ $\delta_{u} \Lambda$-lat $/\left[\binom{I}{P}\right]$ if and only if the (strong) minimality condition (M) holds. In analogy with the above, (M) is a consequence of the (strong) projectivity condition

$$
\begin{equation*}
P \text { and } I^{*} \text { are projective } \Lambda \text {-lattices. } \tag{P}
\end{equation*}
$$

In the presence of this condition, the collection of concepts related with u attains its simplest form ((33). Thus (11) seems to be more natural than the definition (7) of the u-derivative. On the other hand, all the results of $\S 5$ depending on Proposition 18 are no longer valid if $\partial_{u} \Lambda$ is replaced by $\delta_{u} \Lambda$. In $\S 3$ we shall prove that (P) implies $\delta_{u} \Lambda=\partial_{u} \Lambda$.
2. Pre-hereditary monomorphisms. The proof of Theorem 1 will be divided into three parts showing that $\widetilde{\partial}_{u}$ is faithful, full, and dense, respectively. For this purpose, we shall prove that a pre-hereditary monomorphism u satisfies three conditions which will be used in order to conclude each of the partial assertions on $\widetilde{\partial}_{u}$. For any Λ-lattice E, Proposition 2 implies that
E^{+} / E_{-}is a module over the artinian ring

$$
\begin{equation*}
B:=\Lambda / \Lambda_{-} . \tag{12}
\end{equation*}
$$

This notation will be maintained throughout the paper. The three conditions mentioned are:

$$
\begin{equation*}
I^{+}=I, \quad P_{-}=P \tag{C}
\end{equation*}
$$

(L) Condition (C) holds, and for $M, M^{\prime} \in B-\bmod$ and $H, H^{\prime} \in \mathcal{H}_{u}$, each diagram

with $q\left(H_{-}\right)=0$ and $q^{\prime}\left(H^{\prime}\right)=0$ can be completed.
(H) Condition (C) holds, B is (left) hereditary, and I / P is a bijective B-module.

The fundamental condition (C) has already been introduced. Together with $(\mathrm{C}),(\mathrm{L})$, and (H), we shall discuss the following related properties. Firstly, there are two stronger versions of (C) :

$$
\operatorname{Ext}_{\Lambda}(I / P, I)=\operatorname{Hom}_{\Lambda}(P, I / P)=0
$$

$\left(\mathrm{C}^{\prime \prime}\right) \quad P / \operatorname{Rad} P$ and $\operatorname{Rad}^{\circ} I / I$ have no common composition factors with I / P.

Here, $\operatorname{Rad} P=(\operatorname{Rad} \Lambda) P$ denotes the Jacobson radical, and the upper radical $\operatorname{Rad}^{\circ}$ is defined for any $E \in \Lambda$-lat by

$$
\left(\operatorname{Rad}^{\circ} E\right)^{*}=\operatorname{Rad} E^{*}
$$

Stronger than the lifting condition (L) is the extension property:
(C) holds, and $\operatorname{Ext}_{\Lambda}(H, L)=0$ for $H, L \in \mathcal{H}_{u}$;
weaker is the restricted lifting condition:
$(\mathrm{R}) \quad(\mathrm{C})$ holds, and $\quad \operatorname{End}_{\Lambda}(I) \rightarrow \operatorname{End}_{\Lambda}(I / P)$ is surjective.
In $\S 3$, the rôle of the projectivity conditions $\Lambda_{\Lambda^{-}} P$ and $I_{\Lambda^{+}}^{*}$ are projective, ${ }_{\Lambda} P$ and I_{Λ}^{*} are projective, and their relationship to the minimality conditions
$I=\Lambda^{-+} P, \quad P=\operatorname{Hom}_{\Lambda}\left(\Lambda^{+-}, I\right)$,
$I=\Lambda^{+} P, \quad P=\operatorname{Hom}_{\Lambda}\left(\Lambda^{-}, I\right)$
will be clarified.

Let us show first that all these conditions (including (Z)) are self-dual. This is obvious in all cases except $(\mathrm{L}),(\mathrm{H})$, and $\left(\mathrm{C}^{\prime}\right)$. For the heredity condition (H) this follows by (4) and the fact that $\operatorname{Ext}_{R}(-, R)$ gives a duality in B-mod. In particular,

$$
\operatorname{Ext}_{R}(I / P, R) \cong P^{*} / I^{*}
$$

In order to verify that (L) is self-dual, note that $q\left(H_{-}\right)=0$ signifies that $M \cong H / L$ with $H_{-} \subseteq L \subseteq H$. Thus if we identify M with H / L and M^{\prime} with H^{\prime} / L^{\prime} for some $L^{\prime} \supset H^{\prime}{ }_{-}$, we can assume q, q^{\prime} to be the natural epimorphisms. Hence the dual diagram is

with $f^{*}=\operatorname{Ext}_{R}(f, R)$ and $L^{*} \subseteq\left(H^{*}\right)^{-}$by (3). Hence, (L) is self-dual.
For a finitely generated R-torsion Λ-module V and $F \in \Lambda$-lat define $\operatorname{Ext}_{\Lambda}^{\text {lat }}(V, F)$ as the subset of extensions $F \mapsto E \rightarrow V$ in $\operatorname{Ext}_{\Lambda}(V, F)$ with $E \in \Lambda$-lat.

Lemma 1. If U runs through the submodules of V, there is a natural partition of sets:

$$
\operatorname{Ext}_{\Lambda}(V, F)=\coprod_{U \subseteq V} \operatorname{Ext}_{\Lambda}^{\mathrm{lat}}(V / U, F)
$$

Proof. For any $\varepsilon: F \hookrightarrow E \rightarrow V$ in $\operatorname{Ext}_{\Lambda}(V, F)$, the R-torsion part $\mathrm{T}(E)$ is mapped bijectively onto a submodule U of V which yields an exact sequence $\varepsilon_{0}: F \hookrightarrow E_{0} \rightarrow V / U$ with $E_{0}=E / \mathrm{T}(E)$. The diagram

shows that ε and ε_{0} determine each other since PB is a pullback square.
As a consequence, we find that $\left(\mathrm{C}^{\prime}\right)$ is self-dual:

$$
\operatorname{Ext}_{\Lambda}(I / P, I)=0 \Leftrightarrow \operatorname{Hom}_{\Lambda}\left(I^{*}, P^{*} / I^{*}\right)=0 .
$$

In fact, by the lemma, $\operatorname{Ext}_{\Lambda}(I / P, I)=0$ says that any overlattice E of I with E / I isomorphic to a factor module of I / P must coincide with I. Therefore, we get the implications

$$
\begin{equation*}
\left(\mathrm{C}^{\prime \prime}\right) \Rightarrow\left(\mathrm{C}^{\prime}\right) \Rightarrow(\mathrm{C}) . \tag{13}
\end{equation*}
$$

As an immediate consequence of (1), we obtain
$(\mathrm{C}) \Leftrightarrow \operatorname{Hom}_{\Lambda}(I, I)=\operatorname{Hom}_{\Lambda}(P, I)=\operatorname{Hom}_{\Lambda}(P, P)$.
Next we shall derive an equivalent formulation of $\left(\mathrm{C}^{\prime \prime}\right)$. Firstly, we have
Proposition 3. A simple Λ-module is annihilated by Λ_{-}if and only if it occurs as a composition factor in I / P.

Proof. By the definition of Λ_{-}we have $\Lambda_{-} I \subseteq P$. Conversely, [19], Lemma 4, implies that B is finitely cogenerated by I / P. Hence, the simple B-modules occur as composition factors in I / P.■

The proposition yields an alternative formulation of $\left(\mathrm{C}^{\prime \prime}\right)$:

$$
\begin{equation*}
\left(\mathrm{C}^{\prime \prime}\right) \Leftrightarrow\left(\Lambda_{-} P=P \text { and } I^{*} \Lambda_{-}=I^{*}\right) \tag{15}
\end{equation*}
$$

Here, the condition $I^{*} \Lambda_{-}=I^{*}$ can be replaced by virtue of the equivalence

$$
\begin{equation*}
I^{*} \Lambda_{-}=I^{*} \Leftrightarrow \operatorname{Hom}_{\Lambda}\left(\Lambda_{-}, I\right)=I \tag{16}
\end{equation*}
$$

where $\operatorname{Hom}_{\Lambda}\left(\Lambda_{-}, I\right)$ is identified with $\left\{x \in K I \mid \Lambda_{-} x \subseteq I\right\}$.
Next we turn our attention to the lifting condition (L). Define

$$
\begin{equation*}
\mathfrak{p}:=\operatorname{Rad} R, \quad \mathfrak{k}:=R / \mathfrak{p} . \tag{17}
\end{equation*}
$$

Then [19], Proposition 9, implies that B is a finite-dimensional \mathfrak{k}-algebra. Whenever (C) holds, let us consider two full subcategories of B-mod:

$$
\begin{equation*}
\mathfrak{B}^{+}:=\left\{H^{+} / H \mid H \in \mathcal{H}_{u}\right\}, \quad \mathfrak{B}^{-}:=\left\{H / H_{-} \mid H \in \mathcal{H}_{u}\right\} \tag{18}
\end{equation*}
$$

Lemma 2. If (L) is satisfied, and $H \in \mathcal{H}_{u}$ is indecomposable, then H^{+} and H^{-}are indecomposable.

Proof. Suppose $H^{+}=I_{1} \oplus I_{2}$ with I_{1} indecomposable, and let $q: H^{+} \rightarrow$ I_{1} be the natural projection. If $P_{1}:=\left(I_{1}\right)_{-}$and $H_{1}:=q(H) \supseteq P_{1}$, then (L) implies that the natural epimorphism $r: H_{1} \rightarrow H_{1} / P_{1}$ can be lifted along the epimorphism $\left.r \circ q\right|_{H}: H \rightarrow H_{1} \rightarrow H_{1} / P_{1}$, i.e. there is an $s: H_{1} \rightarrow H$ with $r q \circ s=r$. Hence, $1-q s \in \operatorname{End}_{\Lambda}\left(H_{1}\right)$ factors through $P_{1} \hookrightarrow H_{1}$. Now if $H_{1}=P_{1}$, then P_{1} is a direct summand of H, whence $H=P_{1}$ and $H^{+}=I_{1}$ is indecomposable. Otherwise, $q s$ is an isomorphism, i.e. H_{1} is a direct summand of H and thus $H=H_{1}$.

For a module $M \in B$-mod, let $G e n(M)$ be the class of B-modules which are finitely generated by M, i.e. are epimorphic images of finite direct sums M^{s} of M. Similarly, $\operatorname{Cog}(M)$ denotes the class of B-modules finitely cogenerated by M, i.e. submodules of $M^{s}, s \in \mathbb{N}$. If (C) holds, then

$$
\begin{equation*}
\mathfrak{B}^{+}=\operatorname{Gen}(I / P), \quad \mathfrak{B}^{-}=\operatorname{Cog}(I / P) \tag{19}
\end{equation*}
$$

Proposition 4. If (L) is valid, then the functors $Q^{+}: \mathcal{H}_{u} \rightarrow \mathfrak{B}^{+}$and $Q^{-}: \mathcal{H}_{u} \rightarrow \mathfrak{B}^{-}$with $Q^{+}(H)=H^{+} / H$ and $Q^{-}(H)=H / H_{-}$yield equiva-
lences of categories:

$$
\mathcal{H}_{u} /[I] \xrightarrow{\sim} \mathfrak{B}^{+}, \quad \mathcal{H}_{u} /[P] \xrightarrow{\sim} \mathfrak{B}^{-} .
$$

Proof. A morphism $f: H \rightarrow L$ in \mathcal{H}_{u} factors through some I^{s} if and only if f extends to H^{+}. But this is tantamount to $Q^{+}(f)=0$. Thus Q^{+}is faithful modulo $[I]$. It is also full by virtue of (L), and dense by (18). Hence, Q^{+}induces an equivalence. The remaining assertion follows by duality.

As an immediate consequence, we get
Corollary. If (L) is valid, and $H \in \mathcal{H}_{u}$ has no direct summand in add $\{I\}$ (resp. add $\{P\}$), then H is indecomposable if and only if H^{+} / H (resp. H / H_{-}) is indecomposable.

Proposition 5. If (L) is satisfied, and $H \in \mathcal{H}_{u}$ is indecomposable, then

$$
H / H_{-} \in \mathfrak{B}^{+} \Leftrightarrow H^{+} / H \in \mathfrak{B}^{-} \Leftrightarrow H \in \operatorname{add}\{P \oplus I\} .
$$

Proof. $H \in \operatorname{add}\{P \oplus I\}$ says that $H=H^{+}$or $H=H_{-}$. If $H / H_{-} \in \mathfrak{B}^{+}$ and $H \neq H_{-}$, then we have an isomorphism $h: H / H_{-} \xrightarrow{\sim} L^{+} / L$ with $L \in \mathcal{H}_{u}$, and by the above corollary, we may assume L to be indecomposable. Thus by the symmetry of this assumption, it remains to prove that $H=H^{+}$ and $L=L_{-}$. Now (L) implies that h lifts to an $f: H \rightarrow L^{+}$with $f\left(H_{-}\right) \subseteq L$. Then f extends to H^{+}, whence H / H_{-}is a direct summand of H^{+} / H_{-}. By Lemma 2 we infer that H^{+}, hence also H^{+} / H_{-}, is indecomposable. Consequently, $H=H^{+}$. Similarly, h factors through L^{+} / L_{-}, which yields $L=L_{-}$.

In particular, (L) implies

$$
\begin{equation*}
\mathfrak{B}^{+} \cap \mathfrak{B}^{-}=\operatorname{add}\{I / P\} \tag{20}
\end{equation*}
$$

Our next result holds without the assumption (L). Let B-proj (resp. B-inj) denote the full subcategory of projective (resp. injective) modules in B-mod.

Proposition 6. If (C) is valid, then every module $M \in B-\bmod$ is of the form $M=H / L$ with $P^{s} \subseteq L \subseteq H \subseteq I^{s}$ for some $s \in \mathbb{N}$. Moreover, B-proj $\subseteq \mathfrak{B}^{-}$and $B-\mathbf{i n j} \subseteq \mathfrak{B}^{+}$.

