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ON THE CONDITION OF Λ-CONVEXITY IN SOME PROBLEMS OF
WEAK CONTINUITY AND WEAK LOWER SEMICONTINUITY

BY

AGNIESZKA KAŁAMAJSKA (Warszawa)

Abstract. We study the functional If (u) =
T
Ω
f(u(x)) dx, where u = (u1, . . . , um)

and each uj is constant along some subspace Wj of R
n. We show that if intersections of

the Wj ’s satisfy a certain condition then If is weakly lower semicontinuous if and only if
f is Λ-convex (see Definition 1.1 and Theorem 1.1). We also give a necessary and sufficient
condition on {Wj}j=1,...,m to have the equivalence: If is weakly continuous if and only if
f is Λ-affine.

1. Introduction and statement of results. Assume that Ω ⊂ R
n is

an open bounded domain, u : Ω → R
m, u = (u1, . . . , um), ui ∈ L

1
loc(Ω),

P = (P1, . . . , PN ) is a first order vector-valued differential operator with
constant coefficients,

(1) Pku =

m∑

j=1

n∑

i=1

aki,j
∂uj
∂xi

for k = 1, . . . , N,

and f : R
m → R is continuous. Let {uν}ν∈N be a bounded sequence in

L∞(Ω,Rm) such that Puν = 0 in the sense of distributions. The basic
question of the compensated compactness theory is the following: what can
we say about weak limits of f(uν) as ν →∞? By weak limits we understand

limits in L∞(Ω) with respect to weak ∗ convergence denoted by
∗
⇀.

This problem has been recognized as being of crucial importance in many
areas of mathematics, for example in the study of systems of conservation
laws [9, 10, 13, 14, 30, 32–36], nonlinear elasticity [1, 3, 7, 13, 16, 23, 27,
31, 38], micromagnetics [8, 17, 23, 26], nonlinear geometric optics [18, 19],
Skyrme’s model for meson fields [12], and fluid mechanics [11].
The problem is related to the study of sequential weak lower semiconti-

nuity and sequential weak continuity of the functional

(2) If (u) =
\
Ω

f(u(x)) dx, u ∈ KerP,
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in the weak ∗ topology of L∞(Ω,Rm). Let us recall that If is sequentially
weakly lower semicontinuous if for every sequence uν ∈ KerP ∩L∞(Ω,Rm)

such that uν
∗
⇀ u we have lim inf If (u

ν) ≥ If (u), and If is sequentially
weakly continuous if lim If (u

ν) = If (u) as ν →∞.

In particular, when P = curl is applied to each coordinate of u =
(u1, . . . , um) (ui ∈ R

n) in a simply connected domain, we have to do with
the classical functional of the calculus of variations.

The so-called Λ-convexity condition is crucial in this approach. Here by
Λ we will usually denote a cone in R

m, that is, an arbitrary set invariant
under dilation: if λ ∈ Λ and t ∈ R then tλ ∈ Λ.

Definition 1.1. Let f : Rm → R and assume that Λ ⊆ R
m is a cone.

We say that f is Λ-convex if for each A ∈ R
m and λ ∈ Λ the function

(3) R ∋ t 7→ f(A+ tλ)

is convex. The mapping f is called Λ-affine if for each A ∈ R
m and λ ∈ Λ

the function (3) is affine.

The following result was established by Murat and Tartar (see e.g. [25,
Theorem 2.1], [7, Theorem 3.1], [27, Theorem 10.1], [33, Corollary 9]).

Theorem 1.1. Define

V =
{
(ξ, λ) : ξ ∈ R

n, ξ 6= 0, λ ∈ R
m,
∑

i,j

aki,jξiλj = 0 for k = 0, . . . , N
}
,

Λ = {λ ∈ R
m : there exists ξ ∈ R

n, ξ 6= 0, such that (ξ, λ) ∈ V }.

If If given by (2) is lower semicontinuous with respect to L
∞-weak ∗ con-

vergence, then f is Λ-convex. If If is continuous with respect to L
∞-weak ∗

convergence, then f is Λ-affine.

If f is a quadratic form, then the lower semicontinuity of If is equivalent
to the convexity of f in the directions of Λ (see e.g. [25, Section 3], [32, Theo-
rem 11]), while for general f there is no equivalence in the above theorem. A
relevant example is well known ([7, p. 26], [32], [25]). Let u := (u1, u2, u3),
n = 2, ∂

∂x
u1(x, y) = 0,

∂
∂y
u2(x, y) = 0 and (

∂
∂x
+ ∂
∂y
)u3(x, y) = 0. Here

Λ = (R × {0} × {0}) ∪ ({0} × R × {0}) ∪ ({0} × {0} × R) and the func-
tion f(x, y, z) = xyz is Λ-affine, in particular f and −f are Λ-convex, but
If (u) =

T
Ω
f(u) dx is not weakly continuous. This shows that If and −If

cannot be lower semicontinuous.

Our goal is the following. We restrict our attention to the special case
when each Pk is of the form ∂uj(k)/∂vk. In particular, every coordinate func-
tion uj is constant along some subspace Wj of R

n. There are two problems
we are concerned with.
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Problem 1. Describe the set F of all m-tuples {Wj}j=1,...,m of sub-
spaces of R

n such that if f : R
m → R is continuous then the following

conditions are equivalent:

(1) The functional If (u) is continuous with respect to the sequential
weak ∗ convergence in L∞(Ω,Rm) ∩KerP .
(2) f is Λ-affine.

