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Abstract. We investigate curvature properties of hypersurfaces of a semi-Rieman-
nian space form satisfying R · C = LQ(S,C), which is a curvature condition of pseu-
dosymmetry type. We prove that under some additional assumptions the ambient space
of such hypersurfaces must be semi-Euclidean and that they are quasi-Einstein Ricci-
semisymmetric manifolds.

1. Introduction. A semi-Riemannian manifold (M, g), n = dimM ≥ 3,
is said to be an Einstein manifold if S = (κ/n)g on M , where S and κ
denote the Ricci tensor and the scalar curvature of (M, g), respectively. The
manifold (M, g), n ≥ 3, is called a quasi-Einstein manifold if at every point
x of M its Ricci tensor S has the form

(1) S = αg + βw ⊗ w, w ∈ T ∗xM, α, β ∈ R.

We refer to [11] for a review of recent results on quasi-Einstein hypersur-
faces.
Let M be a hypersurface in a semi-Riemannian space of constant cur-

vature Nn+1s (c), n ≥ 4, with signature (s, n+ 1− s). We denote by UH the
subset of M consisting of all points x at which the transformation A2 is not
a linear combination of the shape operator A and the identity transforma-
tion Id at x. If (1) is satisfied at a point x ∈ M − UH then, at x, the Weyl
tensor C of M vanishes or the Ricci tensor S is proportional to the met-
ric tensor ([10], Lemma 4.1(iii); see also Proposition 3.3(iii) of the present
paper). Therefore we restrict our considerations to the subset UH ⊂ M .
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Quasi-Einstein hypersurfaces in semi-Euclidean spaces E
n+1
s , n ≥ 4, were

investigated in [10]. We have the following

Theorem 1.1. Let M be a quasi-Einstein hypersurface in E
n+1
s , n ≥ 4,

and let (1) be satisfied on UH ⊂M .

(i) ([10], Theorem 5.1) On UH any of the following three conditions is
equivalent to each other :

(2)
(a) R · S = 0, (b) A3 = tr(A)A2 −

εκ

n− 1
A, ε = ±1,

(c) A(W ) = 0,

where the vector W is related to w by g(W,X) = w(X) for all X ∈ TxM
and w and α are defined by (1).
(ii) ([10], Corollary 5.2) If at every point x ∈ UH one of the conditions

(2)(a), (2)(b) or (2)(c) is satisfied then the following relations hold on UH :

(3)
(a) rank

(
S −

κ

n− 1
g

)
= 1, (b) R · C = Q(S,C),

(c) C · S = 0.

It is obvious that every semi-Riemannian semisymmetric as well as con-
formally flat manifold (M, g), n ≥ 4, satisfies the following condition of
pseudosymmetry type ([8]) at every point of M :

(∗) the tensors R · C and Q(S,C) are linearly dependent.

Semi-Riemannian manifolds satisfying (∗) were recently investigated in [8]
and [9]. The condition (∗) is equivalent to

(4) R · C = LQ(S,C)

on the set U = {x ∈M | Q(S,C) 6= 0 at x}, where L is some function on U .
Evidently, (3)(b) is (4) with L = const = 1. Examples of nonsemisymmetric
manifolds satisfying (∗) are given in [8]. We denote by UL the set of all
points of U at which L is nonzero.
In this paper we consider hypersurfaces M isometrically immersed in a

semi-Riemannian space of constant curvature Nn+1s (c), n ≥ 4, satisfying
(∗). In Section 2 we fix notations and review the curvature conditions of
pseudosymmetry type. In Section 3 we present preliminary results. Among
other things we prove (Proposition 3.12) that if (∗) holds on a hypersurface
M of Nn+1s (c), n ≥ 4, and UH ∩ UL is nonempty then the scalar curvature
κ̃ of Nn+1s (c) vanishes, i.e. the ambient space is a semi-Euclidean space.
Finally, in the last section we present our main results (Theorem 4.3).
In [5] it was shown that if at a point x ∈ UH of a quasi-Einstein hyper-

surface in E
n+1
s , n ≥ 4, the scalar curvature κ ofM is nonzero, (1) holds and

either (2)(a), (2)(b) or (2)(c) is satisfied then the tensor R·R is nonzero at x.
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In our opinion, the last result and Theorems 1.1 and 4.3 of the present paper
play an important role in the problem of equivalence of Ricci-semisymmetry
(R·S = 0) and semisymmetry (R·R = 0) on hypersurfaces of semi-Euclidean
spaces (see [9] and references therein).