Proof. By [19], Lemma 4, every finitely generated free B-module is isomorphic to some H / P^{s} with $P^{s} \subseteq H \subseteq I^{s}$. Hence M is of the desired form. If M is projective, then M is a direct summand of some $B^{t} \cong H / P^{s} \in \mathfrak{B}^{-}$, and if $M=H / L$ is injective, then $H / L \hookrightarrow L^{+} / L$ splits, whence $M \in \mathfrak{B}^{+}$.■

Concluding the analysis of (L), we show

$$
\begin{equation*}
(\mathrm{E}) \Rightarrow(\mathrm{L}) \tag{21}
\end{equation*}
$$

In fact, if we put $L:=\operatorname{Ker} q^{\prime}$ in the diagram of (L), then $L \in \mathcal{H}_{u}$, and the exact sequence

$$
\operatorname{Hom}_{\Lambda}(H, L) \hookrightarrow \operatorname{Hom}_{\Lambda}\left(H, H^{\prime}\right) \xrightarrow{q_{*}^{\prime}} \operatorname{Hom}_{\Lambda}\left(H, M^{\prime}\right) \rightarrow \operatorname{Ext}_{\Lambda}(H, L)
$$

yields (21).
Now let us focus our attention upon the heredity condition (H). Since ${ }_{B} B \in \mathfrak{B}^{-}$, we have

$$
\begin{equation*}
(\mathrm{H}) \Leftrightarrow\left((\mathrm{C}) \& \mathfrak{B}^{+}=B \text {-inj } \& \mathfrak{B}^{-}=B \text {-proj}\right) \tag{22}
\end{equation*}
$$

Moreover, the following characterization of (H) is valid. Recall ([19], §1) that a B-module M is called a Zavadski乞 module if each submodule is M projective, and each factor module M-injective.

Proposition 7. (H) is satisfied if and only if (C) holds and I / P is a Zavadskǐ̆ module.

Proof. Suppose (H). Then every submodule of I / P is projective, and every factor module of I / P is injective, whence I / P is a Zavadskiĭ module. Conversely, suppose (C) holds and I / P is a Zavadskiĭ module. Then Proposition 6 (with [1], 16.12.f) implies that a module $M \in B-\bmod$ is projective (resp. injective) if and only if M is I / P-projective (resp. I / P-injective). By [19], Proposition $2,(I / P)^{s}$ is a Zavadskiĭ module for any $s \in \mathbb{N}$. Hence, every submodule of ${ }_{B} B$ is projective, i.e. B is left hereditary. Moreover, I / P is bijective, whence (H).

Now we are able to prove
Theorem 2. $(\mathrm{Z}) \Leftrightarrow((\mathrm{H}) \&(\mathrm{R})) \Leftrightarrow(\mathrm{L})$.
Proof. $(\mathrm{Z}) \Rightarrow((\mathrm{H}) \&(\mathrm{R}))$. By (C), the homomorphism h in condition (Z) induces an endomorphism of I / P, whence I / P is a Zavadskil̆ module. By Proposition 7, this implies (H). In order to verify (R), suppose $\bar{f} \in \operatorname{End}_{\Lambda}(I / P)$. Then there are Λ-lattices H, L between I and P with $\bar{f}: I / P \rightarrow I / L \xrightarrow{\sim} H / P \hookrightarrow I / P$, and (Z) yields a homomorphism $f: I \rightarrow H$ with $f(L) \subseteq P$ which induces the isomorphism $I / L \xrightarrow{\sim} H / P$. By (C), the endomorphism \bar{f} is also induced by f.
$((\mathrm{H}) \&(\mathrm{R})) \Rightarrow(\mathrm{L})$. Under the hypothesis (H) we shall reduce (L) to (R). Consider the diagram for (L) and replace H^{\prime} by L. The conditions $q\left(H_{-}\right)=0$ and $q^{\prime}\left(L_{-}\right)=0$ imply that q and q^{\prime} factor through the natural epimorphisms $H \rightarrow H / H_{-}$and $L \rightarrow L / L_{-}$. By $(22), H / H_{-} \in \mathfrak{B}^{-}$is a projective B-module. Hence, f lifts to a map $g: H / H_{-} \rightarrow L / L_{-}$, and it remains to prove that the diagram

can be completed. Considering the pullback

we may assume without loss of generality that $L=L^{+}$. But then L / L_{-}is injective, whence g factors through $H / H_{-} \hookrightarrow H^{+} / H_{-}$. Therefore, it suffices to complete a diagram

with $I_{1}, I_{2} \in \operatorname{add}\{I\}$ and $P_{i}=\left(I_{i}\right)_{-}$for $i \in\{1,2\}$. Then I_{1}, I_{2} may be assumed to be indecomposable, and thus (R) yields the desired lifting.

The remaining implication $(\mathrm{L}) \Rightarrow(\mathrm{Z})$ is trivial.
Corollary. $u: P \hookrightarrow I$ is pre-hereditary if and only if (R) holds, and I / P is a Zavadskǐ̆ module.

Let us investigate which modifications of $u: P \hookrightarrow I$ preserve the property (Z). Firstly, we have:

Proposition 8. Property (Z) remains valid if u is replaced by a finite direct sum $u^{s}: P^{s} \hookrightarrow I^{s}$. If $u_{1}: P_{1} \hookrightarrow I_{1}$ and $u_{2}: P_{2} \hookrightarrow I_{2}$ satisfy (Z), and the modules I_{1} / P_{1} and I_{2} / P_{2} have no composition factor in common, then $u_{1} \oplus u_{2}: P_{1} \oplus P_{2} \hookrightarrow I_{1} \oplus I_{2}$ is pre-hereditary if it satisfies (C).

Proof. Clearly, the restricted lifting property (R) carries over to u^{s} and $u_{1} \oplus u_{2}$ under the given hypothesis, and (C) carries over to u^{s}. By [19], Theorem $1, I^{s} / P^{s}$ and $I_{1} \oplus I_{2} / P_{1} \oplus P_{2}$ are Zavadskiĭ modules, whence the above corollary gives the desired result.

If (C) holds, then by (14), any decomposition of P or I gives rise to a decomposition of $u: P \hookrightarrow I$, say,

$$
\begin{equation*}
u=u_{1} \oplus \ldots \oplus u_{n}, \quad u_{i}: P_{i} \hookrightarrow I_{i} \tag{23}
\end{equation*}
$$

The trace and cotrace of a Λ-lattice E are then given by

$$
\begin{equation*}
\operatorname{trc}_{u} E=\sum_{i=1}^{n} \operatorname{trc}_{u_{i}} E, \quad \operatorname{ctr}_{u} E=\bigcap_{i=1}^{n} \operatorname{ctr}_{u_{i}} E \tag{24}
\end{equation*}
$$

and similarly, the u-differentiation ∂_{u} is calculated by means of the $\partial_{u_{i}}$. If two different summands u_{i} and u_{j} in (23) are equivalent, i.e. if there is an isomorphism $f: I_{i} \xrightarrow{\sim} I_{j}$ with $f\left(P_{i}\right)=P_{j}$, then ∂_{u} does not change if the direct summand u_{j} in (23) is cancelled. On the other hand, if u is an isomorphism, then $E^{+}=E_{-}=E$. Such monomorphisms will be called trivial. Clearly, ∂_{u} also does not change if a trivial direct summand of u is cancelled. Therefore, we shall say that u is reduced if there are neither multiple nor trivial summands in a decomposition (23). Thus if (Z) is satisfied for a reduced monomorphism (23), then each I_{i} / P_{i} is an indecomposable Zavadskiŭ module, and the composition factors of I / P are pairwise non-isomorphic. Hence each submodule of I / P is of the form $M_{1} \oplus \ldots \oplus M_{n}$ with submodules M_{i} of I_{i} / P_{i}. The following result is easily verified:

Proposition 9. If $u: P \hookrightarrow I$ is reduced pre-hereditary, then each u^{\prime} : $P^{\prime} \hookrightarrow I^{\prime}$ with Λ-lattices P^{\prime}, I^{\prime}, and $P \subseteq P^{\prime} \subseteq I^{\prime} \subseteq I$, is again pre-hereditary.

By [19], Proposition 5, we have
Proposition 10. If (Z) is satisfied, then $B=\Lambda_{-} \Lambda_{-}$is Morita equivalent to a product of triangular matrix algebras over finite-dimensional division algebras over \mathfrak{k}.

The indecomposable B-modules are thus of the form H_{1} / H_{2} with indecomposable $H_{1}, H_{2} \in \mathcal{H}_{u}$ and $H_{1} \subseteq H_{2} \subseteq H_{1}^{+}$. This also follows by Proposition 6 and the structure of Zavadskiĭ modules ([19], §1).
3. The projectivity conditions. In the known versions $[28,26,21$, 19] of Zavadskiu's algorithm, if considered as special cases of Theorem 1, the projectivity condition

P is projective, I is injective

is satisfied. We shall demonstrate in this section how the relationship between the various conditions on $u: P \hookrightarrow I$ is simplified in the presence of (P).

Firstly, the implications (13) are turned into equivalences:

$$
\begin{equation*}
(\mathrm{P}) \Rightarrow\left(\left(\mathrm{C}^{\prime \prime}\right) \Leftrightarrow\left(\mathrm{C}^{\prime}\right) \Leftrightarrow(\mathrm{C})\right) \tag{25}
\end{equation*}
$$

Namely, if I / P and $P / \operatorname{Rad} P$ had a common composition factor, (P) would yield a homomorphism $P \rightarrow I$ with image not in P.

Secondly, we have

$$
\begin{equation*}
(\mathrm{P}) \Rightarrow((\mathrm{L}) \Leftrightarrow(\mathrm{E})) \tag{26}
\end{equation*}
$$

Indeed, suppose (P) and (L) are satisfied, and $H, L \in \mathcal{H}_{u}$. Then $L \hookrightarrow L^{+} \xrightarrow{q}$ L^{+} / L induces an exact sequence

$$
\operatorname{Hom}_{\Lambda}\left(H, L^{+}\right) \xrightarrow{q_{*}} \operatorname{Hom}_{\Lambda}\left(H, L^{+} / L\right) \rightarrow \operatorname{Ext}_{\Lambda}(H, L) \rightarrow \operatorname{Ext}_{\Lambda}\left(H, L^{+}\right)
$$

where $\operatorname{Ext}_{\Lambda}\left(H, L^{+}\right)=0$ since L^{+}is injective; moreover, for each homomorphism $H \rightarrow L^{+} / L$, the composition $g: H_{-} \hookrightarrow H \rightarrow L^{+} / L$ factors through $L^{+} \rightarrow L^{+} / L$ by the projectivity of H_{-}. Hence $g=0$, and we infer that q_{*} is surjective by virtue of (L). In conjunction with (21), the equivalence (26) follows.

Thirdly, let us focus our attention upon the minimality condition

$$
\begin{equation*}
I=\Lambda^{+} P, \quad P=\operatorname{Hom}_{\Lambda}\left(\Lambda^{-}, I\right) . \tag{M}
\end{equation*}
$$

Proposition 11. Let (C) be satisfied. Then (M) is equivalent to each of the following properties:
(a) $E^{+}=\Lambda^{+} E$ and $E_{-}=\operatorname{Hom}_{\Lambda}\left(\Lambda^{-}, E\right)$ for every Λ-lattice E.
(b) $\left(\Lambda^{+}\right)_{+}=\Lambda^{+}$and $\left(\Lambda^{-}\right)_{-}=\Lambda^{-}$.

Proof. $(\mathrm{M}) \Rightarrow(\mathrm{a})$. For any morphism $f: P \rightarrow E$ in Λ-lat, we have $f(I)=f\left(\Lambda^{+} P\right) \subseteq \Lambda^{+} E \subseteq E^{+}$. Hence $E^{+}=\Lambda^{+} E$, i.e. E^{+}is the smallest Λ^{+}-overlattice of E. Therefore, $E_{-}=\operatorname{Hom}_{\Lambda}\left(\Lambda^{-}, E\right)$ follows by duality.
$(\mathrm{a}) \Rightarrow(\mathrm{b}) \Rightarrow(\mathrm{M})$. The equality $\left(\Lambda^{-}\right)_{-}=\Lambda^{-}$states that $\operatorname{Hom}_{\Lambda}\left(\Lambda^{-}, I\right)$ coincides with $\operatorname{Hom}_{\Lambda}\left(\Lambda^{-}, P\right)=P$, that is, the second assertion of (a) with $E=I$. By duality, the first assertion of (a) implies $\left(\Lambda^{+}\right)_{+}=\Lambda^{+}$. The latter equation is equivalent to $I=\Lambda^{+} P$.

In particular, the proposition implies that if (C) and (M) are satisfied, then $\partial_{u} \Lambda$ coincides with the simplified u-derivative $\delta_{u} \Lambda$ defined in (11), and

$$
\begin{equation*}
E^{++}=E^{+}, \quad E_{--}=E_{-} \tag{27}
\end{equation*}
$$

for each $E \in \Lambda$-lat. Clearly, this also follows by ($\mathrm{C}^{\prime \prime}$).
If in the definition (1) of E^{+}, the morphisms $P \rightarrow E$ are restricted to those which factor through a free Λ-lattice, then $\Lambda^{+} E$ is obtained instead of E^{+}. Similarly, if $E \in \Lambda^{-}$-lat, and we restrict ourselves to homomorphisms $P \rightarrow E$ in $\left[\Lambda^{-}\right]$, we get $\Lambda^{-+} E$ instead of E^{+}. Therefore, the implications

$$
\begin{equation*}
(\mathrm{P}) \Rightarrow(\mathrm{M}), \quad\left(\mathrm{P}^{\circ}\right) \Rightarrow\left(\mathrm{M}^{\circ}\right) \tag{28}
\end{equation*}
$$

hold in general. Under the hypothesis of Theorem 1, the converse is also true:

Proposition 12. If $u: P \hookrightarrow I$ is reduced pre-hereditary, then the equivalences $(\mathrm{P}) \Leftrightarrow(\mathrm{M})$ and $\left(\mathrm{P}^{\circ}\right) \Leftrightarrow\left(\mathrm{M}^{\circ}\right)$ are valid.