Problem 2. Describe the set G of all m-tuples {Wj}j=1,...,m of sub-
spaces of R

n such that if f : R
m → R is continuous then the following

conditions are equivalent:

(1) The functional If (u) is lower semicontinuous with respect to the
sequential weak ∗ convergence in L∞(Ω,Rm) ∩KerP .
(2) f is Λ-convex.

We have succeeded in solving Problem 1 (see Theorem 3.3). We show that
the set F consists of all m-tuples {Wi}i=1,...,m which satisfy a condition of
transversality (see Definition 2.3). Unfortunately, we have not been able to
solve Problem 2 completely. In Theorem 3.2 we give a sufficient condition for
{Wi}i=1,...,m ∈ G. We call it the parallelness condition (see Definition 2.2)
and discuss it in Section 4. Also in Example 5.1 we show that the set G
is essentially larger than the set of m-tuples which satisfy the parallelness
condition. Note that we always have G ⊆ F . It may be that G = F ; this
hypothesis is motivated by Example 5.1, but I have not been able to prove it.
Let us mention that in the proof of Theorems 3.2 and 3.3 we apply the

powerful theory of Young measure.
Although our model looks rather simple at first glance, necessary and

sufficient conditions for lower semicontinuity of If are not known in this case.
Some examples representing this model appear in the literature (see e.g. [25,
Section 7.3], [28, 29], [32, Examples 5 and 6 and Propositions 15–17] and
[37], see also the recent deep result of Müller [24]); a similar model appears
in geometric optics [18, 19].
I believe that a further investigation of the model will bring some new

geometrically transparent necessary conditions for lower semicontinuity of
the functional If in the general setting.

2. Notation and some preliminaries. Let m ∈ N. We recall the
standard order in {0, 1}m: for I, J ∈ {0, 1}m we have I > J if either i1 > j1,
or i1 = j1 and i2 > j2, . . . , or is = js for s = 1, . . . , l, l < m, and il+1 > jl+1.
For I ∈ {0, 1}m we set

D(I) = {r ∈ {1, . . . ,m} : I has 1 on the rth place},(4)

D∗(I) = {r ∈ {1, . . . ,m} : I has 0 on the rth place}.(5)

If D(I) = {i} we will write I = δi for simplicity.
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Given I ∈ {0, 1}m, we denote by I∗ the element of {0, 1}m such that
D(I∗) = D∗(I). Consequently, if A ⊆ {0, 1}m then we define A∗ = {I∗ :
I ∈ A}. If A is a finite set then #A denotes the number of its elements.
Let W be a linear subspace of Rn equipped with a scalar product 〈〈·, ·〉〉.

By W± we denote the subspace perpendicular to W with respect to 〈〈·, ·〉〉.
The symbol 〈·, ·〉 will stand for the standard scalar product and W⊥ for the
space orthogonal to W with respect to the standard scalar product. The
standard basis will be denoted by {e1, . . . , en}.
We denote the m-product of the sum of Grassmannians in R

n by

(6) W̃(n,m) = {W = (W1, . . . ,Wm) :Wi are linear subspaces of R
n},

and its special subset by

(7) W(n,m) = {W = (W1, . . . ,Wm) ∈ W̃(n,m) :W1 + . . .+Wm = R
n},

where W1 + . . .+Wm = span{Wi}i=1,...,m is the algebraic sum of the Wi.

If W ∈ W̃(n,m) and W = (W1, . . . ,Wm), we set W
± = (W±1 , . . . ,W

±
m).

If I ∈ {0, 1}m, we define W I =
⋂
i∈D(I)Wi if D(I) 6= ∅, W

0 = R
n

(to abbreviate we write simply 0 instead of (0, . . . , 0)). For example, when
m = 3 we have W (1,1,0) =W1 ∩W2.
Given m ∈ N, W = (W1, . . . ,Wm) ∈ W̃(n,m), and the scalar prod-

uct 〈〈·, ·〉〉, we introduce subsets of {0, 1}m: A(W, 〈〈·, ·〉〉) = {I ∈ {0, 1}m :
(W±)I 6= {0}}, and B(W, 〈〈·, ·〉〉) = {I ∈ A(W , 〈〈·, ·〉〉) : if J ∈ {0, 1}m,
D(J) ⊇ D(I), and J 6= I then (W±)J = {0}}.
By R

×I we denote R
×i1 × . . .× R

×im , where R
×0 = {0}, R×1 = R. For

example R
×(1,0,1) = R× {0} × R.

If W ∈ W̃(n,m), and B(W, 〈〈·, ·〉〉) = {I1, . . . , Ik}, where I1 < . . . < Ik,
we set

(8) W ∗〈〈·,·〉〉 = {W
I∗}I∈B(W,〈〈·,·〉〉) = {(W

I∗1 , . . . ,W I
∗

k )} ∈ W̃(n, k).

If 〈〈·, ·〉〉 is the standard scalar product 〈·, ·〉, we write simply A(W ), B(W )
and W ∗.
We will need the following definitions.

