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ESTIMATES FOR HOMOLOGICAL DIMENSION OF
CONFIGURATION SPACES OF GRAPHS

BY

JACEK ŚWIĄTKOWSKI (Wrocław and Warszawa)

Abstract. We show that the homological dimension of a configuration space of a
graph Γ is estimated from above by the number b of vertices in Γ whose valence is greater
than 2. We show that this estimate is optimal for the n-point configuration space of Γ if
n ≥ 2b.

0. Introduction. Let Γ be a finite graph and n a natural number.
The marked n-point configuration space of Γ is a subspace C̃nΓ in the nth
cartesian power of Γ defined by

C̃nΓ := {(x1, . . . , xn) ∈ Γ
n : xi 6= xj for i 6= j}.

Consider the natural free action of the symmetric group Sn on the space
C̃nΓ defined by σ(x1, . . . , xn) = (xσ(1), . . . , xσ(n)) and put

CnΓ := C̃nΓ/Sn.

The space CnΓ is called the (unmarked) n-point configuration space of Γ .
This paper reports on partial progress towards understanding the ho-

mology of configuration spaces of graphs, or even more generally of compact
polyhedra. For another recent result in that direction, see [G].
We call a vertex v of Γ branched if it is adjacent to at least three edges.

We denote by b = b(Γ ) the number of branched vertices in Γ .
The main result of this paper is the following.

0.1. Theorem. Let Γ be a finite graph and n a natural number.

(1) There exists a cube complex KnΓ of dimension min(b(Γ ), n) which
embeds as a deformation retract into the configuration space CnΓ .
(2) The fundamental group π1(CnΓ ) contains a subgroup isomorphic to

the free abelian group Z
k with k = min(b(Γ ), [n/2]), where [x] denotes the

integer part of x.
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For a topological space X define the homological dimension dimhX of
X by

dimhX := max{i : Hi(X,Λ) 6= 0 for some abelian group Λ}.

Note that if X is homotopically equivalent to a polyhedral complex K
then dimhX ≤ dimK. On the other hand, if X is a k(π, 1) space then
dimhX ≥ homdim(G) for any subgroup G of the fundamental group π1X,
where homdim is the homological dimension of a group (see [CE], Ch. XIV.9,
Application 1, p. 356). Configuration spaces of graphs are k(π, 1) spaces, as
observed by M. Davis and T. Januszkiewicz. This fact also follows from the
results of this paper (see Corollary 2.3.2). On the other hand, it is known
that homdim(Zk) = k, and hence Theorem 0.1 implies the following.

0.2. Corollary. (1) dimh CnΓ ≤ min(b(Γ ), n).
(2) dimh CnΓ ≥ min(b(Γ ), [n/2]).

Note that if n ≥ 2b(Γ ) then the estimates in the above corollary give the
equality dimh CnΓ = b(Γ ).

The main ingredient in proving the results of this paper is the construc-
tion of a cube complex KnΓ and its embedding into the configuration space
CnΓ as a deformation retract. This is done in Section 1. The further study
of the complex KnΓ exploits its natural geometry. In particular, it turns out
that KnΓ is a nonpositively curved metric space in the comparison sense
of Alexandrov and Toponogov, and hence a k(π, 1) space. Nonpositive cur-
vature allows looking for subgroups in the fundamental group π1(KnΓ ) in
terms of locally convex subspaces in KnΓ . Existence of a family of such
subspaces homeomorphic to tori proves part (2) of Theorem 0.1. These ge-
ometrical aspects of the complex KnΓ are studied in Section 2.

I would like to express my thanks to Tadek Januszkiewicz for his encour-
agement and inspiring discussions.

1. Complex KnΓ and its embedding in CnΓ

1.1. The natural combinatorial structure of a graph. In the rest of this
paper we allow graphs to contain loops or multiple edges. Given a finite
graph Γ , its underlying space |Γ | carries a unique combinatorial structure
with the property that no vertex locally separates |Γ | into exactly two com-
ponents. We call this structure the natural combinatorial structure on |Γ |. In
what follows we assume that graphs are equipped with their natural combi-
natorial structure. This is clearly no loss of generality, since the configuration
space depends in fact only on the underlying space of the graph.

Note that the vertices in a graph Γ (with the natural combinatorial
structure) fall into two classes. Those which locally separate the underlying
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space |Γ | into at least three components are called branched, while those
which are locally nonseparating are called free.