Proof. $(\mathrm{M}) \Rightarrow(\mathrm{P})$. By duality it suffices to prove that $I=\Lambda^{+} P$ implies the projectivity of P. Let P_{1} be any indecomposable direct summand of P. Then $I=\Lambda^{+} P$ implies $\Lambda^{+} P_{1}=P_{1}^{+}$. Therefore, an epimorphism $g: \Lambda^{n} \rightarrow P_{1}$ maps $\left(\Lambda^{+}\right)^{n}$ onto P_{1}^{+}. Since by assumption $P_{1}^{+} \neq P_{1}$, there exists a direct summand P_{2} of P together with a homomorphism $f: P_{2} \rightarrow \Lambda^{n}$ such that $g f\left(P_{2}^{+}\right) \nsubseteq P_{1}$. By [19], Proposition 9, we conclude that $g f: P_{2}^{+} \rightarrow P_{1}^{+}$is an
isomorphism. Hence $g f: P_{2} \rightarrow \Lambda^{n} \rightarrow P_{1}$ is an isomorphism, and thus P_{1} is projective. Analogously, $\left(\mathrm{M}^{\circ}\right) \Rightarrow\left(\mathrm{P}^{\circ}\right)$ follows.

Remark. By the above implications (25), (26), we obtain [19], Theorem 2 , as a special case of Theorem 1.
4. Proof of Theorem 1. The fundamental condition (C) already suffices to prove that the u-differentiation (8) induces a faithful functor of quotient categories:

Proposition 13. Let (C) be satisfied. Then ∂_{u} induces a faithful functor $\widetilde{\partial}_{u}$.

Proof. Clearly, the ideal $\left[\mathcal{H}_{u}\right]$ is mapped into $\left[\binom{I}{P}\right]$. Hence $\widetilde{\partial}_{u}$ is well defined. For any $E \in \Lambda$-lat we have

$$
\begin{aligned}
& \operatorname{Hom}_{\Lambda^{\prime}}\left(\binom{E^{+}}{E_{-}},\binom{I}{P}\right)=\operatorname{Hom}_{\Lambda}(E, I), \\
& \operatorname{Hom}_{\Lambda^{\prime}}\left(\binom{I}{P},\binom{E^{+}}{E_{-}}\right)=\operatorname{Hom}_{\Lambda}(P, E) .
\end{aligned}
$$

Now let $f: E \rightarrow F$ be a morphism in Λ-lat such that $\partial_{u} f$ has a factorization

$$
\partial_{u} f:\binom{E^{+}}{E_{-}} \xrightarrow{g}\binom{I^{s}}{P^{s}} \xrightarrow{h}\binom{F^{+}}{F_{-}} .
$$

Then $f=h \circ g$ with $g: E \rightarrow I^{s}$ and $h: P^{s} \rightarrow F$. Hence, f factors through $g(E)+P^{s} \in \mathcal{H}_{u}$.

For the proof of Theorem 1 we need a criterion which decides for a Λ^{\prime}-lattice in Λ^{\prime}-lat ${ }^{s}$ whether it has a direct summand in common with $\binom{I}{P}$:

Proposition 14. Let $u: P \hookrightarrow I$ be reduced pre-hereditary. Then $\binom{F}{G} \in$ Λ^{\prime}-lat ${ }^{s}$ has a direct summand in add $\left\{\binom{I}{P}\right\}$ if and only if $G^{+} \nsubseteq F_{-}$.

Proof. This follows by the proof of [19], Proposition 12.
Lemma 3. If (C) is satisfied, then for each Λ-lattice E,

$$
\Lambda^{+-} E_{-} \subseteq \Lambda^{-+} E, \quad \operatorname{Hom}_{\Lambda}\left(\Lambda^{+-}, E\right) \subseteq \operatorname{Hom}_{\Lambda}\left(\Lambda^{-+}, E^{+}\right) .
$$

Proof. The first inclusion is equivalent to $\left(\Lambda^{-+} E\right)^{*} \Lambda^{+-} \subseteq\left(E_{-}\right)^{*}$. Now $\left(\Lambda^{-+} E\right)^{*}$ is a right Λ^{+}-lattice. Hence, every homomorphism $\Lambda^{+} \rightarrow\left(\Lambda^{-+} E\right)^{*}$ of right Λ^{+}-lattices maps Λ^{+-}into $\left(\Lambda^{-+} E\right)^{*-}$, i.e. $\left(\Lambda^{-+} E\right)^{*} \Lambda^{+-} \subseteq$ $\left(\Lambda^{-+} E\right)^{*-} \subseteq E^{*-}=\left(E_{-}\right)^{*}$. The second inclusion is dual to the first.

Proof of Theorem 1. An obvious modification of the proof of [19], Theorem 2, using Proposition 14 above, shows that $\widetilde{\partial}_{u}$ is full and dense, hence an equivalence by virtue of Proposition 13.

If $\left(\mathrm{M}^{\circ}\right)$ is satisfied, then each homomorphism $P \rightarrow G \in \Lambda^{-}$-lat carries $I=\Lambda^{-+} P$ into $\Lambda^{-+} G$. Hence $G^{+} \subseteq \Lambda^{-+} G$, and dually, $\operatorname{Hom}_{\Lambda}\left(\Lambda^{+-}, F\right) \subseteq$
F - for every Λ^{+}-lattice F. Hence Λ^{\prime}-lat ${ }^{s}$ coincides with Λ^{\prime}-lat. Conversely, if Λ^{\prime}-lat ${ }^{s}$ coincides with Λ-lat, then Lemma 3 implies that $\binom{\Lambda^{-+} P}{P}$ is a Λ^{\prime}-lattice, and thus $I=P^{+} \subseteq \Lambda^{-+} P$. By duality, we obtain (M°).

Let us add some remarks on the subcategory Λ^{\prime}-lat ${ }^{s}$ of Λ^{\prime}-lat. If we assume that (C) is valid, there are two monomorphisms in Λ^{\prime}-lat which are naturally associated with u :

$$
\begin{equation*}
u^{+}:\binom{I}{P} \hookrightarrow\binom{I}{\operatorname{Hom}_{\Lambda}\left(\Lambda^{+-}, I\right)}, \quad u^{-}:\binom{\Lambda^{-+} P}{P} \hookrightarrow\binom{I}{P} . \tag{29}
\end{equation*}
$$

Then the inclusion

$$
\begin{equation*}
\operatorname{trc}_{u^{-}} E^{\prime} \subseteq \operatorname{ctr}_{u^{+}} E^{\prime} \tag{30}
\end{equation*}
$$

holds for each Λ^{\prime}-lattice E^{\prime}, and for $E^{\prime}=\binom{F}{G}$ we have

$$
\begin{equation*}
F \supseteq G^{+} \Leftrightarrow \operatorname{trc}_{u^{-}} E^{\prime} \subseteq E^{\prime}, \quad G \subseteq F_{-} \Leftrightarrow \operatorname{ctr}_{u^{+}} E^{\prime} \supseteq E^{\prime} \tag{31}
\end{equation*}
$$

Hence there is a functor

$$
\begin{equation*}
\sigma_{u}: \Lambda^{\prime}-\text { lat } \rightarrow \Lambda^{\prime}-\text { lat }^{s} \tag{32}
\end{equation*}
$$

given by

$$
\begin{equation*}
\sigma_{u} E^{\prime}:=\left(E^{\prime}+\operatorname{trc}_{u^{-}} E^{\prime}\right) \cap \operatorname{ctr}_{u^{+}} E^{\prime}=\left(E^{\prime} \cap \operatorname{ctr}_{u^{+}} E^{\prime}\right)+\operatorname{trc}_{u^{-}} E^{\prime} \tag{33}
\end{equation*}
$$

Explicitly, we have

$$
\begin{equation*}
\sigma_{u}\binom{F}{G}=\binom{F+G^{+}}{G \cap F_{-}}, \tag{34}
\end{equation*}
$$

and therefore, σ_{u} operates identically on the objects of Λ^{\prime}-lat ${ }^{s}$. This gives an intrinsic characterization of Λ^{\prime}-lat ${ }^{s}$:

$$
\begin{equation*}
E^{\prime} \in \Lambda^{\prime}-\operatorname{lat}^{s} \Leftrightarrow \sigma_{u} E^{\prime} \cong E^{\prime} \tag{35}
\end{equation*}
$$

Proposition 15. If (C) is satisfied, then the functor (32) induces a faithful dense functor $\widetilde{\sigma}_{u}: \Lambda^{\prime}$-lat $/\left[\mathcal{H}_{u}^{\prime}\right] \rightarrow \Lambda^{\prime}-$ lat $^{s} /\left[\binom{I}{P}\right]$, where

$$
\mathcal{H}_{u}^{\prime}:=\operatorname{add}\left\{\binom{H}{L} \in \Lambda^{\prime} \text {-lat } \mid H, L \in \mathcal{H}_{u}, H \subseteq L^{+}\right\} .
$$

Proof. Clearly, σ_{u} maps $\left[\mathcal{H}_{u}^{\prime}\right]$ into $\left[\binom{I}{P}\right]$, whence $\widetilde{\sigma}_{u}$ is well defined. Conversely, suppose that a morphism $h:\binom{F}{G} \rightarrow\binom{F^{\prime}}{G^{\prime}}$ in Λ^{\prime}-lat has the property that $\sigma_{u} h$ factors through $\left(\begin{array}{l}I_{p s}^{s}\end{array}\right)$ for some $s \in \mathbb{N}$. Then h is a composition $g \circ f$ with $f \in \operatorname{Hom}_{\Lambda}\left(F, I^{s}\right)$ and $g \in \operatorname{Hom}_{\Lambda}\left(P^{s}, G^{\prime}\right)$. Hence, h factors through $\binom{H}{L} \in \mathcal{H}_{u}^{\prime}$ with $H:=g^{-1}\left(F^{\prime}\right) \cap I^{s}$ and $L:=f(G)+P^{s}$. This proves that $\widetilde{\sigma}_{u}$ is a faithful functor which is dense by virtue of (35).

In general, however, $\widetilde{\sigma}_{u}$ is not full, and for that reason, there is no way to replace Λ^{\prime}-lat ${ }^{s} /\left[\binom{I}{P}\right]$ in Theorem 1 by Λ^{\prime}-lat $/\left[\mathcal{H}_{u}^{\prime}\right]$. In fact, there may be indecomposable Λ^{\prime}-lattices neither in Λ^{\prime}-lat ${ }^{s}$ nor in \mathcal{H}_{u}^{\prime} (see Examples 3, 4 in $\S 7$).

As in [19], Proposition 13, we usually can replace $\Lambda^{\prime}=\partial_{u} \Lambda$ by a Morita equivalent R-order with less indecomposable projectives. Retaining assumption (C), let

$$
\begin{equation*}
\Lambda=Q \oplus Q_{0} \tag{36}
\end{equation*}
$$

be a decomposition of Λ-lattices such that $\operatorname{Hom}_{\Lambda}\left(Q^{\prime}, I / P\right) \neq 0$ for each indecomposable direct summand Q^{\prime} of Q, and $\operatorname{Hom}_{\Lambda}\left(Q_{0}, I / P\right)=0$. We define the reduced u-derivative of Λ by

$$
\partial_{u}^{\prime} \Lambda:=\left(\begin{array}{cc}
\operatorname{Hom}_{\Lambda}\left(Q, Q^{+}\right) & \operatorname{Hom}_{\Lambda}\left(Q, \Lambda^{+-}+\Lambda^{-+}\right) \tag{37}\\
Q_{-} & \Lambda^{-}
\end{array}\right)
$$

Proposition 16. If (C) is valid, then the reduced u-derivative $\partial_{u}^{\prime} \Lambda$ is Morita equivalent to $\partial_{u} \Lambda$.

Proof. Since $\left(Q_{0}\right)_{-}=Q_{0}$, Lemma 3 implies $\left(\Lambda^{+-}+\Lambda^{-+}\right) Q_{0}=\Lambda^{-+} Q_{0}=$ $\Lambda^{+} Q_{0}$. Hence $\partial_{u} Q_{0}$ is a simultaneous direct summand of $\partial_{u}(\Lambda \Lambda)$ and $Q^{\prime}:=$ $\binom{\Lambda^{+-}+\Lambda^{-+}}{\Lambda^{-}}$, and $\partial_{u} Q \oplus Q^{\prime}$ is a progenerator of $\partial_{u} \Lambda$. By Proposition 2 , the decomposition $\Lambda_{-}=Q_{-} \oplus Q_{0}=\Lambda_{-} Q \oplus \Lambda_{-} Q_{0}$ yields $Q_{-}=\Lambda_{-} Q \subseteq \Lambda_{-} Q^{+}$ $\subseteq Q_{-}$. Similarly, $Q^{+}=\Lambda^{+} Q$, and thus

$$
\begin{aligned}
\operatorname{End}_{\partial_{u} \Lambda}\left(\partial_{u} Q\right) & =\operatorname{Hom}_{\Lambda}\left(Q, Q^{+}\right) \\
\operatorname{Hom}_{\partial_{u} \Lambda}\left(\partial_{u} Q, Q^{\prime}\right) & =\operatorname{Hom}_{\Lambda}\left(Q, \Lambda^{+-}+\Lambda^{-+}\right)
\end{aligned}
$$

Consequently, the progenerator $\partial_{u} Q \oplus Q^{\prime}$ leads to the Morita equivalent R-order (37).
5. Splitting over-orders. Recall that a generalized over-order Γ of Λ is given by a ring homomorphism $f: \Lambda \rightarrow \Gamma$ with R-torsion cokernel. Equivalently, Γ is given by its inverse image $\Omega=f^{-1}(\Gamma)$ in A, which is an overring of Λ, i.e. an R-subalgebra Ω of A with $\Omega \supset \Lambda$. If Ω is given, then $\Gamma \cong \Omega / \Omega_{\infty}$, where $\Omega_{\infty}:=\{a \in A \mid K a \subseteq \Omega\} \triangleleft A$. In this way, we have a one-to-one correspondence between generalized over-orders Γ and overrings Ω of Λ. For a Λ-lattice E, define $\Gamma E:=\Gamma \odot_{\Lambda} E$, where " \odot " denotes the tensor product modulo R-torsion. Hence ΓE can be identified with the set of finite sums $\sum a_{i} x_{i}$ in $K \Gamma \otimes_{A} K E$ with $a_{i} \in \Gamma, x_{i} \in E$. The same is true for right Λ-lattices. In particular, if Λ_{1} and Λ_{2} are generalized over-orders of Λ, then $\Lambda_{1} \Lambda_{2}$ and $\Lambda_{2} \Lambda_{1}$ are full R-lattices in $K \Lambda_{1} \otimes_{A} K \Lambda_{2}=K \Lambda_{2} \otimes_{A} K \Lambda_{1}$, the largest common factor algebra of $K \Lambda_{1}$ and $K \Lambda_{2}$. Moreover, the intersection of the overrings belonging to Λ_{1} and Λ_{2} corresponds to a generalized overorder $\Lambda_{1} \cap \Lambda_{2}$ of Λ which we also call the intersection of Λ_{1} and Λ_{2} (cf. [3], $\left.\S 1\right)$.