Definition 2.1. We say thatW ∈ W̃(n,m) is decomposable into a direct
sum if there exist k ∈ N and subspaces A1, . . . , Ak of R

n such that each Wi
is of the form Wi = Aki1 ⊕ . . .⊕Akili

for some ki1, . . . , k
i
li
∈ {1, . . . , k}, where

A1 ⊕ . . .⊕Al stands for the direct sum.

Example 2.1. The collection of spacesW1 = span{e1},W2 = span{e2},
and W3 = span{e1 + e2}, n = 2, is not decomposable into a direct sum.

Remark 2.1. Note that W ∈ W̃(n,m) is decomposable into a direct
sum if and only if there is a basis w1, . . . , wn in R

n such that eachWi can be
represented in this basis asWi = span{wj}j∈{ki1,...,kili}

for some ki1, . . . , k
i
li
∈
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{1, . . . , n}. In such a case, we will say that the Wi are decomposable along
the basis {w1, . . . , wn}.

Remark 2.2. If W ∈ W̃(n,m) is decomposable into a direct sum, then
W± does not need to be decomposable into a direct sum. For example take
m = n = 3,W1 = span{e1−e2},W2 = span{e1−2e2},W3 = span{e1−3e3},
and the standard scalar product.

To abbreviate, we will say that subpaces {Ai}i=1,...,k of R
n which satisfy

the condition Ai ∩ (A1 + . . . + Ai−1 + Ai+1 + . . . + Ak) = {0} for every
i ∈ {1, . . . , k} are independent.
We introduce the following condition:

Definition 2.2. Let W ∈ W̃(n,m). We say that W satisfies the paral-
lelness condition if the spaces {W I

∗

}I∈B(W ) span the whole R
n.

Note that in particular W must also span R
n. In our notation (see (7)

and (8)), the parallelness condition reads as

(9) W ∈ W(n,m) and W ∗ ∈ W(n, k), where k = #B(W ).

Remark 2.3. If I1, I2 ∈ {0, 1}
m are such that I1 < I2 then I

∗
1 > I

∗
2 and

W I
∗

1 ⊆W I
∗

2 . This implies that span{W I
∗

}I∈B(W ) = span{W
I∗}I∈A(W ).

Example 2.2. The collection of spacesW1 = span{e1},W2 = span{e2},
W3 = span{e1 + e2}, n = 2, m = 3, does not satisfy the parallelness condi-
tion.

We refer to Section 4 for a detailed discussion of the parallelness condi-
tion. In particular Theorem 4.2 there can be used to construct examples.

Definition 2.3. Let W ∈ W̃(n,m). We say that W satisfies the con-
dition of transversality if for each A ⊆ {1, . . . ,m} the following condition
is satisfied: if for each i, j ∈ A we have Wi ∩Wj = {0} then all the spaces
{Wi}i∈A are independent.

Example 2.3. W = (W1,W2,W3) in Example 2.2 does not satisfy the
condition of transversality.

Example 2.4. Let m=n=3 and W1= span{e1, e3}, W2= span{e2, e3},
W1 = span{e1 + e2, e3}. Then there is no subset of {W1,W2,W3} which
consists of pairwise independent subspaces. Since an implication with false
predecessor is always true, the collection (W1,W2,W3) does satisfy the con-
dition of transversality.

As usual, C(Ω) denotes the space of continuous functions on Ω, C0(R
n)

is the space of continuous functions on R
n vanishing at infinity, whileM(Ω)

denotes the space of Radon measures onΩ. If f ∈ C(Ω) and µ ∈M(Ω), then
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(f, µ) will stand for
T
Ω
f(λ)µ(dλ). By

4
A
f dx we mean |A|−1

T
A
f dx. We

denote by →, ⇀,
∗
⇀ the strong, weak and weak ∗ convergence respectively.

For W ∈ W̃(n,m), p ∈ [1,∞] we set

K(Ω,W, p) = {u ∈ Lp(Ω,Rm) : ∂wuj = 0 for each w ∈Wj , j = 1, . . . ,m},

equipped with the topology of weak sequential convergence in Lp(Ω,Rm)
and weak ∗ convergence if p = ∞. More generally, for P given by (1), we
set K(Ω,P, p) = {u ∈ Lp(Ω,Rm) : Pju = 0 for j = 1, . . . , N}.
We will need the following lemma (see e.g. [6, Theorem 13], [21], [22]

for its classical variant related to the operator Pu = (curlu1, . . . , curlum),
m ∈ N, ui ∈ R

n, and u ∈ K(Ω,P, p)).

Lemma 2.1. Let Ω ⊂ R
n be an open bounded set , 1 ≤ p <∞. Then for

every u ∈ K(Ω,W, p) and every λ > 0 there exists a closed set Fλ ⊂ Ω and
a mapping uλ ∈ K(Ω,W,∞) such that

(i) λp|Ω \ Fλ| → 0 as λ→∞,
(ii) u = uλ for almost every x ∈ Fλ,
(iii) |uλ(x)| ≤ λ for almost every x ∈ Ω,
(iv) ‖u− uλ‖Lp(Ω,Rm) → 0 as λ→∞.