1.2. The cube complex KnΓ . Let B = BΓ and E = EΓ be respectively
the set of all branched vertices and the set of all edges of a graph Γ (with
respect to the natural combinatorial structure). Each edge in Γ (even if it
is a loop) carries two distinct orientations. For an oriented edge s denote by
|s| the underlying unoriented edge, by −s the same edge with the opposite
orientation, and by vs that of the vertices adjacent to |s| which is determined
by the orientation of s. Note that if s is an oriented loop in Γ then s 6= −s
as for all oriented edges, but vs = v−s.

Define an abstract graded poset PnΓ = (P
(0)
n Γ, . . . , P

(k)
n Γ, . . .), where

P
(k)
n Γ denotes the set of k-faces of PnΓ , defined to be pairs (f, S) such that

(1) f : EΓ ∪BΓ → N ∪ {0} is a function;
(2) S = {s1, . . . , sk} is a set consisting of exactly k oriented edges of Γ ;
(3) vsi ∈ BΓ for i = 1, . . . , k and vsi 6= vsj for i 6= j;
(4) f(b) ∈ {0, 1} for each b ∈ B and f(vsi) = 0 for i = 1, . . . , k;
(5)
∑
a∈B∪E f(a) = n− k.

1.2.1. Remark. The above poset has the following intuitive interpre-
tation. Its 0-faces correspond to all possible quantitative distributions of n
distinct points among the branched vertices and the (remaining parts of)
edges in the graph Γ . The value of the function f shows the number of points
lying in the corresponding part of Γ (again, edges are considered without
their branched endpoints). The 1-faces of the poset represent elementary
“moves” between distributions. In each such move one point changes its po-
sition from a branched vertex to an edge, or in the opposite direction. This
moving point is represented by a unique oriented edge s in the set S. The
orientation of s shows the direction in which the point moves along |s| to
approach the branched endpoint vs. The distribution of the other points is
represented by the function f . Finally, the k-faces with k > 1 represent sys-
tems of k independent moves, where independent means that the moves can
be performed in any order, without interfering with each other. These single
moves are represented by elements of the set S, while the distribution of the
points not involved in the moves is again represented by the function f .

Let (f1, S) and (f2, S∪{s}) be two faces of PnΓ , and assume that s 6∈ S.
We say that (f1, S) ≺ (f2, S ∪ {s}) if one of the following two conditions
holds:

(i) f1(a) =

{
f2(a) + 1 if a = |s|,
f2(a) otherwise;

(ii) f1(a) =

{
f2(a) + 1 if a = vs,
f2(a) otherwise.
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We extend the relation ≺ to the smallest partial order on the set of faces of
PnΓ , denote it also by ≺, and take ≺ as the relation of being a face in PnΓ .

Observe that for each F ∈ P
(k)
n Γ the subposet {A : A ≺ F} in PnΓ is

isomorphic to the face poset of the k-dimensional cube. It follows that PnΓ
is the face poset of a uniquely determined cube complex, which we denote
by KnΓ .

1.2.2. Remark. The cube complex KnΓ defined above does not nec-
essarily have the property that its cells are determined by the sets of their
vertices. In particular, KnΓ can contain multiple edges. However, the clo-
sure of each cell in KnΓ is isomorphic to the cube of the corresponding
dimension, so that in particular no 1-cell of KnΓ is a loop. Moreover, each
k-cell with k > 1 is uniquely determined by its boundary in KnΓ .

1.2.3. Lemma. dimKnΓ = min(b(Γ ), n).

Proof. It is clear that dimKnΓ = max{k : P
(k)
n Γ 6= ∅}. It then follows

from condition (5) above that dimKnΓ ≤ n, and from (3) that dimKnΓ ≤
b(Γ ). Hence dimKnΓ ≤ min(b(Γ ), n). The opposite inequality follows from
the obvious existence of a pair (f, S) as required with card(S)=min(b(Γ ), n).

1.3. Embedding of KnΓ into CnΓ . In this subsection we construct an
embedding i : KnΓ → CnΓ of (the underlying space of) the cube complex
KnΓ into the configuration space CnΓ . This construction explains more
precisely than Remark 1.2.1 the ideas behind the definitions of the poset
PnΓ and the complex KnΓ .