2. Preliminaries. Let (M, g), n ≥ 3, be a connected semi-Riemannian
manifold of class C∞. We denote by ∇, R, C, S and κ the Levi-Civita
connection, the Riemann–Christoffel curvature tensor, the Weyl conformal
curvature tensor, the Ricci tensor and the scalar curvature of (M, g), re-
spectively. The Ricci operator S is defined by g(SX,Y ) = S(X,Y ), where
X,Y ∈ Ξ(M), Ξ(M) being the Lie algebra of vector fields on M . Next, we
define the endomorphisms R(X,Y ), C(X,Y ) and X ∧A Y of Ξ(M) by

(X ∧A Y )Z = A(Y, Z)X −A(X,Z)Y,

R(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z,

C(X,Y )Z = R(X,Y )Z

−
1

n− 2

(
X ∧g SY + SX ∧g Y −

κ

n− 1
X ∧g Y

)
Z,

where A is a symmetric (0, 2)-tensor and X,Y, Z ∈ Ξ(M). The Riemann–
Christoffel curvature tensor R, the Weyl conformal curvature tensor C and
the (0, 4)-tensor G of (M, g) are defined by

R(X1, X2, X3, X4) = g(R(X1, X2)X3, X4),

C(X1, X2, X3, X4) = g(C(X1, X2)X3, X4),

G(X1, X2, X3, X4) = g((X1 ∧g X2)X3, X4).

For a (0, k)-tensor field T , k ≥ 1, and a (0, 2)-tensor field A on (M, g) we
define the tensors R · T and Q(A, T ) by

(R · T )(X1, . . . , Xk;X,Y ) = − T (R(X,Y )X1, X2, . . . , Xk)

− . . .− T (X1, . . . , Xk−1,R(X,Y )Xk),

Q(A, T )(X1, . . . , Xk;X,Y ) = − T ((X ∧A Y )X1, X2, . . . , Xk)

− . . .− T (X1, . . . , Xk−1, (X ∧A Y )Xk).

In the same manner as R·S we define the (0, 4)-tensor C ·S. For (0, 2)-tensors
A and B we define their Kulkarni–Nomizu product A ∧B by

(A ∧B)(X1, X2;X,Y ) = A(X1, Y )B(X2, X) +A(X2, X)B(X1, Y )

−A(X1, X)B(X2, Y )−A(X2, Y )B(X1, X).

We note that if A = B then A = 12A∧A, where the (0, 4)-tensor A is defined
by

A(X1, X2, X3, X4) = A(X1, X4)A(X2, X3)−A(X1, X3)A(X2, X4).
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The Weyl tensor C can also be represented in the form

(5) C = R−
1

n− 2
g ∧ S +

κ

(n− 2)(n− 1)
G.

Let (M, g) be a semi-Riemannian manifold covered by a system of charts
{W ;xk}. We denote by gij , Rhijk, Sij , S

j
i = g

jkSik, S
2
ij = S

p
i Spj , Ghijk =

ghkgij − ghjgik and

Chijk = Rhijk −
1

n− 2
(ghkSij − ghjSik + gijShk − gikShj)(6)

+
κ

(n− 2)(n− 1)
Ghijk

the local components of the tensors g, R, S, S, S2, G and C, respectively.
In particular, for (4) we have (R · C)hijklm = LQ(S,C)hijklm, i.e.

(7) gpq(CpijkRqhlm + ChpjkRqilm + ChipkRqjlm + ChijpRqklm)

= L(ShlCmijk + SilChmjk + SjlChimk + SklChijm

− ShmClijk − SimChljk − SjmChilk − SkmChijl).

A profound investigation of properties of semisymmetric manifolds (with
R · R = 0) gave rise to another generalization: the pseudosymmetric man-
ifolds. A semi-Riemannian manifold (M, g) is said to be pseudosymmetric
([2], [15]) if

(∗)1 the tensors R ·R and Q(g,R) are linearly dependent

at every point of M . This is equivalent to R · R = LRQ(g,R) on the set
UR =

{
x ∈ M

∣∣R − κ
(n−1)nG 6= 0 at x

}
, where LR is some function on UR.

Evidently, every semi-Riemannian semisymmetric manifold is pseudosym-
metric.

It is easy to see that if (∗)1 holds on a semi-Riemannian manifold (M, g),
then

(∗)2 the tensors R · S and Q(g, S) are linearly dependent

at every point ofM . The converse is not true ([2], [15]). A semi-Riemannian
manifold (M, g) is called Ricci-pseudosymmetric if (∗)2 holds at every point
of M .

The condition (∗)2 is equivalent to R · S = LSQ(g, S) on the set US =
{x ∈ M |S 6= (κ/n)g at x}, where LS is some function on US . A semi-
Riemannian manifold (M, g) satisfying R·S = 0 is called Ricci-semisymmet-
ric. In general, Ricci-semisymmetric manifolds are not semisymmetric. How-
ever, under some additional assumptions the conditions R · S = 0 and
R ·R = 0 are equivalent (see e.g. [9] and references therein).
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As shown in [12] (Proposition 3.1), at every point of a hypersurface M
in Nn+1s (c) the following condition is fulfilled:

(∗)3 the tensors R ·R−Q(S,R) and Q(g, C) are linearly dependent.

More precisely,

(8) R ·R−Q(S,R) = −
(n− 2)κ̃

n(n+ 1)
Q(g, C)

on M , where κ̃ is the scalar curvature of the ambient space. Evidently, if
the ambient space is a semi-Euclidean space E

n+1
s then (8) reduces to

(9) R ·R = Q(S,R).