Proof. Let vλ : R→ R be the Lipschitz function defined by vλ(y) = y if
|y| ≤ λ and vλ(y) = λy/|y| if |y| > λ. An easy computation shows that the
function uλ(x) = (vλ(u

1(x)), . . . , vλ(u
m(x))) satisfies the assertions of the

lemma with Fλ = {x : |u(x)| ≤ λ}.

We recall the fundamental theorem of Young (see [2]).

Theorem 2.1. Let Ω ⊂ R
n be a bounded measurable set. Assume that

uj : Ω → R
m, j = 1, 2, . . . , is a sequence of measurable functions satisfying

the tightness condition

sup
j

|{x ∈ Ω : |uj(x)| ≥ k}|
k→∞
−→ 0.

Then there exists a subsequence {uk} and a family {νx}x∈Ω of probability
measures νx ∈M(R

m) such that

(i) for every f ∈ C0(R
m) the function x 7→ (f, νx) is measurable,

(ii) if K ⊆ R
n is a closed set , and uj(x) ∈ K for every j and almost

every x, then supp νx ⊆ K for almost every x,
(iii) if A ⊆ Ω is measurable, f : Ω×R

m → R is a Carathéodory function

and the sequence {f(x, uk(x))} is sequentially weakly relatively compact in
L1(A), then {f(x, uk(x))} converges weakly in L1(A) to f given by

f(x) =
\

Rm

f(x, λ) νx(dλ).
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Definition 2.4. We say that the sequence {uj}j∈N generates the Young

measure {νx}x∈Ω if {νx}x∈Ω satisfies (i) of Theorem 2.1 and f(uj)
∗
⇀ f =

(f, νx) in L
∞(Ω) for every f ∈ C0(R

m).

Applying the same techniques as in [20, Lemma 3.1], one can easily
obtain the following.

Lemma 2.2. Suppose that p ∈ [1,∞), uν ∈ K(Ω,W, p) for each ν ∈ N,
{uν}ν∈N is weakly convergent in L

p(Ω,Rm) and generates the Young
measure {νx}x∈Ω. Let u

ν,k ∈ K(Ω,W,∞), k, ν ∈ N, be the function of
Lemma 2.1 with u = uν and λ = k. Passing to a subsequence, we may as-
sume that {uν,k}ν∈N generates the Young measure {ν

k
x}x∈Ω , for every k ∈ N.

Let f ∈ C(Rm) satisfy |f(λ)| ≤ C(1 + |λ|p). Then for every ε > 0 there ex-
ists a set E ⊆ Ω such that |E| < ε and (f, νkx) → (f, νx) in L

1(Ω \ E) as
k →∞.

3. The main results. Consider the case when (1) has the simple form

(10) Pku =
∂

∂vk
uj(k) with j(k) ∈ {1, . . . ,m}, k = 1, . . . , N, vk ∈ R

n.

The space of solutions of the system Pu = 0 is the space of functions u =
(u1, . . . , um) such that ui is constant along

(11) Wi = span{vk : j(k) = i} (i = 1, . . . ,m).

Note that every ui can be written in the form

(12) ui(x) = vi(πi(x)),

where πi : R
n → W±ii is the orthogonal projection with respect to an

arbitrary scalar product 〈〈·, ·〉〉i. In particular, we can assume that 〈〈·, ·〉〉i =
〈·, ·〉 for all i ∈ {1, . . . ,m}. We will also assume that Wi 6= R

n for each i.
We have the following characterization of the characteristic cone Λ and

the manifold V , associated with the functional I (see Theorem 1.1).

Theorem 3.1. Consider the system (10) with W = (W1, . . . ,Wm) and
Wi defined by (11). Then the manifold V and the characteristic cone Λ
associated with (10) are given by V =

⋃
I∈A(W )(W

⊥)I × R
×I and Λ =⋃

I∈B(W )R
×I .

The proof of the above theorem is left to the reader. Note that the
equation 〈ξ, w〉λi = 0 for each w ∈ Wi is satisfied if either ξ ⊥ Wi, or
λi = 0.
Consider the functional

(13) If (u) =
\
Ω

f(u(x)) dx,

where u ∈ K(Ω,W, p), and f : Rm → R is continuous.
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The following property is similar to quasiconvexity and A-quasiconvexity
(see e.g. [7, p. 13], [4], [15]).

Definition 3.1. Let Ω ⊂ R
n be an open bounded domain, f : Rm →

R be continuous, and p ∈ [1,∞]. We say that f is integrally convex on
K(Ω,W, p) if for every u ∈ K(Ω,W, p),

(14)
<
Ω

f(u(x)) dx ≥ f
( <
Ω

u(x) dx
)
.

We will prove the following theorem.

Theorem 3.2. Suppose that W ∈ W(n,m) satisfies the parallelness con-
dition and Λ =

⋃
I∈B(W )R

×I . Then the following conditions for f and If
are equivalent.

(i) If is lower semicontinuous on K(Ω,W,∞).

(ii) f is Λ-convex.

(iii) f is integrally convex in K(Q,W,∞) for every parallelepiped Q ⊂ R
n

whose sides are parallel to the basis {wi}i=1,...,n with wi ∈
⋃
I∈B(W )W

I∗ for

every i.