Consider a segment AB, and let s be the corresponding oriented segment
with vs = B and v−s = A. Given n ∈ N ∪ {0} and real numbers ts, t−s ∈
[0, 1], let DAB(n, (ts)|s|=AB) be a set {A1, . . . , An} of n points of AB with
the following properties:

(1) A ≤ A1 < . . . < An ≤ B with respect to the natural order on AB;

(2) |A1A2| = |A2A3| = . . . = |An−1An|, where |XY | denotes the length
of the segment XY ;

(3) if n ≥ 2 then |AA1| = t−s · |A1A2| and |AnB| = ts · |A1A2|;

(4) if n = 1 and (ts, t−s) 6= (0, 0) then ts · |AA1| = t−s · |A1B|;

(5) if n = 1 and (ts, t−s) = (0, 0) then the set DAB(n, (ts)|s|=AB) is not
defined.

Note that if n = 0 then DAB(n, (ts)|s|=AB) = ∅.

If e is an edge (of a graph) which is not a loop, define De(n, (ts)|s|=e)
in an analogous way. If e is a loop, identify e with a segment AB whose
endpoints A and B are identified. Define De(n, (ts)|s|=e) as the pull-back of
DAB(n, (ts)|s|=AB) under this identification. Then De(n, (ts)|s|=e) is a well
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defined set of n elements of e, except when n ≥ 2 and (ts, t−s) = (0, 0), since
then A1 and An coincide.
Let F = (f, S) be a cell of the complex KnΓ . Consider the set [0, 1]

S of
all functions t : S → [0, 1], and view it as a cube of dimension equal to the
cardinality of the set S. Let τ : F → [0, 1]S be the linear isomorphism of
cubes such that for each vertex p = (ψ, ∅) of F the function τ(p) ∈ [0, 1]S is
given by

τ(p)(s) = 1− ψ(vs) for all s ∈ S.

For each x ∈ F the image τ(x) : S → [0, 1] is a function. Extend τ(x) to a
function τ0(x) defined on the set of all oriented edges in Γ by

τ0(x)(s) =

{
τ(x)(s) if s ∈ S,
1 if s 6∈ S.

View the elements of CnΓ as subsets of Γ consisting of n elements, and
define the mapping iF : F → CnΓ by

iF (x) = {b ∈ BΓ : f(b) = 1} ∪
⋃

e∈EΓ

De(f̃(e), (τ0(x)(s))|s|=e),

where f̃(e) := f(e) + card{s ∈ S : |s| = e}. A straightforward verifica-
tion shows that the mapping iF is well defined, continuous and injective.
Moreover, if F1 is a face of F2 in KnΓ then iF1 = iF2 |F1 . This means that
the family {iF : F ∈ PnΓ} of mappings defines a continuous mapping
i : KnΓ → CnΓ , which is easily verified to be an embedding. We omit
further details.

1.4. Deformation retraction of CnΓ onto KnΓ . In this subsection we
construct a retraction of the configuration space CnΓ onto the image i(KnΓ )
of the complex KnΓ by the embedding i. We also show that this retraction
is a deformation retraction. Together with Lemma 1.2.3 this completes the
proof of part (1) of Theorem 0.1.
Recall that given a topological space X and its subspace Y , a map r :

X → X is a retraction of X onto Y if Y = im r and r|Y = idY . It is called a
deformation retraction if moreover r is homotopic to the identity map idX
by a homotopy H : [0, 1]×X → X such that H(t, y) = y for each t ∈ [0, 1]
and each y ∈ Y .
Fix a length metric d on Γ for which each edge of Γ has length 1. Let

C ∈ CnΓ be an n-point configuration in Γ (which we view as a subset of Γ ).
Points of C (together with the vertices of Γ ) subdivide Γ into a collection
of segments. For each oriented edge s in Γ for which vs is a branched vertex
of Γ let dCs be the length of the segment of the above subdivision which is
contained in the edge |s| and adjacent to vs from the side determined by the
orientation of s (note that if s is a loop then there might be two segments
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contained in |s| and adjacent to vs). For an edge e of Γ let e
0 denote the

closed edge e with its branched vertices deleted. Let

nCe := card(C ∩ e
0)

be the number of points of C contained in e0. The edge e is then subdivided
into nCe + 1 segments, the average length of which is equal to 1/(n

C
e + 1).

For each oriented edge s of Γ consider the ratio δCs of the length d
C
s defined

above and the average length 1/(n|s|C + 1), i.e.

δCs := d
C
s · (n

C
|s| + 1).

Define the coefficient tCs ∈ [0, 1] by

tCs :=

{
1 if vs is a free vertex of Γ or vs ∈ C,
min(1, δCs /min{δ

C
s′ : s

′ 6= s, vs′ = vs}) otherwise.