Let us define a splitting of Λ as a pair of generalized over-orders Λ_{1}, Λ_{2} such that $\Lambda_{1} \Lambda_{2}=\Lambda_{2} \Lambda_{1}$ is an order, and each indecomposable Λ-lattice is a Λ_{i}-lattice for some $i \in\{1,2\}$. (In general, of course, $\Lambda_{1} \Lambda_{2}$ and $\Lambda_{2} \Lambda_{1}$ need not be equal!) In particular, the indecomposable projectives can be arranged
in two classes, which gives rise to a decomposition

$$
\begin{equation*}
\Lambda=P_{1} \oplus P_{2} \tag{38}
\end{equation*}
$$

with $P_{i} \in \Lambda_{i}$-lat. Therefore, $\Lambda_{1}=P_{1} \oplus \Lambda_{1} P_{2}$ and $\Lambda_{2}=\Lambda_{2} P_{1} \oplus P_{2}$, whence

$$
\begin{equation*}
\Lambda_{1}=P_{1} \oplus \Gamma P_{2}, \quad \Lambda_{2}=\Gamma P_{1} \oplus P_{2} \tag{39}
\end{equation*}
$$

with $\Gamma:=\Lambda_{1} \Lambda_{2}$, and

$$
\begin{equation*}
\Lambda=\Lambda_{1} \cap \Lambda_{2} \tag{40}
\end{equation*}
$$

The splitting will be called proper if Λ does not coincide with Λ_{1} or Λ_{2}. If Γ is hereditary, we shall speak of a hereditary splitting.

Note. For a hereditary R-order Γ, the algebra $K \Gamma$ is necessarily semisimple ([4], Theorem 1.7.1). In fact, for each indecomposable projective $K \Gamma$ module S, the full Γ-lattices in S form a chain. Hence S must be simple.

For example, if

$$
\Lambda_{m n}:=\left(\begin{array}{cc}
\Delta & \Pi^{n} \\
\Pi^{m} & \Delta
\end{array}\right) \subseteq \mathrm{M}_{2}(D)
$$

with Δ the maximal order in a skew field D (finite-dimensional over K), and $\Pi:=\operatorname{Rad} \Delta$, then the pairs $\Lambda_{30}, \Lambda_{03}$ and $\Lambda_{31}, \Lambda_{03}$ are hereditary splittings of Λ_{33}.

Proposition 17. Let Λ_{1}, Λ_{2} be generalized over-orders of Λ, and Γ a generalized over-order of Λ_{1} and Λ_{2}. The bifunctor $\left(E_{1}, E_{2}\right) \mapsto E_{1} \oplus E_{2}$ induces a faithful functor between additive categories

$$
\begin{equation*}
\Lambda_{1} \text {-lat } /[\Gamma] \times \Lambda_{2} \text {-lat } /[\Gamma] \rightarrow \Lambda \text {-lat } /[\Gamma] \tag{41}
\end{equation*}
$$

The following are equivalent:
(a) Λ_{1}, Λ_{2} form a splitting of Λ, with $\Gamma=\Lambda_{1} \Lambda_{2}$.
(b) The functor (41) is an equivalence.

Proof. It is easily seen that (41) is always faithful. The property that (41) is full signifies that for Λ_{i}-lattices $E_{i}, i \in\{1,2\}$, each Λ-linear map between E_{1} and E_{2} (in either direction) lies in $[\Gamma]$. This means that each $E_{1} \rightarrow E_{2}$ factors through ΓE_{1}, and each $E_{2} \rightarrow E_{1}$ factors through ΓE_{2}. Hence $\Gamma=\Lambda_{1} \Lambda_{2}=\Lambda_{2} \Lambda_{1}$ implies that (41) is full. Conversely, if (41) is full, we deduce that the natural maps $\Lambda_{1} \rightarrow \Lambda_{2} \Lambda_{1}$ and $\Lambda_{2} \rightarrow \Lambda_{1} \Lambda_{2}$ factor through Γ. Hence, $\Gamma=\Lambda_{1} \Lambda_{2}=\Lambda_{2} \Lambda_{1}$. Finally, the density of (41) states that each indecomposable Λ-lattice is a Λ_{i}-lattice for some $i \in\{1,2\}$.

By the preceding proposition, the usefulness of splitting pairs of generalized over-orders becomes apparent, especially in the case of a hereditary splitting. As an application of Theorem 1, we shall see below that a special class of pre-hereditary monomorphisms gives rise to a hereditary splitting
of Λ. Here the projectivity condition (P) is not assumed, but another restriction on Λ has to be imposed which forces Λ to be subhereditary if the algebra $A=K \Lambda$ is simple. In that case, we obtain an equivalent version of D. Simson's splitting theorem ([24], Theorem 17.53) for vector space categories.

Let us first consider an important special class of splitting. For a decomposition (38) of Λ, and a hereditary generalized over-order Γ of Λ, define

$$
\begin{equation*}
\Omega_{i}:=\left(\operatorname{End}_{\Lambda} P_{i}\right)^{\mathrm{op}}, \quad \Gamma_{i}:=\left(\operatorname{End}_{\Gamma} \Gamma P_{i}\right)^{\mathrm{op}} \tag{42}
\end{equation*}
$$

for $i \in\{1,2\}$. Then there are functors

$$
\begin{equation*}
\Omega_{1} \text {-lat } \times \Omega_{2} \text {-lat } \underset{\mathcal{G}}{\stackrel{\mathcal{F}}{\rightleftarrows}} \Lambda \text {-lat } \tag{43}
\end{equation*}
$$

with

$$
\begin{aligned}
\mathcal{F}\left(F_{1}, F_{2}\right) & :=\left(P_{1} \odot_{\Omega_{1}} F_{1}\right) \oplus\left(P_{2} \odot_{\Omega_{2}} F_{2}\right), \\
\mathcal{G} E & :=\left(\operatorname{Hom}_{\Lambda}\left(P_{1}, E\right), \operatorname{Hom}_{\Lambda}\left(P_{2}, E\right)\right),
\end{aligned}
$$

and in accordance with (38), Λ and Γ can be written in the form

$$
\Lambda=\left(\begin{array}{cc}
\Omega_{1} & \Omega_{12} \tag{44}\\
\Omega_{21} & \Omega_{2}
\end{array}\right), \quad \Gamma=\left(\begin{array}{cc}
\Gamma_{1} & \Gamma_{12} \\
\Gamma_{21} & \Gamma_{2}
\end{array}\right),
$$

where $\Omega_{i j}:=\operatorname{Hom}_{\Lambda}\left(P_{i}, P_{j}\right)$ and $\Gamma_{i j}:=\operatorname{Hom}_{\Gamma}\left(\Gamma P_{i}, \Gamma P_{j}\right)$. We shall call (38) a complete splitting of Λ into Ω_{1} and Ω_{2} if ΓP_{1} and ΓP_{2} have no indecomposable direct summand in common, and $\Omega_{12}=\Gamma_{12}, \Omega_{21}=\Gamma_{21}$, i.e. the natural maps $\Omega_{i j} \rightarrow \Gamma_{i j}$ are isomorphisms for $i \neq j$.

Define the multiplier of a Λ-lattice E as the generalized over-order $\mathrm{O}(E)$ of Λ corresponding to the overring $\{a \in A \mid a E \subseteq E\}$. Then for a complete splitting, the generalized over-orders $\Lambda_{i}:=\Gamma \cap \mathrm{O}\left(P_{i}\right)$ are

$$
\Lambda_{1}=\left(\begin{array}{cc}
\Omega_{1} & \Gamma_{12} \tag{45}\\
\Gamma_{21} & \Gamma_{2}
\end{array}\right), \quad \Lambda_{2}=\left(\begin{array}{cc}
\Gamma_{1} & \Gamma_{12} \\
\Gamma_{21} & \Omega_{2}
\end{array}\right),
$$

and thus $\Lambda_{1} \Lambda_{2}=\Lambda_{2} \Lambda_{1}=\Gamma$. Moreover, they form a splitting by the following
Theorem 3. Let Γ be a hereditary generalized over-order of Λ, and $\Lambda=P_{1} \oplus P_{2}$ a decomposition of Λ-lattices such that ΓP_{1} and ΓP_{2} have no indecomposable direct summand in common. Then this gives a complete splitting if and only if the functors (43) induce a pair of mutually inverse equivalences

$$
\Omega_{1} \text {-lat } /\left[\Gamma_{1}\right] \times \Omega_{2} \text {-lat } /\left[\Gamma_{2}\right] \underset{\mathcal{G}^{\prime}}{\stackrel{\mathcal{F}^{\prime}}{\rightleftarrows}} \Lambda \text {-lat } /[\Gamma] .
$$

In this case, (45) is a hereditary splitting of Λ.
Proof. Since Γ_{1} and Γ_{2} are hereditary, the functor \mathcal{G}^{\prime} is always well defined, whereas \mathcal{F}^{\prime} is defined if and only if $P_{i} \Gamma_{i}=P_{i} \odot_{\Omega_{i}} \Gamma_{i}$ are Γ-lattices for
$i \in\{1,2\}$, i.e. if the natural homomorphism $P_{i} \Gamma_{i} \rightarrow \Gamma \odot_{\Lambda} P_{i} \Gamma_{i}$ is bijective. Now $\Gamma \odot_{\Lambda} P_{i} \Gamma_{i}=\left(\Gamma P_{i}\right) \Gamma_{i}=\Gamma P_{i}$. Hence

$$
\begin{equation*}
\mathcal{F}^{\prime} \text { well defined } \Leftrightarrow\left(\Omega_{21} \Gamma_{1}=\Gamma_{21}, \Omega_{12} \Gamma_{2}=\Gamma_{12}\right) . \tag{46}
\end{equation*}
$$

For an Ω_{1}-lattice F_{1}, there is an exact sequence

$$
\begin{equation*}
\mathrm{T}\left(P_{1} \otimes_{\Omega_{1}} F_{1}\right) \hookrightarrow P_{1} \otimes_{\Omega_{1}} F_{1} \rightarrow P_{1} \odot_{\Omega_{1}} F_{1} \tag{47}
\end{equation*}
$$

where "T" denotes the R-torsion part. Applying $\operatorname{Hom}_{\Lambda}\left(P_{2},-\right)$ gives a short exact sequence
$\operatorname{Hom}_{\Lambda}\left(P_{2}, \mathrm{~T}\left(P_{1} \otimes_{\Omega_{1}} F_{1}\right)\right) \hookrightarrow \operatorname{Hom}_{\Lambda}\left(P_{2}, P_{1} \otimes_{\Omega_{1}} F_{1}\right) \rightarrow \operatorname{Hom}_{\Lambda}\left(P_{2}, P_{1} \odot_{\Omega_{1}} F_{1}\right)$ where the left-hand term is an R-torsion module, and the right-hand term is torsion-free. Thus $\operatorname{Hom}_{\Lambda}\left(P_{2}, P_{1} \odot_{\Omega_{1}} F_{1}\right)=\Omega_{21} \odot_{\Omega_{1}} F_{1}$. Similarly, if we apply $\operatorname{Hom}_{\Lambda}\left(P_{1},-\right)$ to (47), we get $\operatorname{Hom}_{\Lambda}\left(P_{1}, P_{1} \odot_{\Omega_{1}} F_{1}\right)=\Omega_{1} \odot_{\Omega_{1}} F_{1}=F_{1}$, whence by symmetry,

$$
\mathcal{G F}\left(F_{1}, F_{2}\right)=\left(F_{1}, F_{2}\right) \oplus\left(\Omega_{12} \odot_{\Omega_{2}} F_{2}, \Omega_{21} \odot_{\Omega_{1}} F_{1}\right) .
$$

Consequently,

$$
\begin{equation*}
\mathcal{G}^{\prime} \mathcal{F}^{\prime} \cong 1 \Leftrightarrow\left(\Gamma_{1} \Omega_{12}=\Omega_{12}, \quad \Gamma_{2} \Omega_{21}=\Omega_{21}\right) \tag{48}
\end{equation*}
$$

For the rest of the proof, let us assume that \mathcal{F}^{\prime} is well defined, and $\mathcal{G}^{\prime} \mathcal{F}^{\prime} \cong 1$. Then by (46) and (48) it remains to show that

$$
\begin{equation*}
\mathcal{F}^{\prime} \mathcal{G}^{\prime} \cong 1 \Leftrightarrow\left(\Omega_{12}=\Gamma_{12}, \Omega_{21}=\Gamma_{21}\right) . \tag{49}
\end{equation*}
$$