(iv) If p ∈ [1,∞], {νx}x∈Ω is an arbitrary Young measure generated by
a sequence {uν}ν∈N such that u

ν ∈ K(Ω,W, p) and uν is weakly convergent
in Lp(Ω,Rm), then for every f ∈ C(Rm) such that |f(λ)| ≤ C(1 + |λ|p) if
p <∞ and for almost all x ∈ Ω, we have

(15) (f, νx) ≥ f((λ, νx)).

Proof. (i)⇒(ii) follows from Theorem 1.1.

The implication (ii)⇒(iii) is a consequence of the following lemma.

Lemma 3.1. Let W ∈ W(n,m), Ω ⊂ R
n, E = +I∈B(W )W

I∗ , Q ⊂ E

be an arbitrary parallelepiped whose sides are parallel to the spaces W I
∗

for

I ∈ B(W ), and let Λ =
⋃
I∈B(W )R

×I . Then for every u ∈ K(Ω,W, 1) and
every Λ-convex continuous function f : Rm → R, we have

(16)
<
Q

f(u(x)) dx ≥ f
( <
Q

u(x) dx
)
.

Proof. Let w1, . . . , wk be a basis in E such that for each l we can find
Il ∈ B(W ) with wl ∈ W

I∗l . Choose the parallelepiped Q =
∑k
i=1 tiwi + y

with ti ∈ (0, 1) for i = 1, . . . , k and y ∈ E
⊥. Since w1 ∈Wi for all i ∈ D

∗(I1),
and ui are constant along Wi, we see that the image of the mapping

R ∋ t1 7→ φ1(t1, . . . , tk) = u
( k∑

i=1

tiwi + y
)
∈ R

m
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is a subset of B + R
×I1 with B = u(

∑k
i=2 tiwi + y). By assumption f is

convex in the direction of R×I1 , hence

1\
0

f(φ1(t1, . . . , tk)) dt1 ≥ f
( 1\
0

φ1(t1, . . . , tk) dt1

)
.

Proceeding in the same way with variables ti for i = 2, . . . , k, and vector-
valued functions

R ∋ ti 7→ φi(ti, . . . , tk) =
1\
0

. . .

1\
0

u
( k∑

i=1

tiwi + y
)
dt1 . . . dti−1

we see that<
Q

f(u(x)) dx =

1\
0

. . .

1\
0

f
(
u
( k∑

i=1

tiwi + y
))
dt1 . . . dtk

≥ f
( 1\
0

. . .

1\
0

u
( k∑

i=1

tiwi + y
)
dt1 . . . dtk

)
= f
( <
Q

u(x) dx
)
.

(iii)⇒(iv). Assume that {uν}ν∈N generates the Young measure {νx}x∈Ω.

First we consider the case uν ∈ K(Ω,W,∞) and uν
∗
⇀ u in L∞(Ω,Rm), and

then the general case.

Case 1. Take a parellelepiped Q ⊆ Ω as in (iii). By assumption we have4
Q
f(uν(x)) dx ≥ f(

4
Q
uν(x) dx) for each ν ∈ N. Letting ν → ∞ and using

Theorem 2.1 we obtain
4
Q

T
Rm
f(λ) νx(dλ) ≥ f(

4
Q

T
Rm
λνx(dλ)). Now (15)

follows from Lebesgue’s Differentiation Theorem.

Case 2. We will modify the sequence slightly, proceeding in a similar
way to the proof of Theorem 1.2 in [20]. Let k ∈ N and {uν,k}ν∈N be the
sequence defined in Lemma 2.1 with λ = k and u = uν . Using the diagonal
procedure and passing to a subsequence we can assume that each sequence
{uν,k}ν∈N generates the Young measure {ν

k
x}x∈Ω. Since by Case 1, for each

x in a set Ω(k) of full measure we have

(17) (f, νkx) ≥ f((λ, ν
k
x)),

it follows that (17) is satisfied on the set Ω0 =
⋂
kΩ(k), also of full measure.

Now it suffices to apply Lemma 2.2.

(iv)⇒(i). This part is standard (see e.g. [20, proof of Theorem 1.1]).

Let uν ∈ K(Ω,W,∞), uν
∗
⇀ u in L∞(Ω,Rm), and α = lim infν→∞ If (u

ν).
According to Theorem 2.1 we find a subsequence {ul} with the properties:
1) If (u

l) → α as l → ∞, 2) the sequence {ul}l∈N generates the Young
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measure {νx}x∈Ω , 3) for almost every x ∈ Ω we have (λ, νx) = u(x). Then

α = lim
l→∞

\
Ω

f(ul) dx =
\
Ω

\
Rm

f(λ)νx(dλ) dx

≥
\
Ω

f
( \

Rm

λνx(dλ)
)
dx =

\
Ω

f(u(x)) dx.

We will prove the following theorem, which solves Problem 1.

Theorem 3.3. Let m,n ∈ N. Assume that the manifold V and the char-
acteristic cone Λ are associated with the system (10) for W = (W1, . . . ,Wm)
(see Theorem 3.1) such that Wi 6= R

n for every i and W⊥1 + . . .+W
⊥
m = R

n.

The following conditions are equivalent :

(i) W⊥ satisfies the condition of transversality.
(ii) A continuous function f : Rm → R is Λ-affine if and only if f has

the following property :

(18) For all r ∈ N and (ξ1, λ1), . . . , (ξr, λr) ∈ V such that rank{ξ1, . . . , ξr}
≤ r − 1, and all s ∈ R

m we have

f (r)(s)(λ1, . . . , λr) = 0.

