VOL. 89

2001

NO. 1

DIFFERENTIATION AND SPLITTING FOR LATTICES OVER ORDERS

BҮ

WOLFGANG RUMP (Eichstätt)

Abstract. We extend our module-theoretic approach to Zavadskii's differentiation techniques in representation theory. Let R be a complete discrete valuation domain with quotient field K, and Λ an R-order in a finite-dimensional K-algebra. For a hereditary monomorphism $u : P \hookrightarrow I$ of Λ -lattices we have an equivalence of quotient categories $\widetilde{\partial}_u : \Lambda$ -lat/ $[\mathcal{H}] \xrightarrow{\sim} \delta_u \Lambda$ -lat/[B] which generalizes Zavadskii's algorithms for posets and tiled orders, and Simson's reduction algorithm for vector space categories. In this article we replace u by a more general type of monomorphism, and the derived order $\delta_u \Lambda$ by some over-order $\partial_u \Lambda \supset \delta_u \Lambda$. Then $\widetilde{\partial}_u$ remains an equivalence if $\delta_u \Lambda$ -lat is replaced by a certain subcategory of $\partial_u \Lambda$ -lat. The extended differentiation comprises a splitting theorem that implies Simson's splitting theorem for vector space categories.

Introduction. In a previous article [19] we generalized Zavadskii's differentiation algorithm [26–28] for representations of posets to lattices over orders Λ in a finite-dimensional algebra A over a field K with a complete discrete valuation. Instead of a pair of points in a poset, our differentiation depends on a *hereditary* monomorphism $u : P \hookrightarrow I$ of Λ -lattices, that is, I/P is of finite length and satisfies

$$\operatorname{Hom}_{\Lambda}(P, I/P) = \operatorname{Ext}_{\Lambda}(I/P, I) = \operatorname{Ext}_{\Lambda}(H, L) = 0$$

for Λ -lattices H, L between P and I, and

(P) P and I^* are projective.

Then the isomorphism classes of Λ -lattices between P and I can be represented by a finite set \mathcal{H}_u . With each (left) Λ -lattice E, we associate a pair $\partial_u E = {E^+ \choose E_-}$ of Λ -lattices with $E_- \subseteq E \subseteq E^+$. Dually, the hereditary monomorphism $u^* : I^* \hookrightarrow P^*$ yields a pair ${F^- \choose F_+}$ of right Λ -lattices with $F_+ \subseteq F \subseteq F^-$ for any given right Λ -lattice F. Then we can form the *derived* order

$$\delta_u \Lambda := \begin{pmatrix} \Lambda^+ & \Lambda^+ \Lambda^- \\ \Lambda_- & \Lambda^- \end{pmatrix} \subseteq \mathcal{M}_2(A)$$

²⁰⁰⁰ Mathematics Subject Classification: Primary 16G30.

Key words and phrases: order, representation, differentiation.

of Λ , and ∂_u becomes a functor

 $\partial_u : \Lambda$ -lat $\rightarrow \delta_u \Lambda$ -lat

between Λ - and $\delta_u \Lambda$ -lattices. Since $\Lambda_+ = \Lambda_-$, the definition of $\delta_u \Lambda$ is self-dual.

In [19] we proved that ∂_u induces an equivalence of quotient categories

(0)
$$\widetilde{\partial}_u : \Lambda - \operatorname{lat} / [\mathfrak{H}_u] \xrightarrow{\sim} \delta_u \Lambda - \operatorname{lat} / [\binom{I}{P}],$$

which generalizes known versions of Zavadskii's algorithm, e.g. Simson's algorithm for vector space categories [21–23] in case Λ is subhereditary, and Zavadskii's algorithm for tiled orders [28] in case P and I are tame irreducible with I/P of length one ([19], §3).

In the present article we show that a modified version of (0) remains valid when the projectivity condition (P) is dropped. To this end we consider *pre-hereditary* monomorphisms $u: P \to I$, i.e. such that U := I/P is lengthfinite with

(C)
$$\partial_u P = \partial_u I = \begin{pmatrix} I \\ P \end{pmatrix},$$

 $\operatorname{End}_{\Lambda}(I) \to \operatorname{End}_{\Lambda}(U)$ surjective, and U is a Zavadskiĭ module [19] over $B := \Lambda/\Lambda_{-}$, that is, a module $_{B}U$ with the property that each submodule is U-projective and each factor module U-injective. The closure condition (C) implies that

$$\partial_u \Lambda := \begin{pmatrix} \Lambda^+ & \Lambda^{+-} + \Lambda^{-+} \\ \Lambda_- & \Lambda^- \end{pmatrix} \subseteq \mathcal{M}_2(A)$$

is an over-order of $\delta_u \Lambda$. If u is pre-hereditary, ∂_u induces an equivalence (Theorem 1)

(0')
$$\widetilde{\partial}_u : \Lambda \operatorname{-lat} / [\mathcal{H}_u] \xrightarrow{\sim} \partial_u \Lambda \operatorname{-lat}^s / [{I \choose P}]$$

where $\partial_u \Lambda$ -lat^s consists of the $\partial_u \Lambda$ -lattices $\binom{F}{G}$ with $F \supseteq G^+$ and $G \subseteq F_-$. Moreover, $\partial_u \Lambda$ -lat^s coincides with $\partial_u \Lambda$ -lat if

(P°)
$$A^{-}P$$
 and $I^{*}{}_{A^{+}}$ are projective.

When the stronger projectivity condition (P) holds, the orders $\partial_u \Lambda$ and $\delta_u \Lambda$ coincide.

If $u : P \hookrightarrow I$ is pre-hereditary, then any decomposition of I/P induces a decomposition of u. The functor ∂_u does not change if multiplicities of indecomposable direct summands of u are reduced to one. For $u = u_1 \oplus \ldots \oplus u_n$ with u_1, \ldots, u_n indecomposable and pairwise non-isomorphic, $u'_1 := \partial_{u_2 \oplus \ldots \oplus u_n}(u)$ is pre-hereditary, and the functor ∂_u is equivalent to the composition $\partial_{u'_1} \partial_{u_2 \oplus \ldots \oplus u_n}$. Therefore, we may assume u to be indecomposable. In this case, I/P is uniserial.

Apart from the various Zavadskiĭ algorithms mentioned above, the modified equivalence (0') generalizes D. Simson's splitting theorem ([24], Theorem 17.53) which extends previous results of Nazarova & Roĭter ([24], Lemma 8.1), and Dlab & Ringel ([2], Lemma 8.4). The splitting theorem has served as a basic tool in the theory of representation-finite Schurian vector space categories [7].

For our splitting theory (§5) which we are going to explain now, the use of $\partial_u \Lambda$ instead of $\delta_u \Lambda$ is indispensable (see §7, Example 6).

In dealing with orders in not necessarily semisimple algebras A, the concept of generalized over-order Γ of Λ introduced (for A semisimple) by the Kiev school (e.g. [3]) is important. Such a Γ is given by a ring homomorphism $\Lambda \to \Gamma$ with R-torsion cokernel. A pre-hereditary monomorphism $u: P \hookrightarrow I$ with S := KP = KI simple and $\Delta := \operatorname{End}_A(P) = \operatorname{End}_A(I)$ the (unique) maximal order in the skew field $D := \operatorname{End}_A(S)$ will be called splitting if $A = \operatorname{End}_D(S) \times A'$ and $\operatorname{Hom}_\Delta(I, P\Pi) \subseteq \Lambda$. Our fundamental splitting lemma (Proposition 18) then says that in this case, the maximal order Γ_0 in M₂($\operatorname{End}_D(S)$) with indecomposable representation $\binom{I}{P}$ satisfies Rad $\Gamma_0 \subseteq \partial_u \Lambda$. (Hence $\partial_u \Lambda$ is subhereditary whenever A is simple.) Remarkably, that inclusion does not hold for $\delta_u \Lambda$ instead of $\partial_u \Lambda$.

In order to apply this result, we define a *splitting* of Λ as a pair of generalized over-orders Λ_1, Λ_2 such that $\Lambda_1\Lambda_2 = \Lambda_2\Lambda_1$ is an order, and each indecomposable Λ -lattice is a Λ_i -lattice for some $i \in \{1, 2\}$. (Here, the product $\Lambda_1\Lambda_2$ is an R-lattice in $K\Lambda_1 \otimes_{K\Lambda} K\Lambda_2$.) The importance of this notion comes from the fact (Proposition 17) that a splitting is tantamount to an equivalence of categories

$$\Lambda_1\operatorname{-lat}/[\Gamma] \times \Lambda_2\operatorname{-lat}/[\Gamma] \to \Lambda\operatorname{-lat}/[\Gamma]$$

with $\Gamma := \Lambda_1 \Lambda_2$. Of particular interest is the case where Γ is hereditary. We then speak of a *hereditary* splitting. Under some extra assumption, a splitting pre-hereditary monomorphism u gives rise to a hereditary splitting (Theorem 4). For orders Λ in a simple K-algebra, this result is equivalent to Simson's splitting theorem ([24], §17.53).

A special case of hereditary splitting will be characterized in Theorem 3: Here, ${}_{\Lambda}\Lambda$ admits a decomposition $\Lambda = P_1 \oplus P_2$ which yields an equivalence

$$\Omega_1\operatorname{-lat}/[\Gamma_1] \times \Omega_2\operatorname{-lat}/[\Gamma_2] \xrightarrow{\sim} \Lambda\operatorname{-lat}/[\Gamma]$$

of categories with $\Omega_i := (\operatorname{End}_A P_i)^{\operatorname{op}}$ and $\Gamma_i := (\operatorname{End}_\Gamma \Gamma P_i)^{\operatorname{op}}$. Such type of splitting arises for generalized Brauer tree orders (Example 5 of §7).

For an *R*-order Λ , there always exist proper monomorphisms $u: P \hookrightarrow I$ with S := KP = KI simple, $\operatorname{End}_{\Lambda}(P) = \operatorname{End}_{\Lambda}(I) =: \Delta$ maximal, and I/Puniserial with pairwise non-isomorphic composition factors. Then u is prehereditary if and only if $P \ncong I$. For $P \cong I$, however, there are cases where (0') still holds. Namely, if the identical morphism $1: I \to I$ is splitting, and the projection of Λ into $\operatorname{End}_{K\Delta}(S)$ is a hereditary order Λ_0 , Proposition 20 yields an equivalence

 $(0'') \qquad \qquad \Lambda - \mathbf{lat} / [\Lambda_0] \xrightarrow{\sim} \Lambda' - \mathbf{lat}$

for some *R*-order Λ' . If $\partial_u \Lambda$ is an order (which is not always true here since (C) is no longer valid), then Λ' -lat coincides with $\partial_u \Lambda$ -lat/ $[\partial_u P]$, and the equivalence is given by $\tilde{\partial}_u$. Only the weak form (P°) of the projectivity condition (P) is satisfied in that case.

Equivalences of type (0'') with Λ_0 not necessarily hereditary have recently been studied by Iyama [5] who defines Λ' in terms of the Auslander– Reiten quiver of Λ . The question arises whether a similar generalization of (0) or even (0') is possible. We shall take up this problem in [20].

Some examples are collected in §7, chosen as small as possible, to illustrate the results of the paper.

1. The derivative. Throughout this article, let R be a complete discrete valuation domain with quotient field K, and Λ an R-order in a finitedimensional K-algebra A; that is to say, Λ is an R-subalgebra of A which is finitely generated over R such that $K\Lambda = A$. Unless otherwise stated, modules over a ring S will be assumed to be left modules. By S-mod we denote the category of finitely generated S-modules.

A Λ -submodule E of a left A-module M is said to be a (full) Λ -lattice in M if $_RE$ is finitely generated and KE = M. Since M can be identified with $K \otimes_R E$, the embedding $E \hookrightarrow M$ is determined by the Λ -module E, which is also called a Λ -representation. Every homomorphism $f : E \to F$ of Λ -lattices has a unique A-linear extension $KE \to KF$, which we again denote by f. Therefore, the inverse image $f^{-1}(F)$ will be regarded as a Λ submodule of KE which may strictly contain E. The category of Λ -lattices is denoted by Λ -lat. Recall that a (left) Λ -lattice E is said to be *injective* if the right Λ -lattice $E^* := \operatorname{Hom}_R(E, R)$ is projective. When $_{\Lambda}E$ is projective and injective, then E is also called *bijective*. Moreover, a Λ -lattice E is said to be *irreducible* if KE is a simple Λ -module. If KE decomposes into two simple Λ -modules, we call E *binomial*. An irreducible Λ -lattice E with $\operatorname{End}_{\Lambda}(E)$ a maximal order in $\operatorname{End}_{\Lambda}(KE)$ is said to be *tame*. For the general theory of lattices over orders we refer to [12].

Let $u: P \hookrightarrow I$ be a monomorphism of Λ -lattices with KP = KI. In [19] we defined for any Λ -lattice E the *u*-trace and *u*-cotrace:

$$\operatorname{trc}_{u}E := \sum \{f(I) \mid f \in \operatorname{Hom}_{\Lambda}(P, E)\},$$
$$\operatorname{ctr}_{u}E := \bigcap \{f^{-1}(P) \mid f \in \operatorname{Hom}_{\Lambda}(E, I)\}.$$

Thus $\operatorname{trc}_u E$ is *R*-finite, and $\operatorname{ctr}_u E$ is full in KE, i.e. $K(\operatorname{ctr}_u E) = KE$. Hence

(1)
$$E^+ := E + \operatorname{trc}_u E, \quad E_- := E \cap \operatorname{ctr}_u E$$

are Λ -lattices in KE with $E_{-} \subseteq E \subseteq E^{+}$. Dually, with respect to the monomorphism $u^{*}: I^{*} \hookrightarrow P^{*}$ of Λ^{op} -lattices, for $F \in \Lambda^{\text{op}}$ -lat we define

(2)
$$F^- := F + \operatorname{trc}_{u^*} F, \quad F_+ := F \cap \operatorname{ctr}_{u^*} F.$$

Then $F_+ \subseteq F \subseteq F^-$, and

(3)
$$(E^+)^* = (E^*)_+, \quad (E_-)^* = (E^*)^-$$

Since every homomorphism ${}_{\Lambda}\Lambda \to I$ is of the form $a \mapsto ax$ with $x \in I$, we obtain $\Lambda_{-} = \{a \in \Lambda \mid aI \subseteq P\} = \{a \in \Lambda \mid P^*a \subseteq I^*\}$ and thus

(4)
$$\Lambda_{-} = \Lambda_{+},$$

which is a (two-sided) ideal of Λ .

The following *closure condition*:

(C)
$$I^+ = I, \quad P_- = P$$

has been introduced in [19]. Since the identity $1: P \to P$ carries I to I, we have $I \subseteq P^+$. On the other hand, $P \hookrightarrow I$ gives $P^+ \subseteq I^+$. Therefore, condition (C) implies that P and I determine each other:

(5)
$$P^+ = I, \quad I_- = P.$$

Note, however, that (C) does not imply the *minimality condition*

(M)
$$I = \Lambda^+ P, \quad P = \operatorname{Hom}_{\Lambda}(\Lambda^-, I),$$

which states that there are no Λ^+ - or Λ^- -lattices strictly between P and I. Moreover, we shall see that (C) does not even imply the *weak minimality* condition

(M°)
$$I = \Lambda^{-+}P, \quad P = \operatorname{Hom}_{\Lambda}(\Lambda^{+-}, I).$$

Here, the second equations in (M) and (M^{\circ}) assume that P is identified with Hom_A(Λ , P).