Under the notation of the previous subsection put

r(C) := (C ∩BΓ ) ∪
⋃

e∈EΓ

De(n
C
e , (t

C
s )|s|=e).

A straightforward verification shows that the map r : CnΓ → CnΓ defined
as above is continuous, its image coincides with the image of the embedding
i, and for each configuration C ∈ i(KnΓ ) we have r(C) = C. Hence r is a
retraction as required.

To prove that r is a deformation retraction we need to construct a ho-
motopy H between r and idCnΓ such that if C ∈ i(KnΓ ) then H(t, C) = C
for each t ∈ [0, 1].

Note that, by definition of r, for each C ∈ CnΓ we have C ∩ BΓ =
r(C)∩BΓ . Moreover, for each e ∈ EΓ we have card(C∩e

0) = card(r(C)∩e0).
For each e ∈ EΓ let {Ce(t) : t ∈ [0, 1]} be the unique continuous 1-parameter
family of configurations in e0 which connects C ∩ e0 with r(C) ∩ e0 and for
which positions of all points (measured in length parameter in e0) depend
linearly on t. Put

H(t, C) = (C ∩BΓ ) ∪
⋃

e∈EΓ

Ce(t).

Then H is a homotopy between r and idCnΓ as required, and thus r is a
deformation retraction.

2. Geometry of the complex KnΓ and its applications. In this
section we view the cube complex KnΓ as a metric space, and derive some
geometric properties of it that have useful topological consequences. In par-
ticular, we prove part (2) of Theorem 0.1 and the fact that KnΓ is a k(π, 1)
space. We make use of a well developed theory of metric spaces with non-
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positive curvature, and our main reference for this subject is the book of
M. Bridson and A. Haefliger [BH].

2.1. Nonpositively curved metric spaces. Let (X, d) be a metric space.
A geodesic segment in X is an isometric embedding σ : [a, b] → X, i.e. a
mapping such that for all x, y ∈ [a, b] we have

d(σ(x), σ(y)) = |x− y|.

We say that a geodesic segment as above connects the endpoints σ(a) and
σ(b). A metric space X is called geodesic if any two of its points can be
connected by at least one geodesic segment.
A geodesic triangle in X is a collection of three geodesic segments con-

necting three points p1, p2, p3 ∈ X. Given a geodesic triangle T in X, a
comparison triangle for T is a geodesic triangle T ′ in the euclidean plane
with the same side lengths as T . Note that a comparison triangle always
exists and is unique up to an isometry of the plane.
A geodesic triangle T is said to satisfy the CAT(0) inequality if the dis-

tance of any two points on its sides is not greater than the distance of the
corresponding points on the sides of the comparison triangle T ′. A geodesic
space X is a CAT(0) space if each geodesic triangle inX satisfies the CAT(0)
inequality. A metric space X is a nonpositively curved metric space if it is a
CAT(0) space locally.
We briefly recall from [BH] some topological properties of nonpositively

curved metric spaces.

2.1.1. Fact ([BH], Chapter II, Corollary 1.5, p. 161). Any CAT(0) space
is contractible.

2.1.2. Fact ([BH], Chapter II, Theorem 4.1(2), p. 194). If X is a com-
plete connected nonpositively curved metric space, then its universal covering
X̃ (with the induced length metric) is a CAT(0) space.

These two results imply the following.

2.1.3. Corollary. Any complete connected nonpositively curved met-
ric space is a k(π, 1) space.

2.2. Nonpositively curved cube complexes. A cube complex is a space
obtained from a disjoint union of cubes (of any dimensions) by a family of
face identifications. We assume furthermore that each of the initial cubes
embeds (injectively) into the whole complex, or equivalently that no two
faces of a cubical cell of the complex are identified. The complexKnΓ defined
in Section 1 is a cube complex in this sense.
Given a cube complex K, equip each of its cells with the Euclidean

metric in which the cell is isometric to the unit cube (of the corresponding
dimension). Extend this partial metric on K to a unique length metric, and
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recall that if K is connected and finite-dimensional, then it is a complete
geodesic space with respect to this metric ([BH], Chapter I, Remark 7.33,
p. 112).

Let v be a vertex of a cube complex K. The poset of all cells of K
containing v and distinct from v is then isomorphic to the face poset of a
uniquely determined simplicial complexKv, called the link ofK at v. A k-cell
of K containing v corresponds under this isomorphism to a (k− 1)-simplex
of Kv.