(iii) A continuous function f : Rm → R is Λ-affine if and only if If is
weakly continuous in K(Ω,W,∞).
(iv) A continuous function f : R

m → R is Λ-affine if and only if for
every Young measure {νx}x∈Ω generated by a sequence from K(Ω,W,∞)
and for almost every x ∈ Ω, we have (f, νx) = f((λ, νx)).

We start by recalling the following result due to Murat and Tartar (see
e.g. [32], [7, p. 27]).

Lemma 3.2. Assume that Ω ⊂ R
n, P , V , Λ, f and If are given by (1),

Theorem 1.1 and (2). If If is weakly ∗ continuous in K(Ω,P,∞) then f
satisfies (18).

We also state the following lemma. Its proof is left to the reader.

Lemma 3.3. Assume that W ∈ W(n,m) and Λ =
⋃
I∈B(W )R

×I spans

all of R
m. The space of all Λ-affine functions is spanned by all monomials

{λα}α∈{0,1}m such that for each I ∈ B(W ) the set D(I)∩D(α) has at most
one element.

Proof of Theorem 3.3. (iii)⇒(ii). Let f be a Λ-affine function. Then If
is weakly continuous in K(Ω,W,∞). By Lemma 3.2, f satisfies (18). The
reverse implication in (ii) follows from (18) by taking r = 2 and ξ1 = ξ2,
λ1 = λ2.
(ii)⇒(i). According to Lemma 3.3 define

(19) C = {α ∈ {0, 1}m : #(D(I) ∩D(α)) ≤ 1 for each I ∈ B(W )}.
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Take r ∈ N andWi1 , . . .Wir such that {W
⊥
j }j∈{i1,...,ir} are pairwise indepen-

dent. We will see that W⊥i1 , . . . ,W
⊥
ir
must be independent. Take α ∈ {0, 1}m

such that D(α) = {i1, . . . , ir}, so that α ∈ C and f(α) = λi1 . . . λir is
Λ-affine, hence it satisfies (18). If there are ξ1 ∈ W

⊥
i1
, . . . , ξr ∈ W

⊥
ir
, ξi 6= 0

such that rank{ξ1, . . . , ξr} ≤ r−1, by Theorem 3.1 we see that (ξk, δik) ∈ V
for k = 1, . . . , r, and f (r)(p)(δi1 , . . . , δir ) = 0 by Lemma 3.2. That leads to a
contradiction since f (r)(p)(δi1 , . . . , δir ) = 1. Therefore rank{ξ1, . . . , ξr} = r.
(i)⇒(iii). The implication⇐ in (iii) is always satisfied (Theorem 1.1). To

see that⇒ in (iii) is also true it suffices to consider all monomials f(λ) = λα

where α ∈ {0, 1}m is as in Lemma 3.3 (note that if only Wi 6= R
n for each i

then Λ spans all of Rm).
Take α ∈ C with C given by (19), and D(α) = {i1, . . . , ir}. Since W

⊥
i1
, . . .

. . . ,W⊥ir are pairwise independent, by an easy calculation we see that If is
weakly continuous.
(iii)⇐(iv). This is an immediate consequence of the Young Theorem and

the Lebesgue Differentiation Theorem.

4. The parallelness condition. We start with the following charac-
terization showing that the parallelness condition can be expressed without
the use of the scalar product.

Theorem 4.1. Let W ∈ W̃ (n,m). The following are equivalent.

(i) W satisfies the parallelness condition.
(ii) There is k ∈ N and k pairs (C(i), D(i)), i = 1, . . . , k, of complemen-

tary subsets of {1, . . . ,m} such that

dim span{Wi}i∈D(j) ≤ n− 1 for each j,(20)

dim span
{ ⋂

i∈C(j)

Wi

}
j=1,...,k

= n.(21)

(iii) If 〈〈·, ·〉〉 is an arbitrary scalar product then the spaces
{W I

∗

}I∈B(W,〈〈·,·〉〉) span R
n.

Proof. (i)⇒(ii). Assume that W ∈ W(m,n) satisfies the condition of
Definition 2.2 and B(W ) = {I1, . . . , Ik}. Then (21) is always satisfied with
C(j) = D∗(Ij). Hence it suffices to prove that (20) is also satisfied with
D(j) = D(Ij).
If B(W ) = {(1, . . . , 1)} then (20) holds. Since it is not possible that

B(W ) = {0}, we can assume that k > 1 and each I ∈ B(W ) has some 0
and 1.
By definition if I ∈ B(W ) then

⋂
i∈D(I)W

⊥
i 6= {0}. Hence, we can find

some w ∈ R
n, w 6= 0, such that w ∈ W⊥i for each i ∈ D(I). In particular,

for each i ∈ D(I), we have Wi ⊆ {spanw}
⊥, and (20) is also satisfied.
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(ii)⇒(i). Assume that W ∈ W(n,m) satisfies (20) and (21). Let j ∈
{1, . . . , k} and define Ij ∈ {0, 1}

m in such a way that D(Ij) = D(j),
D∗(Ij) = C(j). We show that A(W ) ⊇ {I1, . . . , Ik} = E .