In [19] we proved the following

PROPOSITION 1. If $I^+ = I$ (resp. $P_- = P$), then Λ^+ (resp. Λ^-) is an over-order of Λ , and for any Λ -lattice E we have $E^+ = \Lambda^+ E^+$ (resp. $E_- = \Lambda^- E_-$). Moreover, (C) implies $\Lambda_- E^+ \subseteq E_-$.

PROPOSITION 2. If (C) is satisfied, then $\Lambda_{-}E^{+} \subseteq E_{-} \subseteq (\Lambda^{+-} + \Lambda^{-+})E_{-} \subseteq E^{+}$ for every Λ -lattice E.

Proof. The inclusion $\Lambda^{-+}E_{-} \subseteq E^{+}$ follows since Λ^{-+} is mapped into E^{+} by each homomorphism $\Lambda^{-} \to E_{-}$. Dually, $(E^{*})_{+}\Lambda^{+-} \subseteq (E^{*})^{-}$ and thus $(E^{+})^{*}\Lambda^{+-} \subseteq (E_{-})^{*}$, which gives $\Lambda^{+-}E_{-} \subseteq E^{+}$.

In particular, (C) implies:

(6)
$$\Lambda^{-}\Lambda_{-}\Lambda^{+} = \Lambda_{-}, \quad \Lambda^{+}\Lambda^{-+}\Lambda^{-} = \Lambda^{-+},$$
$$\Lambda^{-+}\Lambda_{-} \subseteq \Lambda^{+}, \quad \Lambda_{-}\Lambda^{-+} \subseteq \Lambda^{-}.$$

Here the first equation follows by (4) and Proposition 1; the second follows since the functor ()⁺ respects right Λ^- -lattices; thirdly, $\Lambda^{-+}\Lambda_- \subseteq (\Lambda^-\Lambda_-)^+ \subseteq \Lambda^+$, and the fourth equation follows by Proposition 2. By duality, the last three equations also hold for Λ^{+-} instead of Λ^{-+} .

Thus under the assumption (C) we can define the *u*-derivative of Λ as the *R*-order:

(7)
$$\Lambda' = \partial_u \Lambda := \begin{pmatrix} \Lambda^+ & \Lambda^{+-} + \Lambda^{-+} \\ \Lambda_- & \Lambda^- \end{pmatrix} \subseteq \mathcal{M}_2(A).$$

Then a Λ' -lattice is suitably given by a column $\binom{F}{G}$ with $F \in \Lambda^+$ -lat, $G \in \Lambda^-$ -lat, and $\Lambda_-F \subseteq G \subseteq (\Lambda^{+-} + \Lambda^{-+})G \subseteq F$. Hence, the map $E \mapsto \binom{E^+}{E_-}$ gives rise to a functor

(8)
$$\partial_u : \Lambda \operatorname{-lat} \to \Lambda' \operatorname{-lat}^s$$

into the full subcategory

(9)
$$\Lambda' - \mathbf{lat}^s := \left\{ \begin{pmatrix} F \\ G \end{pmatrix} \in \Lambda' - \mathbf{lat} \mid F \supseteq G^+, \ G \subseteq F_- \right\}$$

of Λ' -lat. We shall call (8) the differentiation functor with respect to u, or simply the *u*-differentiation. (For representations of partially ordered sets, a similar functor is known as "refinement functor"; see [24], Definition 9.14.) Note that the order $\partial_u \Lambda$ has to be distinguished from the Λ -lattice $\partial_u(\Lambda\Lambda)$, which is a proper direct summand of $_{\Lambda}(\partial_u\Lambda)$.

Let us call $u: P \hookrightarrow I$ pre-hereditary (cf. [19], §2) if the following holds:

(Z) Condition (C) is valid, and for A-lattices H, H', L, L' with $P \subseteq H' \subseteq H \subseteq I$ and $P \subseteq L' \subseteq L \subseteq I$, every isomorphism $\overline{h} : H/H' \xrightarrow{\sim} L/L'$ is induced by a homomorphism $h : H \to L$ with $h(H') \subseteq L'$.

An analysis of this condition will be given in \S 2–3.

For a class \mathcal{C} of objects in an additive category, let $[\mathcal{C}]$ denote the ideal of morphisms which factor through a finite direct sum of objects in \mathcal{C} . By add \mathcal{C} we denote the full subcategory consisting of direct summands of finite direct sums of objects isomorphic to those in \mathcal{C} . In particular, define

(10)
$$\mathcal{H}_u := \operatorname{add} \{ H \in \Lambda \operatorname{-lat} \mid P^s \subseteq H \subseteq I^s \text{ for some } s \in \mathbb{N} \}.$$

As usual, ind Λ denotes a representative system of isomorphism classes of indecomposable Λ -lattices. The following theorem generalizes [19], Theorem 2: THEOREM 1. If $u: P \hookrightarrow I$ is pre-hereditary, then the u-differentiation (8) induces an equivalence of categories

$$\widetilde{\partial}_u : \Lambda\operatorname{-lat}/[\mathfrak{H}_u] \xrightarrow{\sim} \Lambda'\operatorname{-lat}^s/\left[inom{I}{P}
ight]$$

Moreover, Λ' -lat^s = Λ' -lat if and only if the weak minimality condition (M°) is satisfied.

We shall prove in §3 that (M[°]) follows by the *weak projectivity condition* (P[°]) ${}_{A^-}P$ and $I^*_{A^+}$ are projective,

and that (P°) and (M°) are equivalent whenever u has no direct summands $u_1: P_1 \hookrightarrow I_1$ with $u_1(P_1) = I_1 \neq 0$.

Thus if (M°) holds, the theorem yields a bijection:

ind
$$\Lambda \setminus \operatorname{ind} \mathcal{H}_u \xrightarrow{\sim} \operatorname{ind} \Lambda' \setminus \operatorname{ind} \operatorname{add} \left\{ \begin{pmatrix} I \\ P \end{pmatrix} \right\}.$$

Here, ind add $\{ \begin{pmatrix} I \\ P \end{pmatrix} \}$ consists of the indecomposable direct summands of $\begin{pmatrix} I \\ P \end{pmatrix}$. An explicit determination of ind \mathcal{H}_u will be given in §2.

REMARK. If the *u*-derivative (7) of Λ is replaced by the suborder (see [19])

(11)
$$\delta_u \Lambda := \begin{pmatrix} \Lambda^+ & \Lambda^+ \Lambda^- \\ \Lambda_- & \Lambda^- \end{pmatrix},$$

we gain some simplification in return for a slightly weaker statement of the main theorem. Then a $\delta_u \Lambda$ -lattice is just given by a pair $\binom{F}{G}$ with $\Lambda_- F \subseteq G \subseteq F$, and the *u*-differentiation (8) induces an equivalence Λ -lat/ $[\mathcal{H}_u] \xrightarrow{\sim} \delta_u \Lambda$ -lat/ $[\binom{I}{P}]$ if and only if the (strong) minimality condition (M) holds. In analogy with the above, (M) is a consequence of the (strong) projectivity condition

(P)
$$P$$
 and I^* are projective Λ -lattices.

In the presence of this condition, the collection of concepts related with u attains its simplest form (§3). Thus (11) seems to be more natural than the definition (7) of the *u*-derivative. On the other hand, all the results of §5 depending on Proposition 18 are no longer valid if $\partial_u \Lambda$ is replaced by $\delta_u \Lambda$. In §3 we shall prove that (P) implies $\delta_u \Lambda = \partial_u \Lambda$.

2. Pre-hereditary monomorphisms. The proof of Theorem 1 will be divided into three parts showing that $\tilde{\partial}_u$ is faithful, full, and dense, respectively. For this purpose, we shall prove that a pre-hereditary monomorphism u satisfies three conditions which will be used in order to conclude each of the partial assertions on $\tilde{\partial}_u$. For any Λ -lattice E, Proposition 2 implies that

 E^+/E_- is a module over the artinian ring

$$B := \Lambda / \Lambda_{-}.$$

This notation will be maintained throughout the paper. The three conditions mentioned are:

(C)
$$I^+ = I, \quad P_- = P.$$

(L) Condition (C) holds, and for $M, M' \in B$ -mod and $H, H' \in \mathcal{H}_u$, each diagram

$$\begin{array}{c} H - - \succ \ H' \\ \downarrow q & \downarrow q' \\ M \xrightarrow{f} M' \end{array}$$

with $q(H_{-}) = 0$ and $q'(H'_{-}) = 0$ can be completed.

(H) Condition (C) holds, B is (left) hereditary, and I/P is a bijective B-module.

The fundamental condition (C) has already been introduced. Together with (C), (L), and (H), we shall discuss the following related properties. Firstly, there are two stronger versions of (C):

(C')
$$\operatorname{Ext}_{\Lambda}(I/P, I) = \operatorname{Hom}_{\Lambda}(P, I/P) = 0.$$

(C") P/Rad P and $\text{Rad}^{\circ}I/I$ have no common composition factors with I/P.

Here, Rad $P = (\text{Rad } \Lambda)P$ denotes the Jacobson radical, and the *upper radical* Rad[°] is defined for any $E \in \Lambda$ -lat by

$$(\operatorname{Rad}^{\circ} E)^* = \operatorname{Rad} E^*.$$

Stronger than the *lifting condition* (L) is the *extension property*:

(E) (C) holds, and
$$\operatorname{Ext}_{A}(H,L) = 0$$
 for $H, L \in \mathcal{H}_{u}$;

weaker is the *restricted lifting condition*:

(R) (C) holds, and $\operatorname{End}_{\Lambda}(I) \to \operatorname{End}_{\Lambda}(I/P)$ is surjective.

In $\S3$, the rôle of the projectivity conditions

(P°) $A^{-}P$ and $I^{*}_{A^{+}}$ are projective,

(P)
$${}_{A}P$$
 and I^{*}_{A} are projective,

and their relationship to the minimality conditions

- (M°) $I = \Lambda^{-+}P, \quad P = \operatorname{Hom}_{\Lambda}(\Lambda^{+-}, I),$
- (M) $I = \Lambda^+ P, \quad P = \operatorname{Hom}_{\Lambda}(\Lambda^-, I)$

will be clarified.

Let us show first that all these conditions (including (Z)) are self-dual. This is obvious in all cases except (L), (H), and (C'). For the *heredity condition* (H) this follows by (4) and the fact that $\text{Ext}_R(-, R)$ gives a duality in *B*-mod. In particular,

$$\operatorname{Ext}_R(I/P, R) \cong P^*/I^*$$

In order to verify that (L) is self-dual, note that $q(H_-) = 0$ signifies that $M \cong H/L$ with $H_- \subseteq L \subseteq H$. Thus if we identify M with H/L and M' with H'/L' for some $L' \supset H'_-$, we can assume q, q' to be the natural epimorphisms. Hence the dual diagram is

$$L^* \prec - - - L'^* \downarrow \downarrow \downarrow \downarrow L^*/H^* \prec \frac{f^*}{L'^*/H'^*}$$

with $f^* = \operatorname{Ext}_R(f, R)$ and $L^* \subseteq (H^*)^-$ by (3). Hence, (L) is self-dual.

For a finitely generated *R*-torsion Λ -module *V* and $F \in \Lambda$ -lat define $\operatorname{Ext}_{\Lambda}^{\operatorname{lat}}(V, F)$ as the subset of extensions $F \to E \twoheadrightarrow V$ in $\operatorname{Ext}_{\Lambda}(V, F)$ with $E \in \Lambda$ -lat.

LEMMA 1. If U runs through the submodules of V, there is a natural partition of sets:

$$\operatorname{Ext}_{\Lambda}(V,F) = \prod_{U \subseteq V} \operatorname{Ext}_{\Lambda}^{\operatorname{lat}}(V/U,F).$$

Proof. For any $\varepsilon : F \hookrightarrow E \twoheadrightarrow V$ in $\operatorname{Ext}_A(V, F)$, the *R*-torsion part $\operatorname{T}(E)$ is mapped bijectively onto a submodule *U* of *V* which yields an exact sequence $\varepsilon_0 : F \hookrightarrow E_0 \twoheadrightarrow V/U$ with $E_0 = E/\operatorname{T}(E)$. The diagram

shows that ε and ε_0 determine each other since PB is a pullback square.

As a consequence, we find that (C') is self-dual:

$$\operatorname{Ext}_{\Lambda}(I/P, I) = 0 \iff \operatorname{Hom}_{\Lambda}(I^*, P^*/I^*) = 0.$$

In fact, by the lemma, $\operatorname{Ext}_{\Lambda}(I/P, I) = 0$ says that any overlattice E of I with E/I isomorphic to a factor module of I/P must coincide with I. Therefore, we get the implications

(13)
$$(C'') \Rightarrow (C') \Rightarrow (C).$$

As an immediate consequence of (1), we obtain

(14) (C)
$$\Leftrightarrow \operatorname{Hom}_{\Lambda}(I, I) = \operatorname{Hom}_{\Lambda}(P, I) = \operatorname{Hom}_{\Lambda}(P, P).$$

Next we shall derive an equivalent formulation of (C''). Firstly, we have

PROPOSITION 3. A simple Λ -module is annihilated by Λ_{-} if and only if it occurs as a composition factor in I/P.

Proof. By the definition of Λ_{-} we have $\Lambda_{-}I \subseteq P$. Conversely, [19], Lemma 4, implies that B is finitely cogenerated by I/P. Hence, the simple B-modules occur as composition factors in I/P.

The proposition yields an alternative formulation of (C''):

(15)
$$(\mathbf{C}'') \Leftrightarrow (\Lambda_- P = P \text{ and } I^* \Lambda_- = I^*).$$

Here, the condition $I^* \Lambda_- = I^*$ can be replaced by virtue of the equivalence

(16)
$$I^* \Lambda_- = I^* \Leftrightarrow \operatorname{Hom}_{\Lambda}(\Lambda_-, I) = I,$$

where $\operatorname{Hom}_{\Lambda}(\Lambda_{-}, I)$ is identified with $\{x \in KI \mid \Lambda_{-}x \subseteq I\}$.

Next we turn our attention to the lifting condition (L). Define

(17)
$$\mathfrak{p} := \operatorname{Rad} R, \quad \mathfrak{k} := R/\mathfrak{p}.$$

Then [19], Proposition 9, implies that B is a finite-dimensional \mathfrak{k} -algebra. Whenever (C) holds, let us consider two full subcategories of B-mod:

(18)
$$\mathfrak{B}^+ := \{ H^+/H \mid H \in \mathfrak{H}_u \}, \quad \mathfrak{B}^- := \{ H/H_- \mid H \in \mathfrak{H}_u \}.$$

LEMMA 2. If (L) is satisfied, and $H \in \mathfrak{H}_u$ is indecomposable, then H^+ and H^- are indecomposable.

Proof. Suppose $H^+ = I_1 \oplus I_2$ with I_1 indecomposable, and let $q: H^+ \twoheadrightarrow I_1$ be the natural projection. If $P_1 := (I_1)_-$ and $H_1 := q(H) \supseteq P_1$, then (L) implies that the natural epimorphism $r: H_1 \twoheadrightarrow H_1/P_1$ can be lifted along the epimorphism $r \circ q|_H: H \to H_1 \twoheadrightarrow H_1/P_1$, i.e. there is an $s: H_1 \to H$ with $rq \circ s = r$. Hence, $1 - qs \in \operatorname{End}_A(H_1)$ factors through $P_1 \hookrightarrow H_1$. Now if $H_1 = P_1$, then P_1 is a direct summand of H, whence $H = P_1$ and $H^+ = I_1$ is indecomposable. Otherwise, qs is an isomorphism, i.e. H_1 is a direct summand of H and thus $H = H_1$.