Suppose first that $\mathcal{F}^{\prime} \mathcal{G}^{\prime} \cong 1$. Let Ω_{1} be mapped onto the order Ω_{1}^{\prime} by the natural map $K \Omega_{1} \rightarrow K \Omega_{1} / \operatorname{Rad} K \Omega_{1}$. Then Ω_{21} is a right Ω_{1}^{\prime}-lattice since $\Omega_{21} \in \Gamma_{2}$-lat and $K \Gamma_{2}$ is semisimple. Hence, Λ has a generalized over-order

$$
\Lambda^{\prime}:=\left(\begin{array}{cc}
\Omega_{1}^{\prime} & \Gamma_{12} \\
\Omega_{21} & \Gamma_{2}
\end{array}\right)
$$

such that each Λ^{\prime}-lattice $E=\binom{E_{1}}{E_{2}}$ is a direct summand of $\mathcal{F} \mathcal{G} E \oplus \Gamma^{s}$ for some $s \in \mathbb{N}$. Thus if E_{1} has no direct summand in common with Γ_{1}, then E is a direct summand of $\left(\begin{array}{c}\Omega_{21} \odot_{\Omega_{1}^{\prime}} E_{1}\end{array}\right)$. The kernel of $\Lambda^{\prime} \rightarrow \Gamma$ is of the form $\left(\begin{array}{cc}N_{1} & 0 \\ N_{21} & 0\end{array}\right)$, and by (46), we have $K N_{21}=K \Omega_{21} N_{1}$. Since $K \Omega_{1}^{\prime}$ is semisimple, the ideal $K N_{1}$ is idempotent, and N_{1} has no Γ_{1}-lattice $\neq 0$ as a direct summand. Hence, $\Gamma_{12} N_{21} \subseteq K \Gamma_{12} \Omega_{21} N_{1} \subseteq K N_{1}$ and $N_{1} \Gamma_{12}=0$ implies $\Gamma_{12} N_{21}=0$. Therefore, $\binom{0}{N_{21}}$ is a Λ^{\prime}-sublattice of $\binom{N_{1}}{N_{21}}$, and by the above, $\binom{N_{1}}{N_{21}} /\binom{0}{N_{21}}$ must be a direct summand of $\binom{N_{1}}{\Omega_{21} N_{1}}$. Consequently, $\Omega_{21} N_{1}=0$ and thus $N_{21}=0$, i.e. $\Omega_{21} \subseteq \Gamma_{21}$. In order to prove $\Omega_{21}=\Gamma_{21}$, it now suffices to show $\Omega_{21} F_{1}=\Gamma_{21} F_{1}$ for every $\Omega_{1}^{\prime} / N_{1}$-lattice F_{1}. Since ΓP_{1} and ΓP_{2} have no common direct summand, we have $\Gamma_{12} \Gamma_{21} \subseteq \operatorname{Rad} \Gamma_{1}$, and there exists an integer $i \in \mathbb{N}$ with $\left(\Gamma_{12} \Gamma_{21}\right)^{i} F_{1} \subseteq F_{1}$. We choose i minimal. By (46), we may assume that F_{1} has no Γ_{1}-lattice $\neq 0$ as a direct summand,
and thus $i>0$. Since $F_{1}^{\prime}:=F_{1}+\left(\Gamma_{12} \Gamma_{21}\right)^{i-1} F_{1}$ satisfies $\left(\Gamma_{12} \Gamma_{21}\right)^{i-1} F_{1}^{\prime} \subseteq$ F_{1}^{\prime}, assume $\Omega_{21} F_{1}^{\prime}=\Gamma_{21} F_{1}^{\prime}$ by induction. Then $\Gamma_{12} \Gamma_{21} F_{1}=\Gamma_{12} \Gamma_{21} F_{1}^{\prime}=$ $\Gamma_{12} \Omega_{21} F_{1}^{\prime} \subseteq F_{1}$, and thus $E:=\binom{F_{1}}{\Gamma_{21} F_{1}}$ is a Λ^{\prime}-lattice. Hence, E is a direct summand of $\binom{F_{1}}{\Omega_{21} F_{1}}$, and our claim $\Omega_{21} F_{1}=\Gamma_{21} F_{1}$ is proved. By symmetry, the implication " \Rightarrow " in (49) follows.

Conversely, suppose $\Omega_{12}=\Gamma_{12}, \Omega_{21}=\Gamma_{21}$, and let $E=\binom{E_{1}}{E_{2}}$ be a Λ-lattice. Then ΓE has a decomposition $\Gamma E=H_{1} \oplus H_{2}$ with epimorphic images H_{i} of ΓP_{i}. Moreover, $\mathcal{F} \mathcal{G} E=\left(P_{1} \odot_{\Omega_{1}} E_{1}\right) \oplus\left(P_{2} \odot_{\Omega_{2}} E_{2}\right)$, and we have an exact sequence

$$
\begin{equation*}
J E \hookrightarrow \mathcal{F G} E \stackrel{c}{\rightarrow} E \tag{50}
\end{equation*}
$$

where c is defined by the natural homomorphisms $P_{i} \otimes_{\Omega_{i}} \operatorname{Hom}_{\Lambda}\left(P_{i}, E\right) \rightarrow E$, and J denotes the following ideal of Λ :

$$
J:=\left(\begin{array}{cc}
\Gamma_{12} \Gamma_{21} & \Gamma_{12} \\
\Gamma_{21} & \Gamma_{21} \Gamma_{12}
\end{array}\right) \triangleleft\left(\begin{array}{cc}
\Omega_{1} & \Gamma_{12} \\
\Gamma_{21} & \Omega_{2}
\end{array}\right)=\Lambda .
$$

Clearly, the map $r: P_{1} \odot_{\Omega_{1}} E_{1} \rightarrow E \rightarrow \Gamma E \rightarrow H_{2}$ has its image in $J H_{2}$. Hence, r yields a retraction of the embedding $J H_{2} \hookrightarrow P_{1} \odot_{\Omega_{1}} E_{1}$. Similarly, $J H_{1} \hookrightarrow P_{2} \odot_{\Omega_{2}} E_{2}$ has a retraction. Therefore, the exact sequence (50) splits. Thus $\mathcal{F}^{\prime} \mathcal{G}^{\prime} \cong 1$, and our proof of (49) is complete. Finally, we infer that (45) is a hereditary splitting of Λ.

There is a particular case of a complete splitting of R-orders which has some analogy with one-point extensions of algebras ([13], §2.5). Let Λ be an R-order in $A=A_{0} \times A_{1}$ with A_{0} simple, and I a tame irreducible (see $\S 1) ~ \Lambda$-lattice with $S:=K I \in A_{0}-\bmod , \Delta:=\left(\operatorname{End}_{\Lambda} I\right)^{\mathrm{op}}$, and $\Pi:=$ $\operatorname{Rad} \Delta$. Suppose $I \Pi I^{*} \subseteq \Lambda$, where $I^{*}=\operatorname{Hom}_{R}\left(I \otimes_{\Delta} \Delta, R\right)=\operatorname{Hom}_{\Delta}\left(I, \Delta^{*}\right)$ is identified with $\operatorname{Hom}_{\Delta}(I, \Delta)$. Then we call

$$
\Lambda^{\prime}:=\left(\begin{array}{cc}
\Delta & I^{*} \tag{51}\\
I \Pi & \Lambda
\end{array}\right)
$$

the trivial extension of Λ with respect to I. If $A_{0}=\mathrm{M}_{n}(D)$ with $D:=$ $\left(\operatorname{End}_{A} S\right)^{\mathrm{op}}$, then (51) is an order in $\mathrm{M}_{n+1}(D) \times A_{1}$. Clearly, the columns in (51) yield a complete splitting with respect to any hereditary generalized over-order of the form

$$
\Gamma^{\prime}:=\left(\begin{array}{cc}
\Delta & I^{*} \\
I \Pi & \Gamma
\end{array}\right)
$$

where Γ is a hereditary generalized over-order of Λ such that I is a Γ-lattice. Therefore, Theorem 3 yields an equivalence

$$
\begin{equation*}
\Lambda \text {-lat } /[\Gamma] \xrightarrow{\sim} \Lambda^{\prime} \text {-lat } /\left[\Gamma^{\prime}\right] \tag{52}
\end{equation*}
$$

Other instances of complete splittings are given in §7, Example 5.
For the remainder of this section, let P and I be Λ-lattices in a simple A module S. Assume that $\Delta:=\left(\operatorname{End}_{\Lambda} I\right)^{\mathrm{op}}=\left(\operatorname{End}_{\Lambda} P\right)^{\mathrm{op}}$ is the maximal order
in $D:=\left(\operatorname{End}_{A} S\right)^{\text {op }}$ with $\Pi:=\operatorname{Rad} \Delta$. We call a pre-hereditary monomorphism $u: P \hookrightarrow I$ splitting if the inclusion $\operatorname{Hom}_{\Delta}(I, P \Pi) \hookrightarrow \operatorname{End}_{\Delta}(I)$ lifts along the natural ring homomorphism $\Lambda \rightarrow \operatorname{End}_{\Delta}(I)$ to a (Λ, Λ)-bimodule homomorphism $\operatorname{Hom}_{\Delta}(I, P \Pi) \rightarrow \Lambda$. Clearly, this implies that $A=A_{0} \times A_{1}$ with $A_{0}:=\operatorname{End}_{D}(S)$. If, as above, I^{*} is identified with $\operatorname{Hom}_{\Delta}(I, \Delta)$, the map $\operatorname{Hom}_{\Delta}(I, P \Pi) \rightarrow \Lambda$ gives an inclusion

$$
\begin{equation*}
P \Pi I^{*} \subseteq \Lambda . \tag{53}
\end{equation*}
$$

Our splitting theorem will be a consequence of
Proposition 18. Let $u: P \hookrightarrow I$ be splitting pre-hereditary. Then the maximal order Γ_{0} in $\mathrm{M}_{2}\left(A_{0}\right)$ with $\binom{I}{P}$ as indecomposable representation is a generalized over-order of $\partial_{u} \Lambda$ with $\operatorname{Rad} \Gamma_{0} \subseteq \partial_{u} \Lambda$.

Note. For $A=A_{0}$, the proposition implies that $\partial_{u} \Lambda$ is subhereditary:

$$
\begin{equation*}
\operatorname{Rad} \Gamma_{0} \subseteq \partial_{u} \Lambda \subseteq \Gamma_{0} \tag{54}
\end{equation*}
$$

However, this is no longer true for $\delta_{u} \Lambda$ (see $\S 7$, Example 6).
Proof of Proposition 18. Explicitly, we have

$$
\Gamma_{0}=\left(\begin{array}{cc}
I I^{*} & I P^{*} \\
P I^{*} & P P^{*}
\end{array}\right) \supseteq \operatorname{Rad} \Gamma_{0}=\left(\begin{array}{cc}
I \Pi I^{*} & I \Pi P^{*} \\
P \Pi I^{*} & P \Pi P^{*}
\end{array}\right) .
$$

By virtue of (53), the elements of ΠI^{*} can be regarded as homomorphisms $P \rightarrow \Lambda$. Therefore, $P_{-}=P$ is mapped into Λ_{-}, whence $P \Pi I^{*} \subseteq \Lambda_{-}$. Moreover, $I \Pi I^{*} \subseteq \Lambda^{+}$, and dually, $P \Pi P^{*} \subseteq \Lambda^{-}$. Hence, $I \Pi P^{*} \subseteq \Lambda^{-+}$ and thus Rad $\Gamma_{0} \subseteq \partial_{u} \Lambda$. Finally, since $\binom{I}{P}$ is a $\partial_{u} \Lambda$-lattice, the natural epimorphism $\mathrm{M}_{2}(A) \rightarrow \mathrm{M}_{2}\left(A_{0}\right)$ maps $\partial_{u} \Lambda$ into the maximal order Γ_{0}.

Before we proceed further, let us analyse the splitting condition (53) in the case of a tiled order Λ. Define

$$
\begin{equation*}
\mathfrak{S}_{\Lambda}:=\{E \in \Lambda \text {-lat } \mid K E=S\} . \tag{55}
\end{equation*}
$$

Proposition 19. Let $\Lambda=\left(\Pi^{e_{i j}}\right)$ be a tiled order in $A=\mathrm{M}_{n}(D)$, and $u: P \hookrightarrow I$ a pre-hereditary monomorphism between Λ-lattices $P, I \in \mathfrak{S}_{\Lambda}$. Then u is splitting if and only if $E \subseteq I$ or $E \supseteq P$ holds for each $E \in \mathfrak{S}_{\Lambda}$.

Proof. The splitting condition (53) is tantamount to $P \Pi I^{*} E \subseteq E$ for each $E \in \mathfrak{S}_{\Lambda}$. Furthermore, there is no restriction if E is subject to the condition $I^{*} E=\Delta$, i.e. $E \subseteq I$ and $E \nsubseteq I \Pi$. For these E, (53) reduces to $P \Pi \subseteq E$, which yields the desired result.

Remark. For a tiled order Λ and a splitting pre-hereditary monomorphism $u: P \hookrightarrow I$, it can be shown that apart from indecomposables $\binom{H}{L}$ with $P \subseteq L \subseteq H \subseteq I$, each indecomposable $\partial_{u} A$-lattice E^{\prime} can be obtained by ∂_{u}, i.e. there exists an indecomposable Λ-lattice E with $\partial_{u} E=E^{\prime} \oplus\binom{I}{P}^{s}$
for some $s \in \mathbb{N}$. This fact is no longer true if Λ is not tiled, as Example 7 in $\S 7$ will show.

Now we shall derive our general splitting theorem:
Theorem 4. For an R-order Λ in $A=A_{0} \times A_{1} \times A_{2}$ with A_{0} simple, let $u: P \hookrightarrow I$ be splitting pre-hereditary and H a tame irreducible Λ-lattice with $\Delta:=\left(\operatorname{End}_{\Lambda} H\right)^{\mathrm{op}}, \Pi:=\operatorname{Rad} \Delta$, and $H \Pi \subseteq P \subseteq I \subseteq H$. Assume that $S:=K H$ is the simple A_{0}-module, and $\operatorname{Rad}\left(\operatorname{End}_{\Delta} H\right) \subseteq \Lambda$. Moreover, suppose ${ }_{\Lambda} \Lambda$ has a decomposition $\Lambda=P_{0} \oplus P_{1} \oplus P_{2}$ with $P_{i} \subseteq A_{0}+A_{i}$, and for $U_{0}:=I / P, U_{1}:=H / I$, and $U_{2}:=P / H \Pi$, suppose $\operatorname{Hom}_{\Lambda}\left(P_{i}, U_{j}\right)=0$ whenever $i \neq j$. Under these assumptions, if $p_{i}: A \rightarrow A_{0} \times A_{i}$ denotes the natural projection for $i \in\{1,2\}$, then $\Lambda_{1}:=p_{1}(\Lambda)+\operatorname{Hom}_{\Delta}(H, P)$ and $\Lambda_{2}:=p_{2}(\Lambda)+\operatorname{Hom}_{\Delta}(I, H \Pi)$ constitute a hereditary splitting of Λ.

Remark. If $A=A_{0}$, then $\operatorname{Rad}\left(\operatorname{End}_{\Delta} H\right) \subseteq \Lambda$ implies that Λ is subhereditary. In this case, the theorem can be interpreted as a statement on vector space categories, and then it coincides with D. Simson's splitting theorem ([24], §17.53). In fact, Simson [24] defines a splitting decomposition $\mathbb{K}_{F}=\mathbb{K}_{F}^{\prime \prime}+\mathbb{L}_{F}+\mathbb{K}_{F}^{\prime}$ of a vector space category \mathbb{K}_{F} by three conditions (i)-(iii) related to the assumptions of Theorem 4 as follows: His first condition (i) that \mathbb{L}_{F} is of chain type corresponds to the property that $u: P \hookrightarrow I$ is pre-hereditary. The second one (ii) says that there are no morphisms from \mathbb{K}_{F}^{\prime} to \mathbb{L}_{F} or $\mathbb{K}_{F}^{\prime \prime}$, and none from \mathbb{L}_{F} to $\mathbb{K}_{F}^{\prime \prime}$. This is equivalent to our disjointness assumption $\operatorname{Hom}_{\Lambda}\left(P_{i}, U_{j}\right)=0$. Thirdly, Simson's dimension property (iii) is tantamount to our splitting condition (53).