Take I ∈ E . Since dim span{Wi}i∈D(I) ≤ n − 1, we find w ∈ R
n,

w 6= 0, such that Wi ⊆ {spanw}
⊥ for every i ∈ D(I). This implies that⋂

i∈D(I)W
⊥
i ∋ w 6= 0. Hence I ∈ A(W ) and the parallelness condition is

satisfied.

(ii)⇔(iii). We proceed in the same way as in the proof of (ii)⇔(i), but
with the standard scalar product replaced with 〈〈·, ·〉〉.

Remark 4.1. If W± is a collection of independent subspaces of R
n

which span R
n, then the parallelness condition is satisfied. Indeed, we can

find a basis {w1, . . . , wn} in R
n such that each W±i is spanned by some

vectors from this basis: W±i = span{wj}j∈C(i) where C(i) ⊆ {1, . . . ,m}
are pairwise disjoint subsets and

⋃
iC(i) = {1, . . . ,m}. Since A(W, 〈〈·, ·〉〉)

= B(W, 〈〈·, ·〉〉) = {δi : i = 1, . . . ,m}, it follows that (B(W, 〈〈·, ·〉〉))
∗ =

{(1, . . . , 1) − δi : i = 1, . . . ,m} and W
(1,...,1)−δi = (span{{w1, . . . , wn} \

{wj}j∈C(i)})
±. Now it suffices to apply the following.

Lemma 4.1. Assume that {wj}j=1,...,n is a basis in R
n, and C(1), . . .

. . . , C(k) ⊆ {1, . . . , n} are disjoint subsets such that
⋃k
l=1C(l) = {1, . . . , n}.

Then the spaces

Rl = (span{{w1, . . . , wn} \ {wi}i∈C(l)})
±, l = 1, . . . , k,

are linearly independent , of respective dimensions #C(l), and they span R
n.

Proof. SinceRl is defined as the set of solutions of n−#C(l) independent
equations

(22) 〈〈wi, x〉〉 = 0 for i ∈ {1, . . . , n} \ C(l),

the dimension of Rl is #C(l). On the other hand
∑k
l=1#C(l) = n. Hence,

it suffices to show that R1, . . . , Rk are linearly independent. Assume by
contradiction that there are coefficients α1, . . . , αk, not all zero, and vectors
0 6= vl ∈ Rl such that

∑k
l=1 αlvl = 0. With no loss of generality we can

assume that 0 6= vk =
∑k−1
l=1 αlvl. Since vk ∈ Rk is nonzero, we can find ws

with some s ∈ C(k) such that 〈〈ws, vk〉〉 6= 0. On the other hand, C(k) ⊆
{1, . . . , n} \ C(l) for each l ∈ {1, . . . , k − 1}, and we see from (22) that
〈〈ws, vl〉〉 = 0 for l = 1, . . . , k − 1. That leads to a contradiction, since

0 6= 〈〈ws, vk〉〉 =
∑k−1
l=1 αl〈〈ws, vl〉〉 = 0.

The situation when the system is of the form (10) andW± is a collection
of independent subspaces of Rn has been investigated in [7, 28, 29, 32, 37].

Remark 4.1 can be generalized as follows.
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Theorem 4.2. If 〈〈·, ·〉〉 is a scalar product in R
n, W ∈ W̃(n,m) is such

that W± ∈ W(n,m) and W± is decomposable into a direct sum then W
satisfies the parallelness condition.

Proof. Assume that B(W, 〈〈·, ·〉〉) = {I1, . . . , Ik} and find a basis {w1, . . .
. . . , wn} in R

n such thatW± is decomposable along {w1, . . . , wn}. In partic-
ular (W±)Il = span{wi}i∈C(l), where l = 1, . . . , k and C(l) ⊆ {1, . . . , n} are

disjoint subsets. Define C0 = {1, . . . , n} \
⋃k
l=1C(l). Note that if r ∈ D

∗(Il)
then wj 6∈ W

±
r for any j ∈ C(l). In particular, for each l ∈ {1, . . . , k},

wj 6∈ W
±
r for any j ∈ C(l) and any r ∈ D

∗(Il). This implies that Wr ⊇
{span{{w1, . . . , wn} \ {wj}j∈C(l)}}

± for each r ∈ D∗(Il). Hence

(23) W I
∗

l ⊇ {span{{w1, . . . , wn} \ {wj}j∈C(l)}}
± = Rl.

We consider two cases: C0 = ∅ and C0 6= ∅. In the first case we apply
Lemma 4.1. In the second case, take i ∈ C0 and define E(i) = {r ∈
{1, . . . ,m} : wi ∈ W

±
r }. By assumption E(i) 6= ∅ for each i; moreover,

if we define Ji ∈ {0, 1}
m to satisfy D(Ji) = E(i), then (W

±)Ji ∋ wi 6= {0},
and there is I ∈ B(W, 〈〈·, ·〉〉) such that D(Ji) ⊆ D(I). Since wi 6∈ (W

±)I for
any I ∈ B(W, 〈〈·, ·〉〉), we must have Ji 6= I.
If I = (1, . . . , 1) (k = 1), then W I

∗

= R
n and the assertion is satisfied.