A simplicial complex L is a flag complex if every finite set of its vertices
that is pairwise joined by edges spans a simplex of L.

2.2.1. Gromov’s Lemma ([BH], Chapter II, Theorem 5.20, p. 212). A
finite-dimensional cube complex is a nonpositively curved metric space (with
respect to the canonical metric mentioned above) if and only if the link at
each of its vertices is a flag complex.

2.3. Nonpositive curvature of KnΓ . The crucial geometric property of
the complex KnΓ is the following.

2.3.1. Proposition. The cube complex KnΓ is nonpositively curved.

Proof. In view of Gromov’s Lemma it is sufficient to show that the link

of KnΓ at each vertex is a flag complex. Let x ∈ P
(0)
n Γ be a vertex of KnΓ .

Then x = (ϕ, ∅), where the function ϕ : EΓ ∪ BΓ → N ∪ {0} satisfies the
following conditions:

(1) ϕ(b) ∈ {0, 1} for each b ∈ B;

(2)
∑
a∈B∪E ϕ(a) = n.

We will describe the link of the complex KnΓ at the vertex x.

We start by describing the set of cells of KnΓ which contain x. These
are clearly the cells F for which x ≺ F . Such cells are in one-to-one corre-
spondence with the sets S of oriented edges in Γ which satisfy the following
conditions:

(1) for each s ∈ S the vertex vs is branched;

(2) vs1 6= vs2 for any two distinct elements s1, s2 of S;

(3) if s ∈ S then ϕ(|s|) + ϕ(vs) ≥ 1;

(4) if s ∈ S and −s ∈ S then ϕ(|s|) + ϕ(vs) + ϕ(v−s) ≥ 2.

Namely, a set S as above corresponds to the cell (f, S), where the function
f : E ∪B → N ∪ {0} is given by

f(a) =





ϕ(a) if a ∈ BΓ \ {vs : s ∈ S},
0 if a ∈ {vs : s ∈ S},
ϕ(a) +

∑
s∈S:|s|=a(ϕ(vs)− 1) if a ∈ EΓ .
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From what was said above it is not difficult to realize that the subposet
of cells of KnΓ which contain x (and which are distinct from x) coincides
with the poset Pϕ of nonempty sets S as above ordered by inclusion. The
poset Pϕ has the property that if S ∈ Pϕ and ∅ 6= R ⊂ S then R ∈ Pϕ, and
therefore it is the face poset of a simplicial complex Kϕ whose k-simplices
correspond to sets S ∈ Pϕ with cardinality k+1. But Pϕ is also the face poset
of the link of KnΓ at x, and thus this link is isomorphic to the simplicial
complex Kϕ.
The conditions (1)–(4) satisfied by sets S ∈ Pϕ have the property that a

set S of oriented edges in Γ satisfies them iff each subset of S with cardinality
1 or 2 does. This implies that the simplicial complex Kϕ is a flag complex,
and the lemma follows.

The above proposition, together with Corollary 2.1.3 and part (1) of
Theorem 0.1, implies the following.

2.3.2. Corollary. Configuration spaces of graphs are k(π, 1) spaces.

2.4. Locally isometric maps. A map f : Y → X between metric spaces
is locally isometric if each point y ∈ Y has a neighbourhood U ⊂ Y such
that the restricted map f |U : U → X is an isometry. The importance of this
notion in our context is due to the following.

2.4.1. Fact ([BH], Chapter II, Proposition 4.14(1), p. 201). Let X and
Y be complete connected metric spaces, and suppose that X is nonpositively
curved and Y is geodesic. Suppose also that f : Y → X is a locally isometric
mapping. Then for every y0 ∈ Y the induced homomorphism of fundamental
groups

f∗ : π1(Y, y0)→ π1(X, f(y0))

is injective.

Suppose now that X and Y are cube complexes with the canonical piece-
wise Euclidean length metrics. Let f : Y → X be a nondegenerate combi-
natorial map. For each vertex v of Y the map f induces in a unique way
a nondegenerate simplicial map fv : Yv → Xf(v) of the links at the corre-
sponding vertices.

2.4.2. Fact ([DJS], Proposition 1.7.1, p. 514). Let X and Y be finite-
dimensional cube complexes. A nondegenerate combinatorial map f : Y →
X is a local isometry if and only if for each vertex v of Y ,

(1) the map fv : Yv → Xf(v) is an embedding ;
(2) the image fv(Yv) is a full subcomplex in Xf(v), i.e. it contains each

simplex of Xf(v) all vertices of which are in fv(Yv).