For a module $M \in B$ -mod, let Gen(M) be the class of B-modules which are finitely generated by M, i.e. are epimorphic images of finite direct sums M^s of M. Similarly, Cog(M) denotes the class of B-modules finitely cogenerated by M, i.e. submodules of M^s , $s \in \mathbb{N}$. If (C) holds, then

(19)
$$\mathfrak{B}^+ = \operatorname{Gen}(I/P), \quad \mathfrak{B}^- = \operatorname{Cog}(I/P).$$

PROPOSITION 4. If (L) is valid, then the functors $Q^+ : \mathfrak{H}_u \to \mathfrak{B}^+$ and $Q^- : \mathfrak{H}_u \to \mathfrak{B}^-$ with $Q^+(H) = H^+/H$ and $Q^-(H) = H/H_-$ yield equiva-

lences of categories:

 $\mathfrak{H}_u/[I] \xrightarrow{\sim} \mathfrak{B}^+, \quad \mathfrak{H}_u/[P] \xrightarrow{\sim} \mathfrak{B}^-.$

Proof. A morphism $f : H \to L$ in \mathcal{H}_u factors through some I^s if and only if f extends to H^+ . But this is tantamount to $Q^+(f) = 0$. Thus Q^+ is faithful modulo [I]. It is also full by virtue of (L), and dense by (18). Hence, Q^+ induces an equivalence. The remaining assertion follows by duality.

As an immediate consequence, we get

COROLLARY. If (L) is valid, and $H \in \mathfrak{H}_u$ has no direct summand in $\operatorname{add}\{I\}$ (resp. $\operatorname{add}\{P\}$), then H is indecomposable if and only if H^+/H (resp. H/H_-) is indecomposable.

PROPOSITION 5. If (L) is satisfied, and $H \in \mathcal{H}_u$ is indecomposable, then

$$H/H_{-} \in \mathfrak{B}^{+} \Leftrightarrow H^{+}/H \in \mathfrak{B}^{-} \Leftrightarrow H \in \mathrm{add}\{P \oplus I\}.$$

Proof. $H \in \operatorname{add}\{P \oplus I\}$ says that $H = H^+$ or $H = H_-$. If $H/H_- \in \mathfrak{B}^+$ and $H \neq H_-$, then we have an isomorphism $h : H/H_- \xrightarrow{\sim} L^+/L$ with $L \in \mathcal{H}_u$, and by the above corollary, we may assume L to be indecomposable. Thus by the symmetry of this assumption, it remains to prove that $H = H^+$ and $L = L_-$. Now (L) implies that h lifts to an $f : H \to L^+$ with $f(H_-) \subseteq L$. Then f extends to H^+ , whence H/H_- is a direct summand of H^+/H_- . By Lemma 2 we infer that H^+ , hence also H^+/H_- , is indecomposable. Consequently, $H = H^+$. Similarly, h factors through L^+/L_- , which yields $L = L_-$.

In particular, (L) implies

(20)
$$\mathfrak{B}^+ \cap \mathfrak{B}^- = \operatorname{add}\{I/P\}$$

Our next result holds without the assumption (L). Let *B*-**proj** (resp. *B*-**inj**) denote the full subcategory of projective (resp. injective) modules in *B*-**mod**.

PROPOSITION 6. If (C) is valid, then every module $M \in B$ -mod is of the form M = H/L with $P^s \subseteq L \subseteq H \subseteq I^s$ for some $s \in \mathbb{N}$. Moreover, B-proj $\subseteq \mathfrak{B}^-$ and B-inj $\subseteq \mathfrak{B}^+$.

Proof. By [19], Lemma 4, every finitely generated free *B*-module is isomorphic to some H/P^s with $P^s \subseteq H \subseteq I^s$. Hence *M* is of the desired form. If *M* is projective, then *M* is a direct summand of some $B^t \cong H/P^s \in \mathfrak{B}^-$, and if M = H/L is injective, then $H/L \hookrightarrow L^+/L$ splits, whence $M \in \mathfrak{B}^+$.

Concluding the analysis of (L), we show

(21)
$$(E) \Rightarrow (L).$$

W. RUMP

In fact, if we put $L := \operatorname{Ker} q'$ in the diagram of (L), then $L \in \mathcal{H}_u$, and the exact sequence

$$\operatorname{Hom}_{\Lambda}(H,L) \hookrightarrow \operatorname{Hom}_{\Lambda}(H,H') \xrightarrow{q'_{*}} \operatorname{Hom}_{\Lambda}(H,M') \to \operatorname{Ext}_{\Lambda}(H,L)$$

yields (21).

Now let us focus our attention upon the heredity condition (H). Since ${}_{B}B \in \mathfrak{B}^{-}$, we have

(22) (H)
$$\Leftrightarrow$$
 ((C) & $\mathfrak{B}^+ = B\text{-inj} \& \mathfrak{B}^- = B\text{-proj}).$

Moreover, the following characterization of (H) is valid. Recall ([19], $\S1$) that a *B*-module *M* is called a *Zavadskiĭ module* if each submodule is *M*-projective, and each factor module *M*-injective.

PROPOSITION 7. (H) is satisfied if and only if (C) holds and I/P is a Zavadskii module.

Proof. Suppose (H). Then every submodule of I/P is projective, and every factor module of I/P is injective, whence I/P is a Zavadskiĭ module. Conversely, suppose (C) holds and I/P is a Zavadskiĭ module. Then Proposition 6 (with [1], 16.12.f) implies that a module $M \in B$ -mod is projective (resp. injective) if and only if M is I/P-projective (resp. I/P-injective). By [19], Proposition 2, $(I/P)^s$ is a Zavadskiĭ module for any $s \in \mathbb{N}$. Hence, every submodule of $_BB$ is projective, i.e. B is left hereditary. Moreover, I/P is bijective, whence (H). ■

Now we are able to prove

Theorem 2. (Z) \Leftrightarrow ((H) & (R)) \Leftrightarrow (L).

Proof. (Z) \Rightarrow ((H) & (R)). By (C), the homomorphism h in condition (Z) induces an endomorphism of I/P, whence I/P is a Zavadskiĭ module. By Proposition 7, this implies (H). In order to verify (R), suppose $\overline{f} \in \operatorname{End}_A(I/P)$. Then there are Λ -lattices H, L between I and P with $\overline{f}: I/P \twoheadrightarrow I/L \xrightarrow{\sim} H/P \hookrightarrow I/P$, and (Z) yields a homomorphism $f: I \to H$ with $f(L) \subseteq P$ which induces the isomorphism $I/L \xrightarrow{\sim} H/P$. By (C), the endomorphism \overline{f} is also induced by f.

 $((H) \& (R)) \Rightarrow (L)$. Under the hypothesis (H) we shall reduce (L) to (R). Consider the diagram for (L) and replace H' by L. The conditions $q(H_{-}) = 0$ and $q'(L_{-}) = 0$ imply that q and q' factor through the natural epimorphisms $H \twoheadrightarrow H/H_{-}$ and $L \twoheadrightarrow L/L_{-}$. By (22), $H/H_{-} \in \mathfrak{B}^{-}$ is a projective *B*-module. Hence, f lifts to a map $g : H/H_{-} \to L/L_{-}$, and it remains to prove that the diagram

$$\begin{array}{c} H - - - \rightarrow L \\ \downarrow & \downarrow \\ H/H_{-} \xrightarrow{g} L/L_{-} \end{array}$$

can be completed. Considering the pullback

$$\begin{array}{c}
L & \longrightarrow L^+ \\
\downarrow & \downarrow \\
L/L_- & \longrightarrow L^+/L_-
\end{array}$$

we may assume without loss of generality that $L = L^+$. But then L/L_- is injective, whence g factors through $H/H_- \hookrightarrow H^+/H_-$. Therefore, it suffices to complete a diagram

with $I_1, I_2 \in \text{add}\{I\}$ and $P_i = (I_i)_-$ for $i \in \{1, 2\}$. Then I_1, I_2 may be assumed to be indecomposable, and thus (R) yields the desired lifting.

The remaining implication $(L) \Rightarrow (Z)$ is trivial.

COROLLARY. $u: P \hookrightarrow I$ is pre-hereditary if and only if (R) holds, and I/P is a Zavadskiĭ module.

Let us investigate which modifications of $u : P \hookrightarrow I$ preserve the property (Z). Firstly, we have:

PROPOSITION 8. Property (Z) remains valid if u is replaced by a finite direct sum $u^s : P^s \hookrightarrow I^s$. If $u_1 : P_1 \hookrightarrow I_1$ and $u_2 : P_2 \hookrightarrow I_2$ satisfy (Z), and the modules I_1/P_1 and I_2/P_2 have no composition factor in common, then $u_1 \oplus u_2 : P_1 \oplus P_2 \hookrightarrow I_1 \oplus I_2$ is pre-hereditary if it satisfies (C).

Proof. Clearly, the restricted lifting property (R) carries over to u^s and $u_1 \oplus u_2$ under the given hypothesis, and (C) carries over to u^s . By [19], Theorem 1, I^s/P^s and $I_1 \oplus I_2/P_1 \oplus P_2$ are Zavadskiĭ modules, whence the above corollary gives the desired result.

If (C) holds, then by (14), any decomposition of P or I gives rise to a decomposition of $u: P \hookrightarrow I$, say,

(23)
$$u = u_1 \oplus \ldots \oplus u_n, \quad u_i : P_i \hookrightarrow I_i$$

The trace and cotrace of a Λ -lattice E are then given by

(24)
$$\operatorname{trc}_{u} E = \sum_{i=1}^{n} \operatorname{trc}_{u_{i}} E, \quad \operatorname{ctr}_{u} E = \bigcap_{i=1}^{n} \operatorname{ctr}_{u_{i}} E,$$

and similarly, the *u*-differentiation ∂_u is calculated by means of the ∂_{u_i} . If two different summands u_i and u_j in (23) are equivalent, i.e. if there is an isomorphism $f: I_i \xrightarrow{\sim} I_j$ with $f(P_i) = P_j$, then ∂_u does not change if the direct summand u_j in (23) is cancelled. On the other hand, if *u* is an isomorphism, then $E^+ = E_- = E$. Such monomorphisms will be called *trivial*. Clearly, ∂_u also does not change if a trivial direct summand of *u* is cancelled. Therefore, we shall say that *u* is *reduced* if there are neither multiple nor trivial summands in a decomposition (23). Thus if (Z) is satisfied for a reduced monomorphism (23), then each I_i/P_i is an indecomposable Zavadskiĭ module, and the composition factors of I/P are pairwise non-isomorphic. Hence each submodule of I/P is of the form $M_1 \oplus \ldots \oplus M_n$ with submodules M_i of I_i/P_i . The following result is easily verified:

PROPOSITION 9. If $u: P \hookrightarrow I$ is reduced pre-hereditary, then each $u': P' \hookrightarrow I'$ with Λ -lattices P', I', and $P \subseteq P' \subseteq I' \subseteq I$, is again pre-hereditary.

By [19], Proposition 5, we have

PROPOSITION 10. If (Z) is satisfied, then $B = \Lambda/\Lambda_{-}$ is Morita equivalent to a product of triangular matrix algebras over finite-dimensional division algebras over \mathfrak{k} .

The indecomposable *B*-modules are thus of the form H_1/H_2 with indecomposable $H_1, H_2 \in \mathcal{H}_u$ and $H_1 \subseteq H_2 \subseteq H_1^+$. This also follows by Proposition 6 and the structure of Zavadskiĭ modules ([19], §1).

3. The projectivity conditions. In the known versions [28, 26, 21, 19] of Zavadskii's algorithm, if considered as special cases of Theorem 1, the projectivity condition

(P) P is projective, I is injective

is satisfied. We shall demonstrate in this section how the relationship between the various conditions on $u: P \hookrightarrow I$ is simplified in the presence of (P).

Firstly, the implications (13) are turned into equivalences:

(25)
$$(P) \Rightarrow ((C') \Leftrightarrow (C)) \Leftrightarrow (C)).$$

Namely, if I/P and P/Rad P had a common composition factor, (P) would yield a homomorphism $P \to I$ with image not in P.

Secondly, we have

(26)
$$(P) \Rightarrow ((L) \Leftrightarrow (E)).$$

Indeed, suppose (P) and (L) are satisfied, and $H, L \in \mathcal{H}_u$. Then $L \hookrightarrow L^+ \xrightarrow{q} L^+/L$ induces an exact sequence

 $\operatorname{Hom}_{\Lambda}(H,L^{+}) \xrightarrow{q_{*}} \operatorname{Hom}_{\Lambda}(H,L^{+}/L) \to \operatorname{Ext}_{\Lambda}(H,L) \to \operatorname{Ext}_{\Lambda}(H,L^{+}),$

where $\operatorname{Ext}_{\Lambda}(H, L^+) = 0$ since L^+ is injective; moreover, for each homomorphism $H \to L^+/L$, the composition $g: H_- \hookrightarrow H \to L^+/L$ factors through $L^+ \to L^+/L$ by the projectivity of H_- . Hence g = 0, and we infer that q_* is surjective by virtue of (L). In conjunction with (21), the equivalence (26) follows.

Thirdly, let us focus our attention upon the minimality condition

(M)
$$I = \Lambda^+ P, \quad P = \operatorname{Hom}_{\Lambda}(\Lambda^-, I).$$

PROPOSITION 11. Let (C) be satisfied. Then (M) is equivalent to each of the following properties:

(a)
$$E^+ = \Lambda^+ E$$
 and $E_- = \operatorname{Hom}_{\Lambda}(\Lambda^-, E)$ for every Λ -lattice E .

(b) $(\Lambda^+)_+ = \Lambda^+ \text{ and } (\Lambda^-)_- = \Lambda^-.$

Proof. (M) \Rightarrow (a). For any morphism $f : P \to E$ in Λ -lat, we have $f(I) = f(\Lambda^+ P) \subseteq \Lambda^+ E \subseteq E^+$. Hence $E^+ = \Lambda^+ E$, i.e. E^+ is the smallest Λ^+ -overlattice of E. Therefore, $E_- = \operatorname{Hom}_{\Lambda}(\Lambda^-, E)$ follows by duality.

(a) \Rightarrow (b) \Rightarrow (M). The equality $(\Lambda^{-})_{-} = \Lambda^{-}$ states that $\operatorname{Hom}_{\Lambda}(\Lambda^{-}, I)$ coincides with $\operatorname{Hom}_{\Lambda}(\Lambda^{-}, P) = P$, that is, the second assertion of (a) with E = I. By duality, the first assertion of (a) implies $(\Lambda^{+})_{+} = \Lambda^{+}$. The latter equation is equivalent to $I = \Lambda^{+}P$.

In particular, the proposition implies that if (C) and (M) are satisfied, then $\partial_u \Lambda$ coincides with the simplified *u*-derivative $\delta_u \Lambda$ defined in (11), and

(27)
$$E^{++} = E^+, \quad E_{--} = E_-$$

for each $E \in \Lambda$ -lat. Clearly, this also follows by (C'').

If in the definition (1) of E^+ , the morphisms $P \to E$ are restricted to those which factor through a free Λ -lattice, then $\Lambda^+ E$ is obtained instead of E^+ . Similarly, if $E \in \Lambda^-$ -lat, and we restrict ourselves to homomorphisms $P \to E$ in $[\Lambda^-]$, we get $\Lambda^{-+}E$ instead of E^+ . Therefore, the implications

(28)
$$(P) \Rightarrow (M), \quad (P^{\circ}) \Rightarrow (M^{\circ})$$

hold in general. Under the hypothesis of Theorem 1, the converse is also true:

PROPOSITION 12. If $u : P \hookrightarrow I$ is reduced pre-hereditary, then the equivalences (P) \Leftrightarrow (M) and (P°) \Leftrightarrow (M°) are valid.