Proof of Theorem 4. Let Ω be the hereditary order in A_{0} with H, I, P as indecomposables, and Ω_{0} the hereditary suborder which has, in addition, all the Λ-lattices between I and P as indecomposables. The splitting condition (53) and the assumption $\operatorname{Rad}\left(\operatorname{End}_{\Delta} H\right) \subseteq \Lambda$ imply $\operatorname{Hom}_{\Delta}(H, P)$. $\operatorname{Hom}_{\Delta}(I, H \Pi) \subseteq \operatorname{Hom}_{\Delta}(I, P \Pi) \subseteq \Lambda$ and $\operatorname{Hom}_{\Delta}(I, H \Pi) \cdot \operatorname{Hom}_{\Delta}(H, P) \subseteq$ $\operatorname{Hom}_{\Delta}(H, H \Pi) \subseteq \Lambda$. Hence, if $p_{0}: A \rightarrow A_{0}$ denotes the natural projection, then

$$
\Lambda_{1} \Lambda_{2}=\Lambda_{2} \Lambda_{1}=p_{0}(\Lambda)+\operatorname{Hom}_{\Delta}(H, P)+\operatorname{Hom}_{\Delta}(I, H \Pi) \subseteq \Omega_{0}
$$

Now $\Omega P_{1}=H^{k}, \Omega P_{2}=P^{l}$, and $\Omega P_{0}=I^{m}$ for some $k, l, m \in \mathbb{N}$. Then $\Lambda_{2} P_{1}=H^{k}, \Lambda_{1} P_{2}=P^{l}$, and $\Lambda_{1} P_{0}=P_{0}+P^{m} \in \Omega_{0}$-lat. Hence

$$
\begin{equation*}
\Lambda_{1} \Lambda_{2}=\Lambda_{2} \Lambda_{1}=\Omega_{0} \tag{56}
\end{equation*}
$$

If $P=H \Pi$, then $\Lambda_{1}=p_{1}(\Lambda)=\Lambda$. Similarly, $I=H$ implies $\Lambda_{2}=\Lambda$. Therefore, we may exclude these trivial cases. Then $H^{+}=H=H_{-}$, and the maximal order $\Theta:=\operatorname{End}_{\Delta}(H)$ is a generalized over-order of Λ^{+}and Λ^{-}. By Lemma 3, we infer $\left(\Lambda^{+-}+\Lambda^{-+}\right) H \subseteq H$, and thus $\mathrm{M}_{2}(\Theta)$ is a generalized over-order of $\partial_{u} \Lambda$. Moreover, $\operatorname{Rad} \Theta \subseteq \Lambda$ and $(\operatorname{Rad} \Theta) I \subseteq H \Pi \subseteq$
P implies $\operatorname{Rad} \Theta \subseteq \Lambda_{-}$and thus $\operatorname{Rad} \mathrm{M}_{2}(\Theta) \subseteq \partial_{u} \Lambda$. By Proposition 18 , the maximal order Γ_{0}^{-}in $\mathrm{M}_{2}\left(A_{0}\right)$ with the indecomposable representation $\binom{I}{P}$ is a generalized over-order of $\partial_{u} \Lambda$ with $\operatorname{Rad} \Gamma_{0} \subseteq \partial_{u} \Lambda$. Consequently, the inclusions $\binom{H \Pi}{H \Pi} \subseteq\binom{I}{P} \subseteq\binom{H}{H}$ imply that

$$
\Gamma:=\mathrm{M}_{2}(\Theta) \cap \Gamma_{0}
$$

is a hereditary order in $\mathrm{M}_{2}\left(A_{0}\right)$, and a generalized over-order of $\partial_{u} \Lambda$ with

$$
\begin{equation*}
\operatorname{Rad} \Gamma=\operatorname{Rad} \mathrm{M}_{2}(\Theta)+\operatorname{Rad} \Gamma_{0} \subseteq \partial_{u} \Lambda \tag{57}
\end{equation*}
$$

Now we have a decomposition of $\partial_{u} \Lambda$-lattices

$$
\begin{aligned}
\partial_{u} \Lambda & =\binom{P_{0}^{+}}{\left(P_{0}\right)_{-}} \oplus\binom{P_{1}^{+}}{P_{1}} \oplus\binom{P_{2}^{+}}{P_{2}} \oplus\binom{\left(\Lambda^{+-}+\Lambda^{-+}\right) P_{0}}{\Lambda^{-} P_{0}} \oplus\binom{P_{1}^{+}}{P_{1}} \oplus\binom{P_{2}^{+}}{P_{2}} \\
& =Q_{1} \oplus Q_{2}
\end{aligned}
$$

with

$$
Q_{1}:=\binom{\left(\Lambda^{+-}+\Lambda^{-+}\right) P_{0}}{\Lambda^{-} P_{0}} \oplus\binom{P_{1}^{+}}{P_{1}}^{2}, \quad Q_{2}:=\binom{P_{0}^{+}}{\left(P_{0}\right)_{-}} \oplus\binom{P_{2}^{+}}{P_{2}}^{2}
$$

such that

$$
\Gamma Q_{1}=\binom{H}{H}^{n_{1}}, \quad \Gamma Q_{2}=\binom{I}{P}^{n_{2}}
$$

for suitable integers n_{1}, n_{2}. In order to show by Theorem 3 that $\partial_{u} \Lambda=$ $Q_{1} \oplus Q_{2}$ is a complete splitting with respect to the hereditary order Γ, we have to verify for $\{i, j\}=\{1,2\}$ that the natural homomorphism

$$
\begin{equation*}
\operatorname{Hom}_{\partial_{u} \Lambda}\left(Q_{i}, Q_{j}\right) \rightarrow \operatorname{Hom}_{\Gamma}\left(\Gamma Q_{i}, \Gamma Q_{j}\right) \tag{58}
\end{equation*}
$$

is an isomorphism. Note that $\operatorname{Hom}_{\Gamma}\left(\Gamma Q_{i}, \Gamma Q_{j}\right)=\operatorname{Hom}_{\partial_{u} \Lambda}\left(Q_{i}, \Gamma Q_{j}\right)$. Then the injectivity of (58) follows since $Q_{i} \subseteq \mathrm{M}_{2}\left(A_{0}\right) \oplus \mathrm{M}_{2}\left(A_{i}\right)$; the surjectivity follows by (57) since each homomorphism $Q_{i} \rightarrow \Gamma Q_{j}$ has its image in $(\operatorname{Rad} \Gamma) Q_{j} \subseteq Q_{j}$. Hence Theorem 3 applies, and by (45), there is a pair of splitting generalized over-orders $\Lambda_{1}^{\prime}, \Lambda_{2}^{\prime}$ of $\partial_{u} \Lambda$. If $p_{i}^{\prime}: \mathrm{M}_{2}(A) \rightarrow \mathrm{M}_{2}\left(A_{0} \times A_{i}\right)$ denotes the natural projection for $i \in\{1,2\}$, then

$$
\begin{equation*}
\Lambda_{i}^{\prime}=p_{i}^{\prime}\left(\partial_{u} \Lambda\right)+J_{i} \tag{59}
\end{equation*}
$$

with

$$
J_{1}=\left\{a \in \Gamma \left\lvert\, a\binom{H}{H} \subseteq\binom{I}{P}\right.\right\}, \quad J_{2}=\left\{a \in \Gamma \left\lvert\, a\binom{I}{P} \subseteq\binom{H \Pi}{H \Pi}\right.\right\}
$$

Now for each indecomposable Λ-lattice E, we have $\partial_{u} E=E^{\prime} \oplus E^{\prime \prime}$ with E^{\prime} indecomposable and $E^{\prime \prime} \in \Gamma$-lat. Therefore, our proof will be completed by the equivalence

$$
\Lambda_{i} E=E \Leftrightarrow \Lambda_{i}^{\prime}\left(\partial_{u} E\right)=\partial_{u} E
$$

for $i \in\{1,2\}$ and $E \in \Lambda$-lat. Since $E \in p_{i}(\Lambda)$-lat $\Leftrightarrow \partial_{u} E \in p_{i}^{\prime}\left(\partial_{u} \Lambda\right)$-lat, it remains to show that for each Λ-lattice E, the equivalences

$$
\begin{align*}
P H^{*} \cdot E \subseteq E & \Leftrightarrow J_{1}\left(\partial_{u} E\right) \subseteq \partial_{u} E, \tag{60}\\
H \Pi I^{*} \cdot E \subseteq E & \Leftrightarrow J_{2}\left(\partial_{u} E\right) \subseteq \partial_{u} E
\end{align*}
$$

are satisfied. Since $\Theta E=\Theta\left(E^{+}\right)$and $H^{*} \in \Theta^{\text {op }}$-lat, the inclusion $P H^{*} E \subseteq$ E implies $P H^{*} E^{+} \subseteq E$ and thus $P H^{*} E^{+}=P_{-} H^{*} E^{+} \subseteq E_{-}$. By duality, we also have $H \Pi I^{*} E \subseteq E \Leftrightarrow H \Pi I^{*} E^{+} \subseteq E_{-}$. Therefore, (60) follows by the implication $P H^{*} E^{+} \subseteq E_{-} \Rightarrow P H^{*} E^{+} \subseteq E \Rightarrow I H^{*} E^{+} \subseteq E^{+}$and its dual $H \Pi I^{*} E^{+} \subseteq E_{-} \Rightarrow H \Pi P^{*} E_{-} \subseteq E_{-}$.
6. An extended derivative. In [19], Proposition 14, we characterized hereditary monomorphisms $u: P \hookrightarrow I$ between tame irreducible Λ-lattices P, I. If the projectivity condition (P) is dropped, this gives a characterization of pre-hereditary u. In particular, we have $P \not \neq I$ for $u: P \hookrightarrow I$ pre-hereditary. In the present section, we shall prove that the categorial equivalence in Theorem 1 extends to a case (Proposition 20 below) where the assumption $P \not \neq I$ does not hold. The weak minimality condition (M°) is satisfied, and we get an equivalence $\widetilde{\partial}_{u}: \Lambda$-lat $/\left[\mathcal{H}_{u}\right] \xrightarrow{\sim} \partial_{u} \Lambda$-lat $/\left[\binom{I}{P}\right]$, where the quotient category $\partial_{u} \Lambda$-lat $/\left[\binom{I}{P}\right]$ coincides with a category Λ^{\prime}-lat for some order Λ^{\prime} in a factor algebra of $\mathrm{M}_{2}(A)$ (see Examples 1 and 2 of $\S 7$). Moreover, \mathcal{H}_{u} consists of the Λ-lattices belonging to some rational component of A. There is a close relationship between the functors $\widetilde{\partial}_{u}$ in Theorem 1 and Proposition 20 on the one hand, and the two cases occurring in the proof of the rejection lemma ([19], Proposition 7) on the other hand.

Proposition 20. Let Λ be an R-order in $A=A_{0} \times A_{1}$ with A_{0} simple such that the natural projection $A \rightarrow A_{0}$ maps Λ onto the hereditary order Λ_{0}. Let S denote the simple A_{0}-module, and Δ the unique maximal order in $D:=\left(\operatorname{End}_{A} S\right)^{\text {op }}$ with $\Pi:=\operatorname{Rad} \Delta$. For an indecomposable Λ_{0}-lattice I which is neither projective nor injective as a Λ-lattice, with $P:=I \Pi$, suppose $\operatorname{Hom}_{\Delta}(I, P) \subseteq \Lambda$. Then the u-differentiation (8) induces an equivalence

$$
\widetilde{\partial}_{u}: \Lambda \text {-lat } /\left[\Lambda_{0}\right] \xrightarrow{\sim}\left(\begin{array}{cc}
\Lambda_{1} & \Lambda_{1} \tag{61}\\
N_{1} & \Lambda_{1}
\end{array}\right) \text {-lat },
$$

where $\Lambda_{1}:=\left(\Lambda+A_{0}\right) \cap A_{1}$ and $N_{1}:=\Lambda \cap A_{1}$.
Note. Equivalently, the assumption of the theorem says that Λ is a subdirect product $\Lambda \subseteq \Lambda_{0} \times \Lambda_{1}$ with Λ_{0} hereditary and $K \Lambda_{0}$ simple, and that Λ_{0} has a maximal over-order Θ such that $\operatorname{Rad} \Theta=\{a \in \Lambda \mid \Theta a \subseteq \Lambda\}=$ $\{a \in \Lambda \mid a \Theta \subseteq \Lambda\}$.