Hence we may assume that I has some zeros. This means that D∗(I) 6= ∅
and for each r ∈ D∗(I),

(24) wi 6∈W
±
r .

Define the function l : C0 → {1, . . . , k} by l(i) = l if Ji < Il (Il ∈
B(W, 〈〈·, ·〉〉)). Note that l(i) may not be uniquely defined. According to
(24), we obtain wi 6∈W

±
r for each r ∈ D(Il(i)), and by the same arguments

as for (23),

(25) W I
∗

l(i) ⊇ {span{{w1, . . . , wn} \ {wi}}}
± = Si.

Taking into account (23) and (25) we see that span{W I
∗

}I∈B(W,〈〈·,·〉〉) con-
tains the spaces {Ri}i=1,...,l and {Si}i∈C0 . Now the assertion follows from
Lemma 4.1.

Remark 4.2. One may ask if it is possible that ifW ∈ W(n,m) satisfies
the parallelness condition then there is a scalar product 〈〈·, ·〉〉 in R

n such that
W± is decomposable into a direct sum. The answer is “no”. Take n = 5,m =
3, and W = (W1,W2,W3) where W1 = span{e1, e5}, W2 = span{e2, e4},
W3 = span{e3, e4−e5}. ThenW satisfies the parallelness condition. Assume
that there is a scalar product 〈〈·, ·〉〉 such that W± is decomposable into a
direct sum. According to Remark 2.1 we can find a basis {w1, . . . , w5} such
that W± is decomposable along {w1, . . . , w5}. Note that if i 6= j, where
i, j ∈ {1, 2, 3}, then W±i ∩W

±
j is one-dimensional (four independent linear
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equations must be satisfied). On the other hand W±1 ∩W
±
2 ∩W

±
3 = {0}.

Assuming that W±1 = span{w1, w2, w3}, W
±
2 = span{w3, w4, w5}, we see

that W±3 is spanned by one wi with i ∈ {1, 2}, one wi with i ∈ {4, 5},
and one more wi with i 6= 3. In all cases one of W

±
1 ∩W

±
3 , W

±
2 ∩W

±
3 is

two-dimensional.

5. Examples, questions and remarks

Remark 5.1. It follows from the Chacon Biting Lemma (see e.g. [5])
and standard techniques of Young measures (see e.g. [20, the proof of The-
orem 1.1]) that if W ∈ W(n,m) satisfies the parallelness condition, p ∈
[1,∞], f is Λ-convex and is nonnegative then If is lower semicontinuous on
K(Ω,W, p).

Remark 5.2. It is proved in Theorem 3.2 that if W satisfies the paral-
lelness condition, and Λ associated with W is given by Theorem 3.1, then
the Λ-convexity of f is equivalent to integral convexity in K(Q,W, p) for
some specific parallelepiped Q. The condition of integral convexity is simi-
lar to quasiconvexity, and to the more general condition of P -quasiconvexity
(see e.g. [7, p. 13], [4], [15]) in the case when P has the constant rank
property. The P -quasiconvexity condition reads: for every cube Q ⊂ R

n

and φ ∈ C∞(Q,Rm) ∩ KerP , periodic with periodicity cell Q, we have4
Q
f(φ(x)) dx ≥ f(

4
Q
φ(x) dx). In the case when P has the constant rank

property the cube Q can be taken arbitrary. This is not our case where
the sides of Q are parallel to particular subspaces in R

n. To the best of
our knowledge such P -quasiconvexity conditions are missing in the litera-
ture.

Remark 5.3. Let F and G be the subsets of W̃(n,m) described in
Problems 1 and 2 in the introduction. Obviously, we have G ⊆ F . On
the other hand it is easy to find W ∈ F which does not satisfy the par-
allelness condition, e.g. m = n = 3, W1 = span{e2}, W2 = span{e1},
W3 = span{e1− e2, e3}. We think it is possible that G = F . This conjecture
is motivated by the following example showing that the class of spaces which
satisfy the parallelness condition is essentially smaller than G.

Example 5.1. Letm = n = 3,W = (W1,W2,W3) ∈ F ,W1 = span{e2},
W2 = span{e1}, W3 = span{e1 − e2, e3} so that W

⊥
1 = span{e1, e3}, W

⊥
2 =

span{e2, e3}, W
⊥
3 = span{e1 + e2}, B(W ) = {(1, 1, 0), (0, 0, 1)}. Hence u ∈

KerP if u = (u1, u2, u3) with u1 = u1(x, z), u2 = u2(y, z), u3 = u3(x + y),
and Λ = (R × R × {0}) ∪ ({0} × {0} × R). According to Lemma 3.1 we
have E = span{e1 − e2, e3}. Integrating in directions of E and v = e1 + e2,
using Lemma 3.1 and techniques similar to the proof of Theorem 3.2, one
can prove that the functional If (u) =

T
Ω
f(u(x)) dx is sequentially lower

semicontinuous on K(Ω,W,∞) if and only if f is Λ-convex.
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Remark 5.4. It is easy to check that if f : Rm → R is continuous and
satisfies (18) with V given by Theorem 3.1, then If is weakly continuous.

Remark 5.5. The assumption Wi 6= R
n for every i in (11) is purely

technical. IfWi = R
n then ui is constant and the weak ∗ convergence ui

∗
⇀ u

is the convergence of constants.
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