Proof. (M) \Rightarrow (P). By duality it suffices to prove that $I = \Lambda^+ P$ implies the projectivity of P. Let P_1 be any indecomposable direct summand of P. Then $I = \Lambda^+ P$ implies $\Lambda^+ P_1 = P_1^+$. Therefore, an epimorphism $g: \Lambda^n \twoheadrightarrow P_1$ maps $(\Lambda^+)^n$ onto P_1^+ . Since by assumption $P_1^+ \neq P_1$, there exists a direct summand P_2 of P together with a homomorphism $f: P_2 \to \Lambda^n$ such that $gf(P_2^+) \not\subseteq P_1$. By [19], Proposition 9, we conclude that $gf: P_2^+ \to P_1^+$ is an W. RUMP

isomorphism. Hence $gf: P_2 \to \Lambda^n \to P_1$ is an isomorphism, and thus P_1 is projective. Analogously, $(M^\circ) \Rightarrow (P^\circ)$ follows.

REMARK. By the above implications (25), (26), we obtain [19], Theorem 2, as a special case of Theorem 1.

4. Proof of Theorem 1. The fundamental condition (C) already suffices to prove that the u-differentiation (8) induces a faithful functor of quotient categories:

PROPOSITION 13. Let (C) be satisfied. Then ∂_u induces a faithful functor $\widetilde{\partial}_u$.

Proof. Clearly, the ideal $[\mathcal{H}_u]$ is mapped into $[\binom{I}{P}]$. Hence $\widetilde{\partial}_u$ is well defined. For any $E \in \Lambda$ -lat we have

$$\operatorname{Hom}_{A'}\left(\binom{E^+}{E_-}, \binom{I}{P}\right) = \operatorname{Hom}_A(E, I),$$

$$\operatorname{Hom}_{A'}\left(\binom{I}{P}, \binom{E^+}{E_-}\right) = \operatorname{Hom}_A(P, E).$$

Now let $f: E \to F$ be a morphism in Λ -lat such that $\partial_u f$ has a factorization

$$\partial_u f : \begin{pmatrix} E^+ \\ E_- \end{pmatrix} \xrightarrow{g} \begin{pmatrix} I^s \\ P^s \end{pmatrix} \xrightarrow{h} \begin{pmatrix} F^+ \\ F_- \end{pmatrix}.$$

Then $f = h \circ g$ with $g : E \to I^s$ and $h : P^s \to F$. Hence, f factors through $g(E) + P^s \in \mathcal{H}_u$.

For the proof of Theorem 1 we need a criterion which decides for a Λ' -lattice in Λ' -latti

PROPOSITION 14. Let $u: P \hookrightarrow I$ be reduced pre-hereditary. Then $\binom{F}{G} \in \Lambda'$ -lat^s has a direct summand in add $\left\{\binom{I}{P}\right\}$ if and only if $G^+ \not\subseteq F_-$.

Proof. This follows by the proof of [19], Proposition 12.

LEMMA 3. If (C) is satisfied, then for each Λ -lattice E,

 $\Lambda^{+-}E_{-} \subseteq \Lambda^{-+}E, \quad \operatorname{Hom}_{\Lambda}(\Lambda^{+-}, E) \subseteq \operatorname{Hom}_{\Lambda}(\Lambda^{-+}, E^{+}).$

Proof. The first inclusion is equivalent to $(\Lambda^{-+}E)^*\Lambda^{+-} \subseteq (E_-)^*$. Now $(\Lambda^{-+}E)^*$ is a right Λ^+ -lattice. Hence, every homomorphism $\Lambda^+ \to (\Lambda^{-+}E)^*$ of right Λ^+ -lattices maps Λ^{+-} into $(\Lambda^{-+}E)^{*-}$, i.e. $(\Lambda^{-+}E)^*\Lambda^{+-} \subseteq (\Lambda^{-+}E)^{*-} \subseteq E^{*-} = (E_-)^*$. The second inclusion is dual to the first.

Proof of Theorem 1. An obvious modification of the proof of [19], Theorem 2, using Proposition 14 above, shows that $\tilde{\partial}_u$ is full and dense, hence an equivalence by virtue of Proposition 13.

If (M°) is satisfied, then each homomorphism $P \to G \in \Lambda^{-}$ -lat carries $I = \Lambda^{-+}P$ into $\Lambda^{-+}G$. Hence $G^{+} \subseteq \Lambda^{-+}G$, and dually, $\operatorname{Hom}_{\Lambda}(\Lambda^{+-}, F) \subseteq$

 F_{-} for every Λ^{+} -lattice F. Hence Λ' -lat^s coincides with Λ' -lat. Conversely, if Λ' -lat^s coincides with Λ -lat, then Lemma 3 implies that $\binom{\Lambda^{-+}P}{P}$ is a Λ' -lattice, and thus $I = P^{+} \subseteq \Lambda^{-+}P$. By duality, we obtain (M°).

Let us add some remarks on the subcategory Λ' -lat^s of Λ' -lat. If we assume that (C) is valid, there are two monomorphisms in Λ' -lat which are naturally associated with u:

(29)
$$u^+ : \begin{pmatrix} I \\ P \end{pmatrix} \hookrightarrow \begin{pmatrix} I \\ \operatorname{Hom}_{\Lambda}(\Lambda^{+-}, I) \end{pmatrix}, \quad u^- : \begin{pmatrix} \Lambda^{-+}P \\ P \end{pmatrix} \hookrightarrow \begin{pmatrix} I \\ P \end{pmatrix}.$$

Then the inclusion

holds for each Λ' -lattice E', and for $E' = {F \choose G}$ we have

$$(31) F \supseteq G^+ \Leftrightarrow \operatorname{trc}_{u^-} E' \subseteq E', G \subseteq F_- \Leftrightarrow \operatorname{ctr}_{u^+} E' \supseteq E'.$$

Hence there is a functor

(32)
$$\sigma_u: \Lambda' \text{-} \mathbf{lat} \to \Lambda' \text{-} \mathbf{lat}^s$$

given by

(33)
$$\sigma_u E' := (E' + \operatorname{trc}_{u^-} E') \cap \operatorname{ctr}_{u^+} E' = (E' \cap \operatorname{ctr}_{u^+} E') + \operatorname{trc}_{u^-} E'.$$

Explicitly, we have

(34)
$$\sigma_u \begin{pmatrix} F \\ G \end{pmatrix} = \begin{pmatrix} F + G^+ \\ G \cap F_- \end{pmatrix},$$

and therefore, σ_u operates identically on the objects of Λ' -lat^s. This gives an intrinsic characterization of Λ' -lat^s:

(35)
$$E' \in \Lambda' \text{-}\mathbf{lat}^s \Leftrightarrow \sigma_u E' \cong E'.$$

PROPOSITION 15. If (C) is satisfied, then the functor (32) induces a faithful dense functor $\tilde{\sigma}_u : \Lambda' - \operatorname{lat}/[\mathcal{H}'_u] \to \Lambda' - \operatorname{lat}^s/[\binom{I}{P}]$, where

$$\mathcal{H}'_{u} := \operatorname{add} \left\{ \begin{pmatrix} H \\ L \end{pmatrix} \in \Lambda' \operatorname{-lat} \middle| H, L \in \mathcal{H}_{u}, \ H \subseteq L^{+} \right\}.$$

Proof. Clearly, σ_u maps $[\mathcal{H}'_u]$ into $[\binom{I}{P}]$, whence $\tilde{\sigma}_u$ is well defined. Conversely, suppose that a morphism $h : \binom{F}{G} \to \binom{F'}{G'}$ in Λ' -lat has the property that $\sigma_u h$ factors through $\binom{I^s}{P^s}$ for some $s \in \mathbb{N}$. Then h is a composition $g \circ f$ with $f \in \operatorname{Hom}_{\Lambda}(F, I^s)$ and $g \in \operatorname{Hom}_{\Lambda}(P^s, G')$. Hence, h factors through $\binom{H}{L} \in \mathcal{H}'_u$ with $H := g^{-1}(F') \cap I^s$ and $L := f(G) + P^s$. This proves that $\tilde{\sigma}_u$ is a faithful functor which is dense by virtue of (35).

In general, however, $\tilde{\sigma}_u$ is not full, and for that reason, there is no way to replace Λ' -lat^s/ $[\binom{I}{P}]$ in Theorem 1 by Λ' -lat/ $[\mathcal{H}'_u]$. In fact, there may be indecomposable Λ' -lattices neither in Λ' -lat^s nor in \mathcal{H}'_u (see Examples 3, 4 in §7).

W. RUMP

As in [19], Proposition 13, we usually can replace $\Lambda' = \partial_u \Lambda$ by a Morita equivalent *R*-order with less indecomposable projectives. Retaining assumption (C), let

(36) $\Lambda = Q \oplus Q_0$

be a decomposition of Λ -lattices such that $\operatorname{Hom}_{\Lambda}(Q', I/P) \neq 0$ for each indecomposable direct summand Q' of Q, and $\operatorname{Hom}_{\Lambda}(Q_0, I/P) = 0$. We define the *reduced u-derivative* of Λ by

(37)
$$\partial'_{u}\Lambda := \begin{pmatrix} \operatorname{Hom}_{\Lambda}(Q,Q^{+}) & \operatorname{Hom}_{\Lambda}(Q,\Lambda^{+-}+\Lambda^{-+}) \\ Q_{-} & \Lambda^{-} \end{pmatrix}.$$

PROPOSITION 16. If (C) is valid, then the reduced u-derivative $\partial'_u \Lambda$ is Morita equivalent to $\partial_u \Lambda$.

Proof. Since $(Q_0)_- = Q_0$, Lemma 3 implies $(\Lambda^{+-} + \Lambda^{-+})Q_0 = \Lambda^{-+}Q_0 = \Lambda^+Q_0$. Hence $\partial_u Q_0$ is a simultaneous direct summand of $\partial_u (\Lambda \Lambda)$ and $Q' := \begin{pmatrix} \Lambda^{+-} + \Lambda^{-+} \\ \Lambda^- \end{pmatrix}$, and $\partial_u Q \oplus Q'$ is a progenerator of $\partial_u \Lambda$. By Proposition 2, the decomposition $\Lambda_- = Q_- \oplus Q_0 = \Lambda_-Q \oplus \Lambda_-Q_0$ yields $Q_- = \Lambda_-Q \subseteq \Lambda_-Q^+ \subseteq Q_-$. Similarly, $Q^+ = \Lambda^+Q$, and thus

$$\operatorname{End}_{\partial_u \Lambda}(\partial_u Q) = \operatorname{Hom}_{\Lambda}(Q, Q^+),$$
$$\operatorname{Hom}_{\partial_u \Lambda}(\partial_u Q, Q') = \operatorname{Hom}_{\Lambda}(Q, \Lambda^{+-} + \Lambda^{-+}).$$

Consequently, the progenerator $\partial_u Q \oplus Q'$ leads to the Morita equivalent *R*-order (37).

5. Splitting over-orders. Recall that a generalized over-order Γ of Λ is given by a ring homomorphism $f: \Lambda \to \Gamma$ with R-torsion cokernel. Equivalently, Γ is given by its inverse image $\Omega = f^{-1}(\Gamma)$ in A, which is an overring of Λ , i.e. an R-subalgebra Ω of A with $\Omega \supset \Lambda$. If Ω is given, then $\Gamma \cong \Omega/\Omega_{\infty}$, where $\Omega_{\infty} := \{a \in A \mid Ka \subseteq \Omega\} \triangleleft A$. In this way, we have a one-to-one correspondence between generalized over-orders Γ and overrings Ω of Λ . For a Λ -lattice E, define $\Gamma E := \Gamma \odot_{\Lambda} E$, where " \odot " denotes the tensor product modulo R-torsion. Hence ΓE can be identified with the set of finite sums $\sum a_i x_i$ in $K\Gamma \otimes_A KE$ with $a_i \in \Gamma$, $x_i \in E$. The same is true for right Λ -lattices. In particular, if Λ_1 and Λ_2 are generalized over-orders of Λ , then $\Lambda_1 \Lambda_2$ and $\Lambda_2 \Lambda_1$ are full R-lattices in $K\Lambda_1 \otimes_A K\Lambda_2 = K\Lambda_2 \otimes_A K\Lambda_1$, the largest common factor algebra of $K\Lambda_1$ and $K\Lambda_2$. Moreover, the intersection of the overrings belonging to Λ_1 and Λ_2 corresponds to a generalized over-order $\Lambda_1 \cap \Lambda_2$ of Λ which we also call the *intersection* of Λ_1 and Λ_2 (cf. [3], §1).

Let us define a *splitting* of Λ as a pair of generalized over-orders Λ_1 , Λ_2 such that $\Lambda_1 \Lambda_2 = \Lambda_2 \Lambda_1$ is an order, and each indecomposable Λ -lattice is a Λ_i -lattice for some $i \in \{1, 2\}$. (In general, of course, $\Lambda_1 \Lambda_2$ and $\Lambda_2 \Lambda_1$ need not be equal!) In particular, the indecomposable projectives can be arranged in two classes, which gives rise to a decomposition

(38) $\Lambda = P_1 \oplus P_2$

with $P_i \in \Lambda_i$ -lat. Therefore, $\Lambda_1 = P_1 \oplus \Lambda_1 P_2$ and $\Lambda_2 = \Lambda_2 P_1 \oplus P_2$, whence

(39)
$$\Lambda_1 = P_1 \oplus \Gamma P_2, \quad \Lambda_2 = \Gamma P_1 \oplus P_2$$

with $\Gamma := \Lambda_1 \Lambda_2$, and (40)

The splitting will be called *proper* if Λ does not coincide with Λ_1 or Λ_2 . If Γ is hereditary, we shall speak of a *hereditary* splitting.

 $\Lambda = \Lambda_1 \cap \Lambda_2$.

NOTE. For a hereditary *R*-order Γ , the algebra $K\Gamma$ is necessarily semisimple ([4], Theorem 1.7.1). In fact, for each indecomposable projective $K\Gamma$ module *S*, the full Γ -lattices in *S* form a chain. Hence *S* must be simple.

For example, if

$$\Lambda_{mn} := \begin{pmatrix} \Delta & \Pi^n \\ \Pi^m & \Delta \end{pmatrix} \subseteq \mathcal{M}_2(D)$$

with Δ the maximal order in a skew field D (finite-dimensional over K), and $\Pi := \text{Rad } \Delta$, then the pairs Λ_{30} , Λ_{03} and Λ_{31} , Λ_{03} are hereditary splittings of Λ_{33} .

PROPOSITION 17. Let Λ_1, Λ_2 be generalized over-orders of Λ , and Γ a generalized over-order of Λ_1 and Λ_2 . The bifunctor $(E_1, E_2) \mapsto E_1 \oplus E_2$ induces a faithful functor between additive categories

(41)
$$\Lambda_1 - \operatorname{lat}/[\Gamma] \times \Lambda_2 - \operatorname{lat}/[\Gamma] \to \Lambda - \operatorname{lat}/[\Gamma].$$

The following are equivalent:

- (a) Λ_1, Λ_2 form a splitting of Λ , with $\Gamma = \Lambda_1 \Lambda_2$.
- (b) The functor (41) is an equivalence.