2.5. Essential tori in KnΓ and the proof of Theorem 0.1(2). In this
subsection we construct locally isometric maps of k-dimensional tori into



78 J. ŚWIĄTKOWSKI

the complex KnΓ , for k ≤ min(b(Γ ), [n/2]). Since, due to Fact 2.4.1, such
maps are π1-injective, their existence proves part (2) of Theorem 0.1.

Let Q be a tree consisting of three edges meeting at a common vertex
q. Then the configuration space C2Q is homotopy equivalent to the circle
S1 and the complex K2Q is isomorphic to the boundary of a hexagon. Let
(K2Q)

k = K2Q × . . . × K2Q be the cartesian product of k copies of the
complex K2Q. Then (K2Q)

k is a cube complex whose underlying space is
homeomorphic to the k-dimensional torus. For each k ≤ min(b(Γ ), [n/2])
we will construct a locally convex mapping of the torus (K2Q)

k into the
complex KnΓ .

Fix a subset B = {b1, . . . , bk} of BΓ and a function ψ : EΓ ∪ BΓ →
N ∪ {0} such that ψ(a) ∈ {0, 1} for each a ∈ BΓ , ψ(bi) = 0 for i = 1, . . . , k
and
∑
a∈E∪B ψ(a) = n − 2k. For each 1 ≤ i ≤ k choose a combinatorial

immersion δi : Q→ Γ for which δi(q) = bi. Recalling that faces of the torus
(K2Q)

k correspond to tuples ((g1, R1), . . . , (gk, Rk)) of faces of the complex
K2Q, put

kB,ψ((g1, R1), . . . , (gk, Rk)) =
(
ψ +

k∑

i=1

(δi)∗gi,
k∑

i=1

δi(Ri)
)
,

where the functions (δi)∗gi : E ∪B → N ∪ {0} are defined by

(δi)∗gi(a) =
∑

a′ : δi(a′)=a

gi(a
′).

It is easy to check that kB,ψ is a well defined nondegenerate combinatorial
map of the torus (K2Q)

k into the complex KnΓ .

2.5.1. Lemma. The map kB,ψ is locally isometric.

Proof. The proof is based on Fact 2.4.2. Let ((g1, R1), . . . (gk, Rk)) be a
tuple representing a cell F of the complex (K2Q)

k. Note that each set Ri is
either empty or contains exactly one element. The dimension of the cell F
is then equal to the number of sets Ri which are nonempty. The sets δi(Ri)
are pairwise disjoint, since the oriented edges contained in them point to
distinct vertices bi of B. It follows that if j ≥ 1 then distinct j-cells of the
torus (K2Q)

k are mapped by kB,ψ onto distinct j-cells ofKnΓ . In particular,
the induced maps (kB,ψ)v for links are embeddings and thus satisfy condition
(1) of Fact 2.4.2.

To check condition (2) of Fact 2.4.2, let v = ((h1, ∅), . . . , (hk, ∅)) be a
vertex of (K2Q)

k and let E be a set of edges of (K2Q)
k which contain v.

It is sufficient to prove that if all the edges in the image set kB,ψ(E) are
contained in a single cell of KnΓ then all the edges in E are contained in a
single cell of (K2Q)

k.
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The edges in (K2Q)
k correspond to tuples ((gi, R1), . . . , (gk, Rk)) with

exactly one Ri nonempty. If the images of the edges from the set E under the
map kB,ψ are all contained in a single cell of KnΓ then the corresponding
nonempty sets Ri for those edges contain oriented edges s with distinct
vertices vs. This implies that for distinct edges in E the indices i of the
corresponding nonempty sets Ri are distinct. We may thus assume that
E = {ε1, . . . , εm} and εi = ((g1i, R1i), . . . , (gki, Rki)), where Rii 6= ∅ for
i = 1, . . . ,m.
Since all the edges εi are adjacent to the vertex v, the cell ((g

′
1, R

′
1), . . . ,

(g′k, R
′
k)) with

(g′i, R
′
i) =

{
(gii, Rii) if 1 ≤ i ≤ m,
(hi, ∅) if i > m,

is well defined and contains all the edges from the set E .
In view of Fact 2.4.2, this finishes the proof.

Part (2) of Theorem 0.1 follows directly from Fact 2.4.1 and the above
lemma.
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