Proof of Proposition 20. There is a natural epimorphism of R-orders

$$
\Gamma:=\left(\begin{array}{cc}
\Delta & I^{*} \\
P & \Lambda
\end{array}\right) \rightarrow \Gamma_{0}:=\left(\begin{array}{cc}
\Delta & I^{*} \\
P & \Lambda_{0}
\end{array}\right)
$$

where Γ is a trivial extension of Λ. Hence (52) gives an equivalence

$$
\mathcal{F}^{\prime}: \Lambda \text {-lat } /\left[\Lambda_{0}\right] \xrightarrow{\sim} \Gamma \text {-lat } /\left[\Gamma_{0}\right]
$$

induced by the functor $\mathcal{F}: \Lambda$-lat $\rightarrow \Gamma$-lat with $\mathcal{F}(E)=\left({ }^{I^{*} \odot_{E} E}\right)$. By [19], Proposition 14, we have a pre-hereditary monomorphism $v:\binom{\Delta}{P} \hookrightarrow\binom{\Delta}{I}$ in Γ-lat with $\binom{\Delta}{P}$ projective and $\binom{\Delta}{I}$ injective. Since $\binom{I^{*}}{\Lambda_{0}}=\mathcal{F}\left(\Lambda_{0}\right)$, a Γ lattice $\binom{H}{E}$ is of the form $\mathcal{F}(E)$ if and only if it does not have $\binom{\Delta}{P}$ as a direct summand. For these Γ-lattices, $\operatorname{Hom}_{\Gamma}\left(\binom{H}{E},\binom{\Delta}{I}\right)=\operatorname{Hom}_{\Lambda}(E, I)$, and therefore

$$
\binom{H}{E}_{-}=\binom{H}{E_{-}}
$$

Dually, the same argument holds for $\binom{H}{E}^{*}=\left(H^{*} E^{*}\right)$, and thus

$$
\binom{H}{E}^{+}=\binom{H}{E^{+}}
$$

if $\binom{H}{E}$ does not have $\binom{\Delta}{I}$ as a direct summand. Since ${ }_{\Lambda} I$ is neither projective nor injective, we obtain

$$
\begin{aligned}
\Gamma^{+} & =\left(\begin{array}{cc}
\Delta & I^{*} \\
I & \Lambda^{+}
\end{array}\right)=\left(\begin{array}{cc}
\Delta & I^{*} \\
I & I I^{*}
\end{array}\right) \times \Lambda_{1} \\
\Gamma^{-} & =\left(\begin{array}{cc}
\Delta & P^{*} \\
P & \Lambda^{-}
\end{array}\right)=\left(\begin{array}{cc}
\Delta & P^{*} \\
P & P P^{*}
\end{array}\right) \times \Lambda_{1} \\
\Gamma_{-} & =\left(\begin{array}{cc}
\Delta & I^{*} \\
P & \Lambda_{-}
\end{array}\right)=\left(\begin{array}{cc}
\Delta & I^{*} \\
P & P I^{*}
\end{array}\right) \times N_{1} \\
\Gamma^{+-} & =\Gamma^{-+}=\left(\begin{array}{cc}
\Delta & P^{*} \\
I & I P^{*}
\end{array}\right) \times \Lambda_{1}
\end{aligned}
$$

Consequently, we have

$$
\partial_{v} \Gamma=\Gamma_{0}^{\prime} \times\left(\begin{array}{cc}
\Lambda_{1} & \Lambda_{1} \\
N_{1} & \Lambda_{1}
\end{array}\right)
$$

where Γ_{0}^{\prime} is the maximal order in $\mathrm{M}_{2}\left(K \Gamma_{0}\right)$ with the indecomposable representation

$$
\left(\begin{array}{c}
\Delta \\
I \\
\Delta \\
P
\end{array}\right)
$$

Hence, Theorem 1 gives an equivalence

$$
\widetilde{\partial}_{v}: \Gamma \text {-lat } /\left[\Gamma_{0}\right] \xrightarrow{\sim}\left(\begin{array}{ll}
\Lambda_{1} & \Lambda_{1} \\
N_{1} & \Lambda_{1}
\end{array}\right) \text {-lat, }
$$

and the composition $\widetilde{\partial}_{v} \circ \mathcal{F}^{\prime}$ coincides with $\widetilde{\partial}_{u}$. In fact, the preceding calculation in particular yields

$$
\partial_{u} \Lambda=\left(\begin{array}{ll}
I I^{*} & I P^{*} \tag{62}\\
P I^{*} & P P^{*}
\end{array}\right) \times\left(\begin{array}{ll}
\Lambda_{1} & \Lambda_{1} \\
N_{1} & \Lambda_{1}
\end{array}\right)
$$

where the left-hand factor is the maximal order with $\binom{I}{P}$ as indecomposable representation.

Remarks. 1. If $\partial_{u} \Lambda$ is replaced by $\delta_{u} \Lambda$, then the first factor in (62) becomes a hereditary order with an additional indecomposable representation $\binom{P}{P}$. This gives another point for our preference for $\partial_{u} \Lambda$.
2. If ${ }_{\Lambda} I$ is projective or injective, then $\partial_{u} \Lambda$ is no longer defined. In this case, however, Λ is a trivial extension. Therefore, the equivalence (61) of the proposition remains valid, although it is only partially induced by some ∂_{u}.
3. Recently, O. Iyama [5] obtained a similar result where Λ_{0} is not assumed to be hereditary. The right-hand order $\left(\begin{array}{ll}\Lambda_{1} & \Lambda_{1} \\ N_{1} & \Lambda_{1}\end{array}\right)$ in (61) is then replaced by an order which is defined in terms of the Auslander-Reiten quiver of Λ.
7. Examples. In the following examples, let \mathfrak{p} denote the radical of R, and $\mathfrak{k}:=R / \mathfrak{p}$. For any pair of R-orders Λ_{0}, Λ_{1} with $\Lambda_{0} / \operatorname{Rad} \Lambda_{0} \cong$ $\Lambda_{1} / \operatorname{Rad} \Lambda_{1} \cong \mathfrak{k} \times \ldots \times \mathfrak{k}$, we define by the pullback

an R-order $\Lambda_{0} \diamond \Lambda_{1}$ in $K \Lambda_{0} \times K \Lambda_{1}$ which will be called the dyad (cf. [10]) of Λ_{0} and Λ_{1}. Clearly, $\Lambda_{0} \diamond \Lambda_{1}$ has the same residue algebra $\mathfrak{k} \times \ldots \times \mathfrak{k}$ as Λ_{0} and Λ_{1}, and the operation \diamond is associative and commutative. For Λ_{i}-lattices E_{i} with $E_{0} / \operatorname{Rad} E_{0} \cong E_{1} / \operatorname{Rad} E_{1}$, a similar pullback yields a $\Lambda_{0} \diamond \Lambda_{1}$-lattice which we denote by $E_{0} \diamond E_{1}$ whenever it is unique up to isomorphism. Sometimes it will be convenient to write $\Lambda_{0}-\Lambda_{1}$ instead of $\Lambda_{0} \diamond \Lambda_{1}$.

Example 1. In [19], Example 1, we considered the R-order $\Lambda:=\Lambda_{0} \diamond \Lambda_{1}$ in $\mathrm{M}_{2}(K)$ with

$$
\Lambda_{0}:=\left(\begin{array}{cc}
R & \mathfrak{p} \\
R & R
\end{array}\right), \quad \Lambda_{1}:=\left(\begin{array}{cc}
R & \mathfrak{p} \\
\mathfrak{p} & R
\end{array}\right) .
$$

Λ has five irreducible representations, namely the Λ_{0}-lattices $H_{1}:=\binom{R}{R}$, $H_{2}:=\binom{\mathfrak{p}}{R}$, and the Λ_{1}-lattices $L_{1}:=\binom{R}{\mathfrak{p}}, L_{2}:=\binom{\mathfrak{p}}{R}, L_{3}:=\binom{R}{R}$. The
remaining indecomposable Λ-lattices are the two projectives $P_{1}:=H_{1} \diamond L_{1}$ and $P_{2}:=H_{2} \diamond L_{2}$, the corresponding injectives $I_{1}:=H_{1} \diamond L_{3}$ and $I_{2}:=$ $H_{2} \diamond L_{3}$, and an additional Λ-lattice $L:=\Lambda_{0} \diamond L_{3}$.

In [19] we already considered the hereditary monomorphism $P_{1} \hookrightarrow I_{1}$. In order to illustrate Proposition 20, we choose $u: \mathfrak{p} H_{1} \hookrightarrow H_{1}$. Then for each indecomposable Λ-lattice E, there exists an integer r with $\partial_{u} E \cong$ $\left(\begin{array}{c}{ }_{p} H_{1}\end{array}\right)^{r} \oplus E^{\prime}$, where E^{\prime} is either zero or an indecomposable representation of

$$
\Lambda^{\prime}:=\left(\begin{array}{cc}
\Lambda_{1} & \Lambda_{1} \\
\operatorname{Rad} \Lambda_{1} & \Lambda_{1}
\end{array}\right)
$$

a tiled order of weight two [3]. The 8 indecomposable Λ^{\prime}-lattices are therefore all irreducible. The map $E \mapsto E^{\prime}$ is given by the table

E	H_{1}	H_{2}	L_{1}	L_{2}	L_{3}	P_{1}	P_{2}	I_{1}	I_{2}	L
			R	\mathfrak{p}	R	R	\mathfrak{p}	R	R	R
E^{\prime}	0	0	\mathfrak{p}	R	R	\mathfrak{p}	R	R	R	R
			R	\mathfrak{p}	R	\mathfrak{p}	\mathfrak{p}	\mathfrak{p}	R	\mathfrak{p}
			\mathfrak{p}	R	R	\mathfrak{p}	\mathfrak{p}	R	\mathfrak{p}	\mathfrak{p}

Example 2. Next let us consider the local R-order $\Lambda:=R \diamond \Sigma_{m}$ in $A=K \times K \times K$, where $m \geq 1$, and Σ_{m} is given by the pullback

The maximal order $\Lambda_{0}=R$ in the first simple component $A_{0}=K$ of A is a generalized over-order of Λ with $\operatorname{Rad} \Lambda_{0} \subseteq \Lambda$. Hence Proposition 20 yields an equivalence Λ-lat $/\left[\Lambda_{0}\right] \xrightarrow{\sim} \Lambda^{\prime}$-lat, where

$$
\Lambda^{\prime}:=\left(\begin{array}{cc}
\Sigma_{m} & \Sigma_{m} \\
\operatorname{Rad} \Sigma_{m} & \Sigma_{m}
\end{array}\right)
$$

is an order of weight two [3]. Hence by [3], Theorem 4.9, the $4 m+3$ indecomposable Λ^{\prime}-lattices can be obtained by successive application of the rejection lemma ([3], 2.9). Therefore, Λ itself has $4(m+1)$ indecomposables.

Example 3. By [19], Proposition 16, representations of a finite poset Ω can be regarded as Λ-lattices for a subhereditary tiled order Λ. For such orders, Theorem 1 becomes equivalent to Zavadskiǐ's algorithm for posets Ω if and only if (P) is satisfied. Otherwise, we obtain various almost embeddings $\operatorname{Rep}_{\mathfrak{k}}(\Omega) \rightarrow \operatorname{Rep}_{\mathfrak{k}}\left(\Omega^{\prime}\right)$ according to the possible pre-hereditary
monomorphisms. For example:

Here the poset Ω is realized by the projective Λ-lattices in \mathfrak{S}_{Λ} (see (55)) between H and $\mathfrak{p} H$, and the \leq relations in Ω are also expressed by the exponents 0,1 of \mathfrak{p} in Λ. The irreducible Λ-lattices, up to isomorphism, are represented by the half-open interval $(\mathfrak{p} H, H]$ in \mathfrak{S}_{Λ}, whereas the closed interval $[\mathfrak{p} H, H]$ coincides with the (distributive) lattice V_{Ω} of one-dimensional Ω^{op}-representations.

Now let us consider the pre-hereditary monomorphism

$$
u: P=\left(\begin{array}{c}
R \\
\mathfrak{p} \\
\mathfrak{p} \\
R \\
\mathfrak{p}
\end{array}\right) \hookrightarrow I=\left(\begin{array}{c}
R \\
\mathfrak{p} \\
R \\
R \\
\mathfrak{p}
\end{array}\right)
$$

Then the reduced u-derivative $\Lambda^{\prime}=\partial_{u}^{\prime} \Lambda$ together with the interval $V_{\Omega^{\prime}}$ in $\mathfrak{S}_{\Lambda^{\prime}}=\bigcup_{i \in \mathbb{Z}} \mathfrak{p}^{i} V_{\Omega^{\prime}}$ and the corresponding poset Ω^{\prime} are as follows:

$V_{\Omega^{\prime}}$

Hence, the poset Ω^{\prime} should be called the u-derivative of Ω, and Theorem 1 yields a map

$$
\begin{equation*}
\operatorname{ind} \Omega \rightarrow \operatorname{ind} \Omega^{\prime} \tag{63}
\end{equation*}
$$

which is almost injective in the sense that only the Ω-representations corresponding to P and I are collapsed. By [17], Satz 4, the indecomposables
of Ω can be read off from V_{Ω}, namely, there are 16 one-dimensional representations, and 5 two-dimensional indecomposables corresponding to the 3 cubes and 2 double cubes in V_{Ω}. For Ω^{\prime} there are 20 one-dimensional and 7 two-dimensional indecomposables, according to the 4 cubes and 3 double cubes. Hence, apart from the two one-dimensional Ω^{\prime}-representations associated with the Λ^{\prime}-lattices $\binom{P}{P}$ and $\binom{I}{I}$, there are 5 indecomposable Ω^{\prime} representations not in the image of (63). Two of them are one-dimensional, and three two-dimensional.

Example 4. In the preceding example, consider instead of u the following pre-hereditary monomorphism:

$$
v: P=\left(\begin{array}{cc}
R & \mathfrak{p} \\
\mathfrak{p} & \mathfrak{p} \\
R-R \\
\mathfrak{p} & R \\
\mathfrak{p} & R
\end{array}\right) \hookrightarrow I=\left(\begin{array}{cc}
R & \mathfrak{p} \\
R & \mathfrak{p} \\
R-R \\
R & R \\
\mathfrak{p} & R
\end{array}\right)
$$

between the binomial indecomposables P, I corresponding to the two double cubes in $V_{\Omega}=[\mathfrak{p} H, H]$. (Here $R-R$ means the dyad $R \diamond R$.) In fact, it is easily verified that v satisfies $\left(\mathrm{C}^{\prime \prime}\right)$. In this example, $\Lambda^{+}=\Lambda^{-}=\Lambda$, and we obtain the v-derivative

which has 26 one-dimensional, 15 two-dimensional, and 2 three-dimensional indecomposables. (If D_{n} denotes a chain of n elements, the 15 two-dimensional indecomposables arise from the six simple cubes D_{2}^{3}, six double cubes $D_{2}^{2} \times D_{3}$, two treble cubes $D_{2}^{2} \times D_{4}$, and one cube isomorphic to $D_{2} \times D_{3}^{2}$. Moreover, $\mathrm{D}_{2} \times \mathrm{D}_{3}^{2}$ itself yields a pair of three-dimensional indecomposables.) Since I / P is of length two, the image of (63) consists of \mid ind $\Omega \mid-2=19$ indecomposables. Six of the 24 remaining indecomposable Ω^{\prime}-representations correspond to $\partial_{v} \Lambda$-lattices in the category \mathcal{H}_{v}^{\prime} of Proposition 15.