Proof. It is easily seen that (41) is always faithful. The property that (41) is full signifies that for Λ_i -lattices E_i , $i \in \{1, 2\}$, each Λ -linear map between E_1 and E_2 (in either direction) lies in $[\Gamma]$. This means that each $E_1 \to E_2$ factors through ΓE_1 , and each $E_2 \to E_1$ factors through ΓE_2 . Hence $\Gamma = \Lambda_1 \Lambda_2 = \Lambda_2 \Lambda_1$ implies that (41) is full. Conversely, if (41) is full, we deduce that the natural maps $\Lambda_1 \to \Lambda_2 \Lambda_1$ and $\Lambda_2 \to \Lambda_1 \Lambda_2$ factor through Γ . Hence, $\Gamma = \Lambda_1 \Lambda_2 = \Lambda_2 \Lambda_1$. Finally, the density of (41) states that each indecomposable Λ -lattice is a Λ_i -lattice for some $i \in \{1, 2\}$.

By the preceding proposition, the usefulness of splitting pairs of generalized over-orders becomes apparent, especially in the case of a hereditary splitting. As an application of Theorem 1, we shall see below that a special class of pre-hereditary monomorphisms gives rise to a hereditary splitting of Λ . Here the projectivity condition (P) is not assumed, but another restriction on Λ has to be imposed which forces Λ to be subhereditary if the algebra $A = K\Lambda$ is simple. In that case, we obtain an equivalent version of D. Simson's splitting theorem ([24], Theorem 17.53) for vector space categories.

Let us first consider an important special class of splitting. For a decomposition (38) of Λ , and a hereditary generalized over-order Γ of Λ , define

(42)
$$\Omega_i := (\operatorname{End}_A P_i)^{\operatorname{op}}, \quad \Gamma_i := (\operatorname{End}_\Gamma \Gamma P_i)^{\operatorname{op}}$$

for $i \in \{1, 2\}$. Then there are functors

(43)
$$\Omega_1 - \mathbf{lat} \times \Omega_2 - \mathbf{lat} \stackrel{\mathcal{F}}{\underset{\mathfrak{G}}{\rightleftharpoons}} \Lambda - \mathbf{lat}$$

with

$$\begin{aligned} \mathfrak{F}(F_1, F_2) &:= (P_1 \odot_{\Omega_1} F_1) \oplus (P_2 \odot_{\Omega_2} F_2), \\ \mathfrak{G}E &:= (\operatorname{Hom}_A(P_1, E), \operatorname{Hom}_A(P_2, E)), \end{aligned}$$

and in accordance with (38), Λ and Γ can be written in the form

(44)
$$\Lambda = \begin{pmatrix} \Omega_1 & \Omega_{12} \\ \Omega_{21} & \Omega_2 \end{pmatrix}, \quad \Gamma = \begin{pmatrix} \Gamma_1 & \Gamma_{12} \\ \Gamma_{21} & \Gamma_2 \end{pmatrix},$$

where $\Omega_{ij} := \text{Hom}_{\Lambda}(P_i, P_j)$ and $\Gamma_{ij} := \text{Hom}_{\Gamma}(\Gamma P_i, \Gamma P_j)$. We shall call (38) a *complete splitting* of Λ into Ω_1 and Ω_2 if ΓP_1 and ΓP_2 have no indecomposable direct summand in common, and $\Omega_{12} = \Gamma_{12}, \Omega_{21} = \Gamma_{21}$, i.e. the natural maps $\Omega_{ij} \to \Gamma_{ij}$ are isomorphisms for $i \neq j$.

Define the multiplier of a Λ -lattice E as the generalized over-order O(E) of Λ corresponding to the overring $\{a \in A \mid aE \subseteq E\}$. Then for a complete splitting, the generalized over-orders $\Lambda_i := \Gamma \cap O(P_i)$ are

(45)
$$\Lambda_1 = \begin{pmatrix} \Omega_1 & \Gamma_{12} \\ \Gamma_{21} & \Gamma_2 \end{pmatrix}, \quad \Lambda_2 = \begin{pmatrix} \Gamma_1 & \Gamma_{12} \\ \Gamma_{21} & \Omega_2 \end{pmatrix},$$

and thus $\Lambda_1 \Lambda_2 = \Lambda_2 \Lambda_1 = \Gamma$. Moreover, they form a splitting by the following

THEOREM 3. Let Γ be a hereditary generalized over-order of Λ , and $\Lambda = P_1 \oplus P_2$ a decomposition of Λ -lattices such that ΓP_1 and ΓP_2 have no indecomposable direct summand in common. Then this gives a complete splitting if and only if the functors (43) induce a pair of mutually inverse equivalences

$$\Omega_1\operatorname{-lat}/[\Gamma_1] imes \Omega_2\operatorname{-lat}/[\Gamma_2] \stackrel{\mathfrak{G'}}{\underset{\mathfrak{G'}}{\rightleftharpoons}} \Lambda\operatorname{-lat}/[\Gamma].$$

In this case, (45) is a hereditary splitting of Λ .

Proof. Since Γ_1 and Γ_2 are hereditary, the functor \mathcal{G}' is always well defined, whereas \mathcal{F}' is defined if and only if $P_i\Gamma_i = P_i \odot_{\Omega_i} \Gamma_i$ are Γ -lattices for

 $i \in \{1, 2\}$, i.e. if the natural homomorphism $P_i \Gamma_i \to \Gamma \odot_A P_i \Gamma_i$ is bijective. Now $\Gamma \odot_A P_i \Gamma_i = (\Gamma P_i) \Gamma_i = \Gamma P_i$. Hence

(46) \mathfrak{F}' well defined $\Leftrightarrow (\Omega_{21}\Gamma_1 = \Gamma_{21}, \ \Omega_{12}\Gamma_2 = \Gamma_{12}).$

For an Ω_1 -lattice F_1 , there is an exact sequence

(47)
$$T(P_1 \otimes_{\Omega_1} F_1) \hookrightarrow P_1 \otimes_{\Omega_1} F_1 \twoheadrightarrow P_1 \odot_{\Omega_1} F_1$$

where "T" denotes the *R*-torsion part. Applying $\operatorname{Hom}_{\Lambda}(P_2, -)$ gives a short exact sequence

 $\operatorname{Hom}_{\Lambda}(P_2, \operatorname{T}(P_1 \otimes_{\Omega_1} F_1)) \hookrightarrow \operatorname{Hom}_{\Lambda}(P_2, P_1 \otimes_{\Omega_1} F_1) \twoheadrightarrow \operatorname{Hom}_{\Lambda}(P_2, P_1 \odot_{\Omega_1} F_1)$ where the left-hand term is an *R*-torsion module, and the right-hand term is torsion-free. Thus $\operatorname{Hom}_{\Lambda}(P_2, P_1 \odot_{\Omega_1} F_1) = \Omega_{21} \odot_{\Omega_1} F_1$. Similarly, if we apply $\operatorname{Hom}_{\Lambda}(P_1, -)$ to (47), we get $\operatorname{Hom}_{\Lambda}(P_1, P_1 \odot_{\Omega_1} F_1) = \Omega_1 \odot_{\Omega_1} F_1 = F_1$, whence by symmetry,

$$\mathfrak{GF}(F_1,F_2) = (F_1,F_2) \oplus (\Omega_{12} \odot_{\Omega_2} F_2, \Omega_{21} \odot_{\Omega_1} F_1).$$

Consequently,

(48)
$$\mathfrak{G}'\mathfrak{F}'\cong 1 \Leftrightarrow (\Gamma_1\Omega_{12}=\Omega_{12},\ \Gamma_2\Omega_{21}=\Omega_{21}).$$

For the rest of the proof, let us assume that \mathcal{F}' is well defined, and $\mathcal{G}'\mathcal{F}' \cong 1$. Then by (46) and (48) it remains to show that

(49)
$$\mathfrak{F}'\mathfrak{G}'\cong 1 \iff (\Omega_{12}=\Gamma_{12}, \ \Omega_{21}=\Gamma_{21})$$

Suppose first that $\mathcal{F}'\mathcal{G}' \cong 1$. Let Ω_1 be mapped onto the order Ω'_1 by the natural map $K\Omega_1 \twoheadrightarrow K\Omega_1/\operatorname{Rad} K\Omega_1$. Then Ω_{21} is a right Ω'_1 -lattice since $\Omega_{21} \in \Gamma_2$ -lat and $K\Gamma_2$ is semisimple. Hence, Λ has a generalized over-order

$$\Lambda' := \begin{pmatrix} \Omega_1' & \Gamma_{12} \\ \Omega_{21} & \Gamma_2 \end{pmatrix}$$

such that each Λ' -lattice $E = {E_1 \choose E_2}$ is a direct summand of $\mathfrak{FG}E \oplus \Gamma^s$ for some $s \in \mathbb{N}$. Thus if E_1 has no direct summand in common with Γ_1 , then E is a direct summand of ${E_1 \choose \Omega_{21} \odot_{\Omega'_1} E_1}$. The kernel of $\Lambda' \to \Gamma$ is of the form ${N_1 \ 0 \choose N_{21} \ 0}$, and by (46), we have $KN_{21} = K\Omega_{21}N_1$. Since $K\Omega'_1$ is semisimple, the ideal KN_1 is idempotent, and N_1 has no Γ_1 -lattice $\neq 0$ as a direct summand. Hence, $\Gamma_{12}N_{21} \subseteq K\Gamma_{12}\Omega_{21}N_1 \subseteq KN_1$ and $N_1\Gamma_{12} = 0$ implies $\Gamma_{12}N_{21} = 0$. Therefore, ${0 \choose N_{21}}$ is a Λ' -sublattice of ${N_1 \choose N_{21}}$, and by the above, ${N_1 \choose N_{21}}/{0 \choose N_{21}}$ must be a direct summand of ${N_1 \choose \Omega_{21}N_1}$. Consequently, $\Omega_{21}N_1 = 0$ and thus $N_{21} = 0$, i.e. $\Omega_{21} \subseteq \Gamma_{21}$. In order to prove $\Omega_{21} = \Gamma_{21}$, it now suffices to show $\Omega_{21}F_1 = \Gamma_{21}F_1$ for every Ω'_1/N_1 -lattice F_1 . Since ΓP_1 and ΓP_2 have no common direct summand, we have $\Gamma_{12}\Gamma_{21} \subseteq \operatorname{Rad}\Gamma_1$, and there exists an integer $i \in \mathbb{N}$ with $(\Gamma_{12}\Gamma_{21})^iF_1 \subseteq F_1$. We choose i minimal. By (46), we may assume that F_1 has no Γ_1 -lattice $\neq 0$ as a direct summand, and thus i > 0. Since $F'_1 := F_1 + (\Gamma_{12}\Gamma_{21})^{i-1}F_1$ satisfies $(\Gamma_{12}\Gamma_{21})^{i-1}F'_1 \subseteq F'_1$, assume $\Omega_{21}F'_1 = \Gamma_{21}F'_1$ by induction. Then $\Gamma_{12}\Gamma_{21}F_1 = \Gamma_{12}\Gamma_{21}F'_1 = \Gamma_{12}\Omega_{21}F'_1 \subseteq F_1$, and thus $E := \binom{F_1}{\Gamma_{21}F_1}$ is a Λ' -lattice. Hence, E is a direct summand of $\binom{F_1}{\Omega_{21}F_1}$, and our claim $\Omega_{21}F_1 = \Gamma_{21}F_1$ is proved. By symmetry, the implication " \Rightarrow " in (49) follows.

Conversely, suppose $\Omega_{12} = \Gamma_{12}$, $\Omega_{21} = \Gamma_{21}$, and let $E = {\binom{E_1}{E_2}}$ be a Λ -lattice. Then ΓE has a decomposition $\Gamma E = H_1 \oplus H_2$ with epimorphic images H_i of ΓP_i . Moreover, $\Re E = (P_1 \odot_{\Omega_1} E_1) \oplus (P_2 \odot_{\Omega_2} E_2)$, and we have an exact sequence

where c is defined by the natural homomorphisms $P_i \otimes_{\Omega_i} \operatorname{Hom}_{\Lambda}(P_i, E) \to E$, and J denotes the following ideal of Λ :

$$J := \begin{pmatrix} \Gamma_{12}\Gamma_{21} & \Gamma_{12} \\ \Gamma_{21} & \Gamma_{21}\Gamma_{12} \end{pmatrix} \lhd \begin{pmatrix} \Omega_1 & \Gamma_{12} \\ \Gamma_{21} & \Omega_2 \end{pmatrix} = \Lambda.$$

Clearly, the map $r: P_1 \odot_{\Omega_1} E_1 \to E \to \Gamma E \twoheadrightarrow H_2$ has its image in JH_2 . Hence, r yields a retraction of the embedding $JH_2 \hookrightarrow P_1 \odot_{\Omega_1} E_1$. Similarly, $JH_1 \hookrightarrow P_2 \odot_{\Omega_2} E_2$ has a retraction. Therefore, the exact sequence (50) splits. Thus $\mathcal{F}'\mathcal{G}' \cong 1$, and our proof of (49) is complete. Finally, we infer that (45) is a hereditary splitting of Λ .

There is a particular case of a complete splitting of *R*-orders which has some analogy with one-point extensions of algebras ([13], §2.5). Let Λ be an *R*-order in $A = A_0 \times A_1$ with A_0 simple, and *I* a tame irreducible (see §1) Λ -lattice with $S := KI \in A_0$ -mod, $\Delta := (\operatorname{End}_{\Lambda}I)^{\operatorname{op}}$, and $\Pi :=$ Rad Δ . Suppose $I\Pi I^* \subseteq \Lambda$, where $I^* = \operatorname{Hom}_R(I \otimes_{\Delta} \Delta, R) = \operatorname{Hom}_{\Delta}(I, \Delta^*)$ is identified with $\operatorname{Hom}_{\Delta}(I, \Delta)$. Then we call

(51)
$$\Lambda' := \begin{pmatrix} \Delta & I^* \\ I\Pi & \Lambda \end{pmatrix}$$

the trivial extension of Λ with respect to I. If $A_0 = M_n(D)$ with $D := (End_A S)^{op}$, then (51) is an order in $M_{n+1}(D) \times A_1$. Clearly, the columns in (51) yield a complete splitting with respect to any hereditary generalized over-order of the form

$$\Gamma' := \begin{pmatrix} \Delta & I^* \\ I\Pi & \Gamma \end{pmatrix},$$

where Γ is a hereditary generalized over-order of Λ such that I is a Γ -lattice. Therefore, Theorem 3 yields an equivalence

(52)
$$\Lambda\operatorname{-lat}/[\Gamma] \xrightarrow{\sim} \Lambda'\operatorname{-lat}/[\Gamma'].$$

Other instances of complete splittings are given in §7, Example 5.

For the remainder of this section, let P and I be Λ -lattices in a simple Λ module S. Assume that $\Delta := (\operatorname{End}_{\Lambda} I)^{\operatorname{op}} = (\operatorname{End}_{\Lambda} P)^{\operatorname{op}}$ is the maximal order in $D := (\operatorname{End}_A S)^{\operatorname{op}}$ with $\Pi := \operatorname{Rad} \Delta$. We call a pre-hereditary monomorphism $u : P \hookrightarrow I$ splitting if the inclusion $\operatorname{Hom}_{\Delta}(I, P\Pi) \hookrightarrow \operatorname{End}_{\Delta}(I)$ lifts along the natural ring homomorphism $\Lambda \to \operatorname{End}_{\Delta}(I)$ to a (Λ, Λ) -bimodule homomorphism $\operatorname{Hom}_{\Delta}(I, P\Pi) \to \Lambda$. Clearly, this implies that $A = A_0 \times A_1$ with $A_0 := \operatorname{End}_D(S)$. If, as above, I^* is identified with $\operatorname{Hom}_{\Delta}(I, \Delta)$, the map $\operatorname{Hom}_{\Delta}(I, P\Pi) \to \Lambda$ gives an inclusion

$$(53) P\Pi I^* \subseteq \Lambda.$$

Our splitting theorem will be a consequence of

PROPOSITION 18. Let $u : P \hookrightarrow I$ be splitting pre-hereditary. Then the maximal order Γ_0 in $M_2(A_0)$ with $\binom{I}{P}$ as indecomposable representation is a generalized over-order of $\partial_u \Lambda$ with Rad $\Gamma_0 \subseteq \partial_u \Lambda$.