In [1] (Theorem 3.2) it was shown that every quasi-Einstein conformally flat
manifold is pseudosymmetric and satisfies (9). Note also that every pseu-
dosymmetric Einstein manifold satisfies (∗)3. Pseudosymmetric manifolds
satisfying (∗)3 were investigated in [7].
Semi-Riemannian manifolds fulfilling (∗)1, (∗)2, (∗)3, (∗) or other condi-

tions of this kind are calledmanifolds of pseudosymmetry type ([2], [15]). Hy-
persurfaces satisfying curvature conditions of pseudosymmetry type (pseu-
dosymmetry type hypersurfaces) were studied in many papers (see e.g. [3],
[6], [12] and [13]).

Using the above definitions we can prove the following

Proposition 2.1 ([10], Lemma 3.1). Let A and B be symmetric (0, 2)-
tensors on a semi-Riemannian manifold (M, g), n ≥ 3. Then Q(A,A∧B) =
−Q(B,A) on M . In particular , Q(g, g ∧ S) = −Q(S,G) and Q(S, g ∧ S) =
Q(S, S ∧ g) = −Q(g, S).

As an immediate consequence of the above result and (5) we obtain the
following identity which holds on every semi-Riemannian manifold:

(10) Q(g, C) = Q(g,R) +
1

n− 2
Q(S,G).

Proposition 2.2 ([6], Proposition 3.1(iii)). Let (M, g), n ≥ 4, be a
semi-Riemannian manifold satisfying the following three equalities at a point

x ∈ US ⊂M :

(a) R · S = LSQ(g, S), (b) R ·R = Q(S,R) + LQ(g, C),(11)

S =
κ

n− 1
g + βw ⊗ w, w ∈ T ∗x (M), β ∈ R.(12)

Then at x we have

(13) R · C = Q(S,C) + LQ(g,R) +
1

n− 2
(LS + L)Q(S,G).

As a consequence we have



86 R. DESZCZ ET AL.

Proposition 2.3 ([10], Corollary 3.1). Let (M, g), n ≥ 4, be a semi-
Riemannian Ricci-semisymmetric manifold satisfying the following three

equalities at every point of M : κ = 0, rank(S) = 1 and R · R = Q(S,R).
Then R · C = Q(S,C) on M .

We also have the following identity on every quasi-Einstein manifold.

Proposition 2.4 ([10], Proposition 3.1). On every semi-Riemannian
quasi-Einstein manifold (M, g), n ≥ 4, the following identity is satisfied :

(14) C · S = R · S + β

(
α−

κ

n− 1

)
Q(g, w ⊗ w).

To end this section we present a result related to semi-Riemannian man-
ifolds satisfying (∗).

Proposition 2.5 ([8], Theorem 3.1). Let (M, g), n ≥ 4, be a semi-
Riemannian manifold satisfying Q(S,C) = 0 at a point x ∈ M . If S 6= 0
and C 6= 0 at x, then R ·R = κ

n−1Q(g,R) at x.

It can be shown that on every semi-Riemannian manifold (M, g), n ≥ 4,
we have

(n− 2)(R · C − C ·R)hijklm −Q

(
S −

κ

n− 1
g,R

)

hijklm

= ghlAmijk

− ghmAlijk − gilAmhjk + gimAlhjk + gjlAmkhi − gjmAlkhi − gklAmjhi

+ gkmAljhi − gij(Ahklm +Akhlm)− ghk(Aijlm +Ajilm)

+ gik(Ahjlm +Ajhlm) + ghj(Aiklm +Akilm),

where the (0, 4)-tensorA is defined by Ahijk = S
s
h Rsijk. As a consequence of

this and the identity (R ·S)hijk = S
s
h Rsijk+S

s
i Rshjk we have the following

Proposition 2.6. On every Ricci-semisymmetric semi-Riemannian
manifold (M, g), n ≥ 4, the following identity is satisfied :

(15) (n− 2)(R · C − C ·R)hijklm −Q

(
S −

κ

n− 1
g,R

)

hijklm

= ghlAmijk − ghmAlijk − gilAmhjk + gimAlhjk

+ gjlAmkhi − gjmAlkhi − gklAmjhi + gkmAljhi.

3. Hypersurfaces. Let M , n = dimM ≥ 3, be a connected hyper-
surface isometrically immersed in a semi-Riemannian manifold (N, g̃). We
denote by g the metric tensor of M , induced from the metric tensor g̃.
Further, we denote by ∇̃ and ∇ the Levi-Civita connections of g̃ and g,
respectively. Let ξ be a local unit normal vector field on M in N and let
ε = g̃(ξ, ξ) = ±1. We can write the Gauss formula and the Weingarten
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formula of M in N in the following form:

∇̃XY = ∇XY + εH(X,Y )ξ, ∇̃Xξ = −A(X),

respectively, where X,Y are vector fields tangent to M , H is the second
fundamental tensor of M in N , A is the shape operator of M in N and
Hk(X,Y ) = g(