Example 5. Generalized Brauer tree orders of "defect p " type $[15,18]$ give rise to complete splittings. More generally, we define [18] a cycle hypergraph H by a surjective map $\varepsilon: C \rightarrow E$ between finite sets, together with a permutation π on C. The cycles of π are then the vertices of H, the elements
of E the edges, and ε gives the rule of attachment between vertices and edges. If every edge has exactly two vertices (with multiplicities counted), then H is equivalent to a Brauer graph [15]. Now let Γ be a hereditary R-order corresponding to π, i.e. there is a bijection $P: C \xrightarrow{\sim}$ ind Γ onto a complete system of indecomposable Γ-lattices such that $\operatorname{Rad} P_{c}=P_{\pi c}$ for all $c \in C$. For simplicity, suppose Γ is totally split, i.e. $\Gamma / \operatorname{Rad} \Gamma \cong \mathfrak{k} \times \ldots \times \mathfrak{k}=\operatorname{Map}(C, \mathfrak{k})$. Then ε induces an embedding of rings

$$
\begin{equation*}
\varepsilon^{*}: \operatorname{Map}(E, \mathfrak{k}) \hookrightarrow \operatorname{Map}(C, \mathfrak{k}) \tag{64}
\end{equation*}
$$

and the R-order Λ_{H} associated with H is given by the pullback

Hence Λ_{H} is a Bäckström order, i.e. $\operatorname{Rad} \Lambda_{H}=\operatorname{Rad} \Gamma$, and the embedding (64) shows that there is a one-to-one correspondence between the indecomposable projective Λ_{H}-lattices and the edges of H. In particular, Λ_{H} is local if and only if H has only one edge. Hence, every Λ_{H} allows a complete splitting into R-orders $\Lambda_{H^{\prime}}$ and $\Lambda_{H^{\prime \prime}}$ with cycle hypergraphs H^{\prime} and $H^{\prime \prime}$ such that $\Lambda_{H^{\prime}}$ is local.

Example 6. Consider the following R-order Λ with a splitting prehereditary monomorphism u :

$$
\Lambda=\left(\begin{array}{ccc}
R & \mathfrak{p}^{2} & \mathfrak{p}^{2} \\
\mathfrak{p} & R & \mathfrak{p} \\
\mathfrak{p} & \mathfrak{p} & R
\end{array}\right), \quad u: P=\left(\begin{array}{c}
\mathfrak{p} \\
R \\
R
\end{array}\right) \hookrightarrow I=\left(\begin{array}{c}
R \\
R \\
R
\end{array}\right)
$$

where the dyad $R \diamond R$ is again indicated by a connecting line. Then

$$
\Lambda^{+}=\left(\begin{array}{ccc}
R & \mathfrak{p} & \mathfrak{p} \\
\mathfrak{p} & R & \mathfrak{p} \\
\mathfrak{p} & \mathfrak{p} & R
\end{array}\right), \quad \Lambda^{-}=\left(\begin{array}{ccc}
R & \mathfrak{p}^{2} & \mathfrak{p}^{2} \\
R & R & \mathfrak{p} \\
R & \mathfrak{p} & R
\end{array}\right)
$$

and

$$
\mathfrak{p} I P^{*}=\left(\begin{array}{ccc}
R & \mathfrak{p} & \mathfrak{p} \\
R & \mathfrak{p} & \mathfrak{p} \\
R & \mathfrak{p} & \mathfrak{p}
\end{array}\right) \nsubseteq\left(\begin{array}{ccc}
R & \mathfrak{p} & \mathfrak{p} \\
R & R & \mathfrak{p} \\
R & \mathfrak{p} & R
\end{array}\right)=\Lambda^{+} \Lambda^{-}
$$

shows that Proposition 18 is not valid for $\delta_{u} \Lambda$ instead of $\partial_{u} \Lambda$.
Example 7. The order

$$
\Lambda=\left(\begin{array}{ll}
R-R & R-R \\
\mathfrak{p} \times \mathfrak{p} & R-R
\end{array}\right) \subseteq \mathrm{M}_{2}(K) \times \mathrm{M}_{2}(K)
$$

has 4 irreducibles, namely $P:=\binom{R}{\mathfrak{p}}$ and $I:=\binom{R}{R}$ in the first rational component, and the corresponding irreducibles P^{\prime} and I^{\prime} in the second component. Moreover, there are 3 binomial indecomposables

$$
P_{1}:=\binom{R-R}{\mathfrak{p} \times \mathfrak{p}}, \quad I_{2}:=\binom{R \times R}{R-R}, \quad B:=\binom{R-R}{R-R}
$$

where the latter is bijective. The splitting pre-hereditary monomorphism $u: P \hookrightarrow I$ yields $\Lambda^{+}=\Lambda$ and

$$
\Lambda^{-}=\left(\begin{array}{cc}
R-R & R \times R \\
\mathfrak{p} \times \mathfrak{p} & R \times R
\end{array}\right)=\Lambda^{-+}=\Lambda^{+-}, \quad \Lambda_{-}=\left(\begin{array}{cc}
R-R & R-R \\
\mathfrak{p} \times \mathfrak{p} & \mathfrak{p} \times \mathfrak{p}
\end{array}\right)
$$

Hence, the reduced u-derivative is

$$
\partial_{u}^{\prime} \Lambda=\left(\begin{array}{ccc}
R-R & \mathfrak{p} \times \mathfrak{p} & R \times R \\
R-R & R-R & R \times R \\
\mathfrak{p} \times \mathfrak{p} & \mathfrak{p} \times \mathfrak{p} & R \times R
\end{array}\right)
$$

a twofold trivial extension of the order $\left(\begin{array}{cc}R-R & \mathfrak{p} \times \mathfrak{p} \\ R-R & R-R\end{array}\right) \cong \Lambda$. Therefore, counting indecomposables shows that apart from $\binom{I}{I}$ and $\binom{P}{P}$, there must be one more indecomposable $\partial_{u} \Lambda$-lattice which is not obtained by the differentiation functor. In fact, this $\partial_{u} \Lambda$-representation is given by the $\partial_{u}^{\prime} \Lambda$-lattice

$$
\left(\begin{array}{l}
R-R \\
R \times R \\
\mathfrak{p} \times \mathfrak{p}
\end{array}\right)
$$

(By the remark following Proposition 19, such $\partial_{u} \Lambda$-lattices are not possible if Λ is tiled.)

Example 8. Finally, let us illustrate Theorem 4 by a simple example. To this end, let D be an unramified quadratic extension of K with maximal order Δ and $\Pi:=\operatorname{Rad} \Delta$. With the R-order $\Omega:=R+\Pi$ we form the dyad $\Omega \diamond R$ and consider the R-order

$$
\left.\Lambda:=\quad \begin{array}{l}
R-\begin{array}{l}
\Omega \\
\Pi \\
\Pi \\
\Delta \\
\Delta \\
\Pi
\end{array}
\end{array}\right)_{R}
$$

in $K \times \mathrm{M}_{3}(D) \times K$. By [19], Proposition 14,

$$
u: P=\left(\begin{array}{l}
\Pi \\
\Pi \\
\Delta
\end{array}\right) \hookrightarrow I=\left(\begin{array}{l}
\Pi \\
\Delta \\
\Delta
\end{array}\right)
$$

is pre-hereditary, and u satisfies the splitting condition (53). For the maximal order $\Theta:=\mathrm{M}_{3}(\Delta)$, the Θ-lattice $H:=\Theta I$ satisfies $H \Pi \subseteq P \subseteq I \subseteq H$ and $\operatorname{Rad} \Theta \subseteq \Lambda$. Moreover, there is a decomposition $\Lambda=P_{1} \oplus P_{0} \oplus P_{2}$ with

$$
P_{1}:=\left(\begin{array}{c}
\Omega \\
\Pi \\
\Delta
\end{array}\right), \quad P_{0}:=\left(\begin{array}{c}
\Pi \\
\Delta \\
\Pi
\end{array}\right), \quad P_{2}:=\left(\begin{array}{c}
\Pi \\
\Pi \\
\Omega
\end{array}\right)_{R}
$$

satisfying the assumption of Theorem 4 . Hence, Λ has a pair of splitting over-orders

$$
\Lambda_{1}=\left(\begin{array}{c}
\Omega \Pi \Pi \\
\Pi \Delta \Pi \\
\Delta \Delta \Delta
\end{array}\right), \quad \Lambda_{2}=\left(\begin{array}{c}
\Delta \Pi \Pi \\
\Delta \Delta \Pi \\
\Delta \Pi \Omega
\end{array}\right)_{R}
$$

with

$$
\Lambda_{1} \Lambda_{2}=\Lambda_{2} \Lambda_{1}=\left(\begin{array}{c}
\Delta \Pi \Pi \\
\Delta \Delta \Pi \\
\Delta \Delta \Delta
\end{array}\right)
$$

Furthermore, Λ_{1} and Λ_{2} are trivial extensions of the order

$$
\Xi:=\left(\begin{array}{l}
\Delta \Pi \\
\Pi \Omega \mathcal{L}_{R}
\end{array}\right.
$$

in $\mathrm{M}_{2}(D) \times K$. By Proposition 20, the indecomposable Ξ-lattices except R can be obtained from the indecomposables of an order in $\mathrm{M}_{4}(D)$ Morita equivalent to the order

$$
\Xi_{0}:=\left(\begin{array}{l}
\Omega \Pi \Omega \\
\Pi \Delta \Pi \\
\Pi \Pi \Omega
\end{array}\right)
$$

which corresponds to a Schurian vector space category of type $\mathbf{F}_{4}^{\prime \prime}$ listed in [7]. The 19 indecomposable Ξ_{0}-lattices are given (as representations of the corresponding \mathfrak{k}-structure) in [2], $\S 3$. Therefore, Λ_{1} and Λ_{2} have 21 indecomposables each, and consequently, there are $2 \cdot 21-3=39$ indecomposable Λ-lattices. Alternatively, a twofold application of Proposition 20 to Λ yields an order Morita equivalent to a subhereditary order Λ^{\prime} in $\mathrm{M}_{5}(D)$, and Simson's splitting theorem applies to Λ^{\prime}.

REFERENCES

[1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Grad. Texts in Math. 13, Springer, New York, 1974.
[2] V. Dlab and C. M. Ringel, On algebras of finite representation type, J. Algebra 33 (1975), 306-394.
[3] Yu. A. Drozd and V. V. Kiričenko [V. V. Kirichenko], On quasi-Bass orders, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 328-370 (in Russian); English transl.: Math. USSR-Izv. 6 (1972), 323-366.
[4] H. Hijikata and K. Nishida, Bass orders in non-semisimple algebras, J. Math. Kyoto Univ. 34 (1994), 797-837.
[5] O. Iyama, Some categories of lattices associated to a central idempotent, ibid. 38 (1998), 487-501.
[6] R. E. Johnson and E. T. Wong, Quasi-injective modules and irreducible rings, J. London Math. Soc. 36 (1961), 260-268.
[7] B. Klemp and D. Simson, Schurian sp-representation-finite right peak PI-rings and their indecomposable socle-projective modules, J. Algebra 134 (1990), 390-468.
[8] L. A. Nazarova, Partially ordered sets with an infinite number of indecomposable representations, in: Proc. ICRA 1974, Lecture Notes in Math. 488, Springer, 1975, 244-252.
[9] -, Partially ordered sets of infinite type, Izv. Akad. Nauk SSSR 39 (1975), 963-991 (in Russian).
[10] L. A. Nazarova and A. V. Roĭter, Finitely generated modules over a dyad of a pair of local Dedekind rings, and finite groups having an abelian normal subgroup of index p, Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), 65-89 (in Russian); English transl.: Math. USSR-Izv. 3 (1969), 65-86.
[11] L. A. Nazarova and A. G. Zavadskiĭ, Partially ordered sets of tame type, in: Matrix Problems, Akad. Nauk Ukrain. SSR Inst. Mat., Kiev, 1977, 122-143 (in Russian).
[12] I. Reiner, Maximal Orders, London Math. Soc. Monogr. 5, Academic Press, London, 1975.
[13] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, Berlin, 1984.
[14] K. W. Roggenkamp, Lattices over subhereditary orders and socle-projective modules, J. Algebra 121 (1989), 40-67.
[15] -, Generalized Brauer tree orders, Colloq. Math. 71 (1996), 225-242.
[16] W. Rump, Systems of lattices in vector spaces and their invariants, Comm. Algebra 9 (1981), 893-932.
[17] -, Ein Stabilitätssatz für darstellungsendliche Ordnungen, Sitzungsber. Math.-Naturwiss. Kl. 4 (1992), 89-124.
[18] -, Green walks in a hypergraph, Colloq. Math. 78 (1998), 133-147.
[19] -, Two-point differentiation for general orders, J. Pure Appl. Algebra 153 (2000), 171-190.
[20] -, Auslander-Reiten quivers and differentiation, in preparation.
[21] D. Simson, On vector space categories and differentiations of right peak rings, in: Representation of Algebgas (Proc. 4th Internat. Conf., Ottawa, 1984), CarletonOttawa Math. Lecture Note Ser. 2, Carleton Univ., Ottawa, 1984, vol. 2, exp. 31, 20 pp .
[22] -, Vector space categories, right peak rings, and their socle projective modules, J. Algebra 92 (1985), 532-571.
[23] -, On differentiation procedures for right peak rings and socle projective modules, Bull. Polish Acad. Sci. Math. 35 (1987), 279-288.
[24] -, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl. 4, Gordon and Breach, New York, 1992.
[25] L. E. T. Wu and J. P. Jans, On quasi projectives, Illinois J. Math. 11 (1967), 439-448.
[26] A. G. Zavadskiŭ, A differentiation with respect to a pair of points, in: Matrix Problems, Akad. Nauk Ukrain. SSR, Inst. Mat., Kiev, 1977, 115-121 (in Russian).
[27] -, An algorithm for differentiation and classification of representations, Izv. Akad. Nauk SSSR Ser. Mat. 55 (1991), 1007-1048 (in Russian).
[28] A. G. Zavadskiŭ and V. V. Kiričenko [V. V. Kirichenko], Semimaximal rings of finite type, Mat. Sb. 103 (145) (1977), 323-345 (in Russian); English transl.: Math. USSR-Sb. 32 (1977), 273-291.

Mathematisch-Geographische Fakultät
Katholische Universität Eichstätt
Ostenstr. 26-28
D-85071 Eichstätt, Germany
E-mail: wolfgang.rump@ku-eichstaett.de

Received 18 February 2000;
revised 27 June 2000