NOTE. For $A = A_0$, the proposition implies that $\partial_u A$ is subhereditary:

(54)
$$\operatorname{Rad} \Gamma_0 \subseteq \partial_u \Lambda \subseteq \Gamma_0.$$

However, this is no longer true for $\delta_u \Lambda$ (see §7, Example 6).

Proof of Proposition 18. Explicitly, we have

$$\Gamma_0 = \begin{pmatrix} II^* & IP^* \\ PI^* & PP^* \end{pmatrix} \supseteq \operatorname{Rad} \Gamma_0 = \begin{pmatrix} I\Pi I^* & I\Pi P^* \\ P\Pi I^* & P\Pi P^* \end{pmatrix}.$$

By virtue of (53), the elements of ΠI^* can be regarded as homomorphisms $P \to \Lambda$. Therefore, $P_- = P$ is mapped into Λ_- , whence $P\Pi I^* \subseteq \Lambda_-$. Moreover, $I\Pi I^* \subseteq \Lambda^+$, and dually, $P\Pi P^* \subseteq \Lambda^-$. Hence, $I\Pi P^* \subseteq \Lambda^{-+}$ and thus Rad $\Gamma_0 \subseteq \partial_u \Lambda$. Finally, since $\binom{I}{P}$ is a $\partial_u \Lambda$ -lattice, the natural epimorphism $M_2(\Lambda) \twoheadrightarrow M_2(\Lambda_0)$ maps $\partial_u \Lambda$ into the maximal order Γ_0 .

Before we proceed further, let us analyse the splitting condition (53) in the case of a tiled order Λ . Define

(55)
$$\mathfrak{S}_{\Lambda} := \{ E \in \Lambda \text{-} \mathbf{lat} \mid KE = S \}.$$

PROPOSITION 19. Let $\Lambda = (\Pi^{e_{ij}})$ be a tiled order in $A = M_n(D)$, and $u : P \hookrightarrow I$ a pre-hereditary monomorphism between Λ -lattices $P, I \in \mathfrak{S}_{\Lambda}$. Then u is splitting if and only if $E \subseteq I$ or $E \supseteq P$ holds for each $E \in \mathfrak{S}_{\Lambda}$.

Proof. The splitting condition (53) is tantamount to $P\Pi I^*E \subseteq E$ for each $E \in \mathfrak{S}_A$. Furthermore, there is no restriction if E is subject to the condition $I^*E = \Delta$, i.e. $E \subseteq I$ and $E \not\subseteq I\Pi$. For these E, (53) reduces to $P\Pi \subseteq E$, which yields the desired result.

REMARK. For a tiled order Λ and a splitting pre-hereditary monomorphism $u: P \hookrightarrow I$, it can be shown that apart from indecomposables $\binom{H}{L}$ with $P \subseteq L \subseteq H \subseteq I$, each indecomposable $\partial_u \Lambda$ -lattice E' can be obtained by ∂_u , i.e. there exists an indecomposable Λ -lattice E with $\partial_u E = E' \oplus \binom{I}{P}^s$

for some $s \in \mathbb{N}$. This fact is no longer true if Λ is not tiled, as Example 7 in §7 will show.

Now we shall derive our general splitting theorem:

THEOREM 4. For an R-order Λ in $A = A_0 \times A_1 \times A_2$ with A_0 simple, let $u: P \hookrightarrow I$ be splitting pre-hereditary and H a tame irreducible Λ -lattice with $\Delta := (\operatorname{End}_{\Lambda}H)^{\operatorname{op}}$, $\Pi := \operatorname{Rad} \Delta$, and $H\Pi \subseteq P \subseteq I \subseteq H$. Assume that S := KH is the simple A_0 -module, and $\operatorname{Rad}(\operatorname{End}_{\Delta}H) \subseteq \Lambda$. Moreover, suppose $_{\Lambda}\Lambda$ has a decomposition $\Lambda = P_0 \oplus P_1 \oplus P_2$ with $P_i \subseteq A_0 + A_i$, and for $U_0 := I/P, U_1 := H/I$, and $U_2 := P/H\Pi$, suppose $\operatorname{Hom}_{\Lambda}(P_i, U_j) = 0$ whenever $i \neq j$. Under these assumptions, if $p_i : A \twoheadrightarrow A_0 \times A_i$ denotes the natural projection for $i \in \{1, 2\}$, then $\Lambda_1 := p_1(\Lambda) + \operatorname{Hom}_{\Delta}(H, P)$ and $\Lambda_2 := p_2(\Lambda) + \operatorname{Hom}_{\Delta}(I, H\Pi)$ constitute a hereditary splitting of Λ .

REMARK. If $A = A_0$, then $\operatorname{Rad}(\operatorname{End}_{\Delta}H) \subseteq \Lambda$ implies that Λ is subhereditary. In this case, the theorem can be interpreted as a statement on vector space categories, and then it coincides with D. Simson's splitting theorem ([24], §17.53). In fact, Simson [24] defines a splitting decomposition $\mathbb{K}_F = \mathbb{K}''_F + \mathbb{L}_F + \mathbb{K}'_F$ of a vector space category \mathbb{K}_F by three conditions (i)-(iii) related to the assumptions of Theorem 4 as follows: His first condition (i) that \mathbb{L}_F is of chain type corresponds to the property that $u: P \hookrightarrow I$ is pre-hereditary. The second one (ii) says that there are no morphisms from \mathbb{K}'_F to \mathbb{L}_F or \mathbb{K}''_F , and none from \mathbb{L}_F to \mathbb{K}''_F . This is equivalent to our disjointness assumption $\operatorname{Hom}_A(P_i, U_j) = 0$. Thirdly, Simson's dimension property (iii) is tantamount to our splitting condition (53).

Proof of Theorem 4. Let Ω be the hereditary order in A_0 with H, I, Pas indecomposables, and Ω_0 the hereditary suborder which has, in addition, all the Λ -lattices between I and P as indecomposables. The splitting condition (53) and the assumption $\operatorname{Rad}(\operatorname{End}_{\Delta} H) \subseteq \Lambda$ imply $\operatorname{Hom}_{\Delta}(H, P) \cdot$ $\operatorname{Hom}_{\Delta}(I, H\Pi) \subseteq \operatorname{Hom}_{\Delta}(I, P\Pi) \subseteq \Lambda$ and $\operatorname{Hom}_{\Delta}(I, H\Pi) \cdot \operatorname{Hom}_{\Delta}(H, P) \subseteq$ $\operatorname{Hom}_{\Delta}(H, H\Pi) \subseteq \Lambda$. Hence, if $p_0 : A \twoheadrightarrow A_0$ denotes the natural projection, then

$$\Lambda_1 \Lambda_2 = \Lambda_2 \Lambda_1 = p_0(\Lambda) + \operatorname{Hom}_{\Delta}(H, P) + \operatorname{Hom}_{\Delta}(I, H\Pi) \subseteq \Omega_0.$$

Now $\Omega P_1 = H^k$, $\Omega P_2 = P^l$, and $\Omega P_0 = I^m$ for some $k, l, m \in \mathbb{N}$. Then $\Lambda_2 P_1 = H^k$, $\Lambda_1 P_2 = P^l$, and $\Lambda_1 P_0 = P_0 + P^m \in \Omega_0$ -lat. Hence

(56)
$$\Lambda_1 \Lambda_2 = \Lambda_2 \Lambda_1 = \Omega_0.$$

If $P = H\Pi$, then $\Lambda_1 = p_1(\Lambda) = \Lambda$. Similarly, I = H implies $\Lambda_2 = \Lambda$. Therefore, we may exclude these trivial cases. Then $H^+ = H = H_-$, and the maximal order $\Theta := \operatorname{End}_{\Delta}(H)$ is a generalized over-order of Λ^+ and Λ^- . By Lemma 3, we infer $(\Lambda^{+-} + \Lambda^{-+})H \subseteq H$, and thus $M_2(\Theta)$ is a generalized over-order of $\partial_u \Lambda$. Moreover, $\operatorname{Rad} \Theta \subseteq \Lambda$ and $(\operatorname{Rad} \Theta)I \subseteq H\Pi \subseteq$ *P* implies $\operatorname{Rad} \Theta \subseteq \Lambda_{-}$ and thus $\operatorname{Rad} M_2(\Theta) \subseteq \partial_u \Lambda$. By Proposition 18, the maximal order Γ_0 in $M_2(A_0)$ with the indecomposable representation $\binom{I}{P}$ is a generalized over-order of $\partial_u \Lambda$ with $\operatorname{Rad} \Gamma_0 \subseteq \partial_u \Lambda$. Consequently, the inclusions $\binom{H\Pi}{H\Pi} \subseteq \binom{I}{P} \subseteq \binom{H}{H}$ imply that

$$\Gamma := \mathcal{M}_2(\Theta) \cap \Gamma_0$$

is a hereditary order in $M_2(A_0)$, and a generalized over-order of $\partial_u \Lambda$ with

(57)
$$\operatorname{Rad} \Gamma = \operatorname{Rad} M_2(\Theta) + \operatorname{Rad} \Gamma_0 \subseteq \partial_u \Lambda.$$

Now we have a decomposition of $\partial_u \Lambda$ -lattices

$$\partial_u \Lambda = \begin{pmatrix} P_0^+ \\ (P_0)_- \end{pmatrix} \oplus \begin{pmatrix} P_1^+ \\ P_1 \end{pmatrix} \oplus \begin{pmatrix} P_2^+ \\ P_2 \end{pmatrix} \oplus \begin{pmatrix} (\Lambda^{+-} + \Lambda^{-+})P_0 \\ \Lambda^{-}P_0 \end{pmatrix} \oplus \begin{pmatrix} P_1^+ \\ P_1 \end{pmatrix} \oplus \begin{pmatrix} P_2^+ \\ P_2 \end{pmatrix}$$
$$= Q_1 \oplus Q_2$$

with

$$Q_{1} := \begin{pmatrix} (\Lambda^{+-} + \Lambda^{-+})P_{0} \\ \Lambda^{-}P_{0} \end{pmatrix} \oplus \begin{pmatrix} P_{1}^{+} \\ P_{1} \end{pmatrix}^{2}, \quad Q_{2} := \begin{pmatrix} P_{0}^{+} \\ (P_{0})_{-} \end{pmatrix} \oplus \begin{pmatrix} P_{2}^{+} \\ P_{2} \end{pmatrix}^{2}$$

such that

$$\Gamma Q_1 = \begin{pmatrix} H \\ H \end{pmatrix}^{n_1}, \quad \Gamma Q_2 = \begin{pmatrix} I \\ P \end{pmatrix}^{n_2}$$

for suitable integers n_1, n_2 . In order to show by Theorem 3 that $\partial_u \Lambda = Q_1 \oplus Q_2$ is a complete splitting with respect to the hereditary order Γ , we have to verify for $\{i, j\} = \{1, 2\}$ that the natural homomorphism

(58)
$$\operatorname{Hom}_{\partial_u \Lambda}(Q_i, Q_j) \to \operatorname{Hom}_{\Gamma}(\Gamma Q_i, \Gamma Q_j)$$

is an isomorphism. Note that $\operatorname{Hom}_{\Gamma}(\Gamma Q_i, \Gamma Q_j) = \operatorname{Hom}_{\partial_u \Lambda}(Q_i, \Gamma Q_j)$. Then the injectivity of (58) follows since $Q_i \subseteq \operatorname{M}_2(A_0) \oplus \operatorname{M}_2(A_i)$; the surjectivity follows by (57) since each homomorphism $Q_i \to \Gamma Q_j$ has its image in $(\operatorname{Rad} \Gamma)Q_j \subseteq Q_j$. Hence Theorem 3 applies, and by (45), there is a pair of splitting generalized over-orders Λ'_1, Λ'_2 of $\partial_u \Lambda$. If $p'_i : \operatorname{M}_2(A) \twoheadrightarrow \operatorname{M}_2(A_0 \times A_i)$ denotes the natural projection for $i \in \{1, 2\}$, then

(59)
$$\Lambda'_i = p'_i(\partial_u \Lambda) + J_i$$

with

$$J_1 = \left\{ a \in \Gamma \mid a \begin{pmatrix} H \\ H \end{pmatrix} \subseteq \begin{pmatrix} I \\ P \end{pmatrix} \right\}, \quad J_2 = \left\{ a \in \Gamma \mid a \begin{pmatrix} I \\ P \end{pmatrix} \subseteq \begin{pmatrix} H \Pi \\ H \Pi \end{pmatrix} \right\}.$$

Now for each indecomposable Λ -lattice E, we have $\partial_u E = E' \oplus E''$ with E' indecomposable and $E'' \in \Gamma$ -lat. Therefore, our proof will be completed by the equivalence

$$\Lambda_i E = E \iff \Lambda'_i(\partial_u E) = \partial_u E$$

for $i \in \{1, 2\}$ and $E \in \Lambda$ -lat. Since $E \in p_i(\Lambda)$ -lat $\Leftrightarrow \partial_u E \in p'_i(\partial_u \Lambda)$ -lat, it remains to show that for each Λ -lattice E, the equivalences

(60)
$$PH^* \cdot E \subseteq E \Leftrightarrow J_1(\partial_u E) \subseteq \partial_u E, H\Pi I^* \cdot E \subseteq E \Leftrightarrow J_2(\partial_u E) \subseteq \partial_u E$$

are satisfied. Since $\Theta E = \Theta(E^+)$ and $H^* \in \Theta^{\text{op-lat}}$, the inclusion $PH^*E \subseteq E$ implies $PH^*E^+ \subseteq E$ and thus $PH^*E^+ = P_-H^*E^+ \subseteq E_-$. By duality, we also have $H\Pi I^*E \subseteq E \Leftrightarrow H\Pi I^*E^+ \subseteq E_-$. Therefore, (60) follows by the implication $PH^*E^+ \subseteq E_- \Rightarrow PH^*E^+ \subseteq E \Rightarrow IH^*E^+ \subseteq E^+$ and its dual $H\Pi I^*E^+ \subseteq E_- \Rightarrow H\Pi P^*E_- \subseteq E_-$.

6. An extended derivative. In [19], Proposition 14, we characterized hereditary monomorphisms $u: P \hookrightarrow I$ between tame irreducible Λ -lattices P, I. If the projectivity condition (P) is dropped, this gives a characterization of pre-hereditary u. In particular, we have $P \ncong I$ for $u: P \hookrightarrow I$ pre-hereditary. In the present section, we shall prove that the categorial equivalence in Theorem 1 extends to a case (Proposition 20 below) where the assumption $P \ncong I$ does not hold. The weak minimality condition (M°) is satisfied, and we get an equivalence $\tilde{\partial}_u : \Lambda - \operatorname{lat}/[\mathcal{H}_u] \xrightarrow{\sim} \partial_u \Lambda - \operatorname{lat}/[\binom{I}{P}]$, where the quotient category $\partial_u \Lambda - \operatorname{lat}/[\binom{I}{P}]$ coincides with a category Λ' -lat for some order Λ' in a factor algebra of $M_2(\Lambda)$ (see Examples 1 and 2 of §7). Moreover, \mathcal{H}_u consists of the Λ -lattices belonging to some rational component of Λ . There is a close relationship between the functors $\widetilde{\partial}_u$ in Theorem 1 and Proposition 20 on the one hand, and the two cases occurring in the proof of the rejection lemma ([19], Proposition 7) on the other hand.

PROPOSITION 20. Let Λ be an R-order in $A = A_0 \times A_1$ with A_0 simple such that the natural projection $A \twoheadrightarrow A_0$ maps Λ onto the hereditary order Λ_0 . Let S denote the simple A_0 -module, and Δ the unique maximal order in $D := (\text{End}_A S)^{\text{op}}$ with $\Pi := \text{Rad } \Delta$. For an indecomposable Λ_0 -lattice Iwhich is neither projective nor injective as a Λ -lattice, with $P := I\Pi$, suppose $\text{Hom}_{\Delta}(I, P) \subseteq \Lambda$. Then the u-differentiation (8) induces an equivalence

(61)
$$\widetilde{\partial}_u : \Lambda \operatorname{-lat} / [\Lambda_0] \xrightarrow{\sim} \begin{pmatrix} \Lambda_1 & \Lambda_1 \\ N_1 & \Lambda_1 \end{pmatrix} \operatorname{-lat}$$

where $\Lambda_1 := (\Lambda + A_0) \cap A_1$ and $N_1 := \Lambda \cap A_1$.

NOTE. Equivalently, the assumption of the theorem says that Λ is a subdirect product $\Lambda \subseteq \Lambda_0 \times \Lambda_1$ with Λ_0 hereditary and $K\Lambda_0$ simple, and that Λ_0 has a maximal over-order Θ such that $\operatorname{Rad} \Theta = \{a \in \Lambda \mid \Theta a \subseteq \Lambda\} = \{a \in \Lambda \mid a\Theta \subseteq \Lambda\}.$

Proof of Proposition 20. There is a natural epimorphism of R-orders

$$\Gamma := \begin{pmatrix} \Delta & I^* \\ P & \Lambda \end{pmatrix} \twoheadrightarrow \Gamma_0 := \begin{pmatrix} \Delta & I^* \\ P & \Lambda_0 \end{pmatrix}$$

,

where Γ is a trivial extension of Λ . Hence (52) gives an equivalence

$$\mathfrak{F}': \Lambda\operatorname{-lat}/[\Lambda_0] \xrightarrow{\sim} \Gamma\operatorname{-lat}/[\Gamma_0]$$

induced by the functor $\mathcal{F}: \Lambda$ -lat $\to \Gamma$ -lat with $\mathcal{F}(E) = \begin{pmatrix} I^* \odot_{A} E \\ E \end{pmatrix}$. By [19], Proposition 14, we have a pre-hereditary monomorphism $v: \begin{pmatrix} \Delta \\ P \end{pmatrix} \hookrightarrow \begin{pmatrix} \Delta \\ I \end{pmatrix}$ in Γ -lat with $\begin{pmatrix} \Delta \\ P \end{pmatrix}$ projective and $\begin{pmatrix} \Delta \\ I \end{pmatrix}$ injective. Since $\begin{pmatrix} I^* \\ \Lambda_0 \end{pmatrix} = \mathcal{F}(\Lambda_0)$, a Γ lattice $\begin{pmatrix} H \\ E \end{pmatrix}$ is of the form $\mathcal{F}(E)$ if and only if it does not have $\begin{pmatrix} \Delta \\ P \end{pmatrix}$ as a direct summand. For these Γ -lattices, $\operatorname{Hom}_{\Gamma}(\begin{pmatrix} H \\ E \end{pmatrix}, \begin{pmatrix} \Delta \\ I \end{pmatrix}) = \operatorname{Hom}_{\Lambda}(E, I)$, and therefore

$$\begin{pmatrix} H \\ E \end{pmatrix}_{-} = \begin{pmatrix} H \\ E_{-} \end{pmatrix}.$$

Dually, the same argument holds for $\binom{H}{E}^* = (H^* E^*)$, and thus

$$\begin{pmatrix} H \\ E \end{pmatrix}^+ = \begin{pmatrix} H \\ E^+ \end{pmatrix}$$

if $\binom{H}{E}$ does not have $\binom{\Delta}{I}$ as a direct summand. Since ${}_{\Lambda}I$ is neither projective nor injective, we obtain

$$\Gamma^{+} = \begin{pmatrix} \Delta & I^{*} \\ I & \Lambda^{+} \end{pmatrix} = \begin{pmatrix} \Delta & I^{*} \\ I & II^{*} \end{pmatrix} \times \Lambda_{1},$$

$$\Gamma^{-} = \begin{pmatrix} \Delta & P^{*} \\ P & \Lambda^{-} \end{pmatrix} = \begin{pmatrix} \Delta & P^{*} \\ P & PP^{*} \end{pmatrix} \times \Lambda_{1},$$

$$\Gamma_{-} = \begin{pmatrix} \Delta & I^{*} \\ P & \Lambda_{-} \end{pmatrix} = \begin{pmatrix} \Delta & I^{*} \\ P & PI^{*} \end{pmatrix} \times N_{1},$$

$$\Gamma^{+-} = \Gamma^{-+} = \begin{pmatrix} \Delta & P^{*} \\ I & IP^{*} \end{pmatrix} \times \Lambda_{1}.$$

Consequently, we have

$$\partial_v \Gamma = \Gamma'_0 \times \begin{pmatrix} \Lambda_1 & \Lambda_1 \\ N_1 & \Lambda_1 \end{pmatrix},$$

where Γ'_0 is the maximal order in $M_2(K\Gamma_0)$ with the indecomposable representation

$$\begin{pmatrix} \Delta \\ I \\ \Delta \\ P \end{pmatrix}.$$

Hence, Theorem 1 gives an equivalence

$$\widetilde{\partial}_v: \Gamma\operatorname{-lat}/[\Gamma_0] \xrightarrow{\sim} \begin{pmatrix} \Lambda_1 & \Lambda_1 \\ N_1 & \Lambda_1 \end{pmatrix} \operatorname{-lat}$$

and the composition $\widetilde{\partial}_v \circ \mathcal{F}'$ coincides with $\widetilde{\partial}_u$. In fact, the preceding calculation in particular yields

(62)
$$\partial_u \Lambda = \begin{pmatrix} II^* & IP^* \\ PI^* & PP^* \end{pmatrix} \times \begin{pmatrix} \Lambda_1 & \Lambda_1 \\ N_1 & \Lambda_1 \end{pmatrix},$$

where the left-hand factor is the maximal order with $\binom{I}{P}$ as indecomposable representation.

REMARKS. 1. If $\partial_u \Lambda$ is replaced by $\delta_u \Lambda$, then the first factor in (62) becomes a hereditary order with an additional indecomposable representation $\binom{P}{P}$. This gives another point for our preference for $\partial_u \Lambda$.

2. If ${}_{\Lambda}I$ is projective or injective, then $\partial_{u}\Lambda$ is no longer defined. In this case, however, Λ is a trivial extension. Therefore, the equivalence (61) of the proposition remains valid, although it is only partially induced by some ∂_{u} .

3. Recently, O. Iyama [5] obtained a similar result where Λ_0 is not assumed to be hereditary. The right-hand order $\binom{\Lambda_1 \ \Lambda_1}{N_1 \ \Lambda_1}$ in (61) is then replaced by an order which is defined in terms of the Auslander–Reiten quiver of Λ .

7. Examples. In the following examples, let \mathfrak{p} denote the radical of R, and $\mathfrak{k} := R/\mathfrak{p}$. For any pair of R-orders Λ_0, Λ_1 with $\Lambda_0/\operatorname{Rad} \Lambda_0 \cong \Lambda_1/\operatorname{Rad} \Lambda_1 \cong \mathfrak{k} \times \ldots \times \mathfrak{k}$, we define by the pullback

$$\begin{array}{c} \Lambda_0 \xrightarrow{\qquad \qquad \qquad } \mathfrak{k} \times \ldots \times \mathfrak{k} \\ \uparrow \\ \Lambda_0 \diamond \Lambda_1 \xrightarrow{\qquad \qquad \qquad } \Lambda_1 \end{array}$$

an *R*-order $\Lambda_0 \diamond \Lambda_1$ in $K\Lambda_0 \times K\Lambda_1$ which will be called the *dyad* (cf. [10]) of Λ_0 and Λ_1 . Clearly, $\Lambda_0 \diamond \Lambda_1$ has the same residue algebra $\mathfrak{k} \times \ldots \times \mathfrak{k}$ as Λ_0 and Λ_1 , and the operation \diamond is associative and commutative. For Λ_i -lattices E_i with $E_0/\text{Rad} E_0 \cong E_1/\text{Rad} E_1$, a similar pullback yields a $\Lambda_0 \diamond \Lambda_1$ -lattice which we denote by $E_0 \diamond E_1$ whenever it is unique up to isomorphism. Sometimes it will be convenient to write $\Lambda_0 - \Lambda_1$ instead of $\Lambda_0 \diamond \Lambda_1$.

EXAMPLE 1. In [19], Example 1, we considered the *R*-order $\Lambda := \Lambda_0 \diamond \Lambda_1$ in $M_2(K)$ with

$$\Lambda_0 := \begin{pmatrix} R & \mathfrak{p} \\ R & R \end{pmatrix}, \quad \Lambda_1 := \begin{pmatrix} R & \mathfrak{p} \\ \mathfrak{p} & R \end{pmatrix}$$

 Λ has five irreducible representations, namely the Λ_0 -lattices $H_1 := \binom{R}{R}$, $H_2 := \binom{\mathfrak{p}}{R}$, and the Λ_1 -lattices $L_1 := \binom{R}{\mathfrak{p}}$, $L_2 := \binom{\mathfrak{p}}{R}$, $L_3 := \binom{R}{R}$. The

remaining indecomposable Λ -lattices are the two projectives $P_1 := H_1 \diamond L_1$ and $P_2 := H_2 \diamond L_2$, the corresponding injectives $I_1 := H_1 \diamond L_3$ and $I_2 := H_2 \diamond L_3$, and an additional Λ -lattice $L := \Lambda_0 \diamond L_3$.

In [19] we already considered the hereditary monomorphism $P_1 \hookrightarrow I_1$. In order to illustrate Proposition 20, we choose $u : \mathfrak{p}H_1 \hookrightarrow H_1$. Then for each indecomposable Λ -lattice E, there exists an integer r with $\partial_u E \cong {\binom{H_1}{\mathfrak{p}H_1}}^r \oplus E'$, where E' is either zero or an indecomposable representation of

$$\Lambda' := \begin{pmatrix} \Lambda_1 & \Lambda_1 \\ \operatorname{Rad} \Lambda_1 & \Lambda_1 \end{pmatrix},$$

a tiled order of weight two [3]. The 8 indecomposable Λ' -lattices are therefore all irreducible. The map $E \mapsto E'$ is given by the table

E	H_1	H_2	L_1	L_2	L_3	P_1	P_2	I_1	I_2	L
E'		0	R	p	R	R	p	R	R	R
	0		p	R	R	p	R	R	R	R
	0		R	p	R	p	p	p	R	p
			p	R	R	p	p	R	p	p

EXAMPLE 2. Next let us consider the local *R*-order $\Lambda := R \diamond \Sigma_m$ in $A = K \times K \times K$, where $m \ge 1$, and Σ_m is given by the pullback

The maximal order $\Lambda_0 = R$ in the first simple component $A_0 = K$ of A is a generalized over-order of Λ with Rad $\Lambda_0 \subseteq \Lambda$. Hence Proposition 20 yields an equivalence Λ -lat/ $[\Lambda_0] \xrightarrow{\sim} \Lambda'$ -lat, where

$$\Lambda' := \begin{pmatrix} \Sigma_m & \Sigma_m \\ \operatorname{Rad} \Sigma_m & \Sigma_m \end{pmatrix}$$

is an order of weight two [3]. Hence by [3], Theorem 4.9, the 4m + 3 indecomposable Λ' -lattices can be obtained by successive application of the rejection lemma ([3], 2.9). Therefore, Λ itself has 4(m+1) indecomposables.

EXAMPLE 3. By [19], Proposition 16, representations of a finite poset Ω can be regarded as Λ -lattices for a subhereditary tiled order Λ . For such orders, Theorem 1 becomes equivalent to Zavadskiĭ's algorithm for posets Ω if and only if (P) is satisfied. Otherwise, we obtain various almost embeddings $\operatorname{\mathbf{Rep}}_{\mathfrak{k}}(\Omega) \to \operatorname{\mathbf{Rep}}_{\mathfrak{k}}(\Omega')$ according to the possible pre-hereditary

monomorphisms. For example:

Here the poset Ω is realized by the projective Λ -lattices in \mathfrak{S}_{Λ} (see (55)) between H and $\mathfrak{p}H$, and the \leq relations in Ω are also expressed by the exponents 0, 1 of \mathfrak{p} in Λ . The irreducible Λ -lattices, up to isomorphism, are represented by the half-open interval ($\mathfrak{p}H, H$] in \mathfrak{S}_{Λ} , whereas the closed interval [$\mathfrak{p}H, H$] coincides with the (distributive) lattice V_{Ω} of one-dimensional Ω^{op} -representations.

Now let us consider the pre-hereditary monomorphism

$$u: P = \begin{pmatrix} R \\ \mathfrak{p} \\ \mathfrak{p} \\ R \\ \mathfrak{p} \end{pmatrix} \hookrightarrow I = \begin{pmatrix} R \\ \mathfrak{p} \\ R \\ R \\ \mathfrak{p} \\ \mathfrak{p} \end{pmatrix}$$

Then the reduced *u*-derivative $\Lambda' = \partial'_u \Lambda$ together with the interval $V_{\Omega'}$ in $\mathfrak{S}_{\Lambda'} = \bigcup_{i \in \mathbb{Z}} \mathfrak{p}^i V_{\Omega'}$ and the corresponding poset Ω' are as follows:

Hence, the poset Ω' should be called the *u*-derivative of Ω , and Theorem 1 yields a map (63) ind Ω_{-} ind Ω'

$$(63) \qquad \qquad \text{ind} \ \Omega \to \text{ind} \ \Omega$$

which is almost injective in the sense that only the Ω -representations corresponding to P and I are collapsed. By [17], Satz 4, the indecomposables

of Ω can be read off from V_{Ω} , namely, there are 16 one-dimensional representations, and 5 two-dimensional indecomposables corresponding to the 3 cubes and 2 double cubes in V_{Ω} . For Ω' there are 20 one-dimensional and 7 two-dimensional indecomposables, according to the 4 cubes and 3 double cubes. Hence, apart from the two one-dimensional Ω' -representations associated with the Λ' -lattices $\binom{P}{P}$ and $\binom{I}{I}$, there are 5 indecomposable Ω' representations not in the image of (63). Two of them are one-dimensional, and three two-dimensional.

EXAMPLE 4. In the preceding example, consider instead of u the following pre-hereditary monomorphism:

$$v: P = \begin{pmatrix} R & \mathfrak{p} \\ \mathfrak{p} & \mathfrak{p} \\ R-R \\ \mathfrak{p} & R \\ \mathfrak{p} & R \end{pmatrix} \hookrightarrow I = \begin{pmatrix} R & \mathfrak{p} \\ R & \mathfrak{p} \\ R-R \\ R & R \\ \mathfrak{p} & R \end{pmatrix}$$

between the binomial indecomposables P, I corresponding to the two double cubes in $V_{\Omega} = [\mathfrak{p}H, H]$. (Here R - R means the dyad $R \diamond R$.) In fact, it is easily verified that v satisfies (C"). In this example, $\Lambda^+ = \Lambda^- = \Lambda$, and we obtain the v-derivative

which has 26 one-dimensional, 15 two-dimensional, and 2 three-dimensional indecomposables. (If D_n denotes a chain of n elements, the 15 two-dimensional indecomposables arise from the six simple cubes D_2^3 , six double cubes $D_2^2 \times D_3$, two treble cubes $D_2^2 \times D_4$, and one cube isomorphic to $D_2 \times D_3^2$. Moreover, $D_2 \times D_3^2$ itself yields a pair of three-dimensional indecomposables.) Since I/P is of length two, the image of (63) consists of $|ind \Omega| - 2 = 19$ indecomposables. Six of the 24 remaining indecomposable Ω' -representations correspond to $\partial_v \Lambda$ -lattices in the category \mathcal{H}'_v of Proposition 15.

EXAMPLE 5. Generalized Brauer tree orders of "defect p" type [15, 18] give rise to complete splittings. More generally, we define [18] a *cycle hyper-graph* H by a surjective map $\varepsilon : C \twoheadrightarrow E$ between finite sets, together with a permutation π on C. The cycles of π are then the vertices of H, the elements

of E the edges, and ε gives the rule of attachment between vertices and edges. If every edge has exactly two vertices (with multiplicities counted), then H is equivalent to a Brauer graph [15]. Now let Γ be a hereditary R-order corresponding to π , i.e. there is a bijection $P: C \xrightarrow{\sim}$ ind Γ onto a complete system of indecomposable Γ -lattices such that Rad $P_c = P_{\pi c}$ for all $c \in C$. For simplicity, suppose Γ is *totally split*, i.e. $\Gamma/\text{Rad }\Gamma \cong \mathfrak{k} \times \ldots \times \mathfrak{k} = \text{Map}(C, \mathfrak{k})$. Then ε induces an embedding of rings

(64)
$$\varepsilon^* : \operatorname{Map}(E, \mathfrak{k}) \hookrightarrow \operatorname{Map}(C, \mathfrak{k}),$$

and the *R*-order Λ_H associated with *H* is given by the pullback

$$\Gamma \longrightarrow \operatorname{Map}(C, \mathfrak{k})$$

$$\uparrow \qquad \qquad \uparrow \varepsilon^*$$

$$\Lambda_H \longrightarrow \operatorname{Map}(E, \mathfrak{k})$$

Hence Λ_H is a Bäckström order, i.e. Rad $\Lambda_H = \text{Rad }\Gamma$, and the embedding (64) shows that there is a one-to-one correspondence between the indecomposable projective Λ_H -lattices and the edges of H. In particular, Λ_H is local if and only if H has only one edge. Hence, every Λ_H allows a complete splitting into R-orders $\Lambda_{H'}$ and $\Lambda_{H''}$ with cycle hypergraphs H' and H'' such that $\Lambda_{H'}$ is local.

EXAMPLE 6. Consider the following *R*-order Λ with a splitting prehereditary monomorphism u:

$$\Lambda = \begin{pmatrix} R & \mathfrak{p}^2 & \mathfrak{p}^2 \\ \mathfrak{p} & R & \mathfrak{p} \\ \mathfrak{p} & \mathfrak{p} & R \end{pmatrix}, \quad u : P = \begin{pmatrix} \mathfrak{p} \\ R \\ R \end{pmatrix} \hookrightarrow I = \begin{pmatrix} R \\ R \\ R \end{pmatrix},$$

where the dyad $R \diamond R$ is again indicated by a connecting line. Then

$$\Lambda^{+} = \begin{pmatrix} R & \mathfrak{p} & \mathfrak{p} \\ \mathfrak{p} & R & \mathfrak{p} \\ \mathfrak{p} & \mathfrak{p} & R \end{pmatrix}, \quad \Lambda^{-} = \begin{pmatrix} R & \mathfrak{p}^{2} & \mathfrak{p}^{2} \\ R & R & \mathfrak{p} \\ R & \mathfrak{p} & R \end{pmatrix}$$

and

$$\mathfrak{p}IP^* = \begin{pmatrix} R \ \mathfrak{p} \ \mathfrak{p} \\ R \ \mathfrak{p} \ \mathfrak{p} \\ R \ \mathfrak{p} \ \mathfrak{p} \end{pmatrix} \not\subseteq \begin{pmatrix} R \ \mathfrak{p} \ \mathfrak{p} \\ R \ \mathfrak{p} \\ R \ \mathfrak{p} \\ R \ \mathfrak{p} \ R \end{pmatrix} = \Lambda^+ \Lambda^-$$

shows that Proposition 18 is not valid for $\delta_u \Lambda$ instead of $\partial_u \Lambda$.

EXAMPLE 7. The order

$$\Lambda = \begin{pmatrix} R - R & R - R \\ \mathfrak{p} \times \mathfrak{p} & R - R \end{pmatrix} \subseteq \mathrm{M}_2(K) \times \mathrm{M}_2(K)$$

has 4 irreducibles, namely $P := \binom{R}{\mathfrak{p}}$ and $I := \binom{R}{R}$ in the first rational component, and the corresponding irreducibles P' and I' in the second component. Moreover, there are 3 binomial indecomposables

$$P_1 := \begin{pmatrix} R - R \\ \mathfrak{p} \times \mathfrak{p} \end{pmatrix}, \quad I_2 := \begin{pmatrix} R \times R \\ R - R \end{pmatrix}, \quad B := \begin{pmatrix} R - R \\ R - R \end{pmatrix},$$

where the latter is bijective. The splitting pre-hereditary monomorphism $u: P \hookrightarrow I$ yields $\Lambda^+ = \Lambda$ and

$$\Lambda^{-} = \begin{pmatrix} R - R & R \times R \\ \mathfrak{p} \times \mathfrak{p} & R \times R \end{pmatrix} = \Lambda^{-+} = \Lambda^{+-}, \quad \Lambda_{-} = \begin{pmatrix} R - R & R - R \\ \mathfrak{p} \times \mathfrak{p} & \mathfrak{p} \times \mathfrak{p} \end{pmatrix}$$

Hence, the reduced u-derivative is

$$\partial'_{u}\Lambda = \begin{pmatrix} R - R & \mathfrak{p} \times \mathfrak{p} & R \times R \\ R - R & R - R & R \times R \\ \mathfrak{p} \times \mathfrak{p} & \mathfrak{p} \times \mathfrak{p} & R \times R \end{pmatrix},$$

a twofold trivial extension of the order $\begin{pmatrix} R - R & \mathfrak{p} \times \mathfrak{p} \\ R - R & R - R \end{pmatrix} \cong \Lambda$. Therefore, counting indecomposables shows that apart from $\begin{pmatrix} I \\ I \end{pmatrix}$ and $\begin{pmatrix} P \\ P \end{pmatrix}$, there must be one more indecomposable $\partial_u \Lambda$ -lattice which is not obtained by the differentiation functor. In fact, this $\partial_u \Lambda$ -representation is given by the $\partial'_u \Lambda$ -lattice

$$\begin{pmatrix} R-R\\ R\times R\\ \mathfrak{p}\times \mathfrak{p} \end{pmatrix}.$$

(By the remark following Proposition 19, such $\partial_u \Lambda$ -lattices are not possible if Λ is tiled.)

EXAMPLE 8. Finally, let us illustrate Theorem 4 by a simple example. To this end, let D be an unramified quadratic extension of K with maximal order Δ and $\Pi := \operatorname{Rad} \Delta$. With the *R*-order $\Omega := R + \Pi$ we form the dyad $\Omega \diamond R$ and consider the *R*-order

$$\Lambda := \begin{array}{c} R & \Omega & \Pi & \Pi \\ \Pi & \Delta & \Pi \\ \Delta & \Pi & \Omega \end{array}$$

in $K \times M_3(D) \times K$. By [19], Proposition 14,

$$u: P = \begin{pmatrix} \Pi \\ \Pi \\ \Delta \end{pmatrix} \hookrightarrow I = \begin{pmatrix} \Pi \\ \Delta \\ \Delta \end{pmatrix}$$

is pre-hereditary, and u satisfies the splitting condition (53). For the maximal order $\Theta := M_3(\Delta)$, the Θ -lattice $H := \Theta I$ satisfies $H\Pi \subseteq P \subseteq I \subseteq H$ and Rad $\Theta \subseteq \Lambda$. Moreover, there is a decomposition $\Lambda = P_1 \oplus P_0 \oplus P_2$ with

$$P_1 := \begin{pmatrix} R & & \Omega \\ \Pi \\ \Delta \end{pmatrix}, \quad P_0 := \begin{pmatrix} \Pi \\ \Delta \\ \Pi \end{pmatrix}, \quad P_2 := \begin{pmatrix} \Pi \\ \Pi \\ \Omega \\ P_2 \\ R \end{pmatrix}$$

satisfying the assumption of Theorem 4. Hence, Λ has a pair of splitting over-orders

$$A_{1} = \begin{pmatrix} \Omega \Pi \Pi \\ \Pi \Delta \Pi \\ \Delta \Delta \Delta \end{pmatrix}, \quad A_{2} = \begin{pmatrix} \Delta \Pi \Pi \\ \Delta \Delta \Pi \\ \Delta \Pi \Omega \end{pmatrix}_{-R}$$

with

$$\Lambda_1 \Lambda_2 = \Lambda_2 \Lambda_1 = \begin{pmatrix} \Delta \Pi \Pi \\ \Delta \Delta \Pi \\ \Delta \Delta \Delta \end{pmatrix}.$$

Furthermore, Λ_1 and Λ_2 are trivial extensions of the order

$$\Xi := \begin{pmatrix} \Delta \Pi \\ \Pi \Omega \end{pmatrix} R$$

in $M_2(D) \times K$. By Proposition 20, the indecomposable Ξ -lattices except R can be obtained from the indecomposables of an order in $M_4(D)$ Morita equivalent to the order

$$\Xi_0 := \begin{pmatrix} \Omega \Pi \Omega \\ \Pi \Delta \Pi \\ \Pi \Pi \Omega \end{pmatrix}$$

which corresponds to a Schurian vector space category of type \mathbf{F}_4'' listed in [7]. The 19 indecomposable Ξ_0 -lattices are given (as representations of the corresponding \mathfrak{k} -structure) in [2], §3. Therefore, Λ_1 and Λ_2 have 21 indecomposables each, and consequently, there are $2 \cdot 21 - 3 = 39$ indecomposable Λ -lattices. Alternatively, a twofold application of Proposition 20 to Λ yields an order Morita equivalent to a subhereditary order Λ' in $M_5(D)$, and Simson's splitting theorem applies to Λ' .

REFERENCES

 F. W. Anderson and K. R. Fuller, *Rings and Categories of Modules*, Grad. Texts in Math. 13, Springer, New York, 1974.

- [2] V. Dlab and C. M. Ringel, On algebras of finite representation type, J. Algebra 33 (1975), 306–394.
- [3] Yu. A. Drozd and V. V. Kiričenko [V. V. Kirichenko], On quasi-Bass orders, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 328–370 (in Russian); English transl.: Math. USSR-Izv. 6 (1972), 323–366.
- H. Hijikata and K. Nishida, Bass orders in non-semisimple algebras, J. Math. Kyoto Univ. 34 (1994), 797–837.
- [5] O. Iyama, Some categories of lattices associated to a central idempotent, ibid. 38 (1998), 487–501.
- [6] R. E. Johnson and E. T. Wong, Quasi-injective modules and irreducible rings, J. London Math. Soc. 36 (1961), 260–268.
- B. Klemp and D. Simson, Schurian sp-representation-finite right peak PI-rings and their indecomposable socle-projective modules, J. Algebra 134 (1990), 390–468.
- [8] L. A. Nazarova, Partially ordered sets with an infinite number of indecomposable representations, in: Proc. ICRA 1974, Lecture Notes in Math. 488, Springer, 1975, 244–252.
- [9] —, Partially ordered sets of infinite type, Izv. Akad. Nauk SSSR 39 (1975), 963–991 (in Russian).
- [10] L. A. Nazarova and A. V. Roĭter, Finitely generated modules over a dyad of a pair of local Dedekind rings, and finite groups having an abelian normal subgroup of index p, Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), 65–89 (in Russian); English transl.: Math. USSR-Izv. 3 (1969), 65–86.
- [11] L. A. Nazarova and A. G. Zavadskiĭ, *Partially ordered sets of tame type*, in: Matrix Problems, Akad. Nauk Ukrain. SSR Inst. Mat., Kiev, 1977, 122–143 (in Russian).
- [12] I. Reiner, Maximal Orders, London Math. Soc. Monogr. 5, Academic Press, London, 1975.
- [13] C. M. Ringel, *Tame Algebras and Integral Quadratic Forms*, Lecture Notes in Math. 1099, Springer, Berlin, 1984.
- K. W. Roggenkamp, Lattices over subhereditary orders and socle-projective modules, J. Algebra 121 (1989), 40–67.
- [15] —, Generalized Brauer tree orders, Colloq. Math. 71 (1996), 225–242.
- W. Rump, Systems of lattices in vector spaces and their invariants, Comm. Algebra 9 (1981), 893–932.
- [17] —, Ein Stabilitätssatz für darstellungsendliche Ordnungen, Sitzungsber. Math.-Naturwiss. Kl. 4 (1992), 89–124.
- [18] —, Green walks in a hypergraph, Colloq. Math. 78 (1998), 133–147.
- [19] —, Two-point differentiation for general orders, J. Pure Appl. Algebra 153 (2000), 171–190.
- [20] —, Auslander–Reiten quivers and differentiation, in preparation.
- [21] D. Simson, On vector space categories and differentiations of right peak rings, in: Representation of Algebgas (Proc. 4th Internat. Conf., Ottawa, 1984), Carleton-Ottawa Math. Lecture Note Ser. 2, Carleton Univ., Ottawa, 1984, vol. 2, exp. 31, 20 pp.
- [22] —, Vector space categories, right peak rings, and their socle projective modules, J. Algebra 92 (1985), 532–571.
- [23] —, On differentiation procedures for right peak rings and socle projective modules, Bull. Polish Acad. Sci. Math. 35 (1987), 279–288.
- [24] —, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl. 4, Gordon and Breach, New York, 1992.

[25]	L.	E.	Т.	Wu	and	J.	Ρ.	Jans,	On	quasi	projectives,	Illinois	J.	Math.	11	(1967),
	439 - 448.															

- [26] A. G. Zavadskiĭ, A differentiation with respect to a pair of points, in: Matrix Problems, Akad. Nauk Ukrain. SSR, Inst. Mat., Kiev, 1977, 115–121 (in Russian).
- [27] —, An algorithm for differentiation and classification of representations, Izv. Akad. Nauk SSSR Ser. Mat. 55 (1991), 1007–1048 (in Russian).
- [28] A. G. Zavadskiĭ and V. V. Kiričenko [V. V. Kiričenko], Semimaximal rings of finite type, Mat. Sb. 103 (145) (1977), 323–345 (in Russian); English transl.: Math. USSR-Sb. 32 (1977), 273–291.

Mathematisch-Geographische Fakultät Katholische Universität Eichstätt Ostenstr. 26-28 D-85071 Eichstätt, Germany E-mail: wolfgang.rump@ku-eichstaett.de

> Received 18 February 2000; revised 27 June 2000

(3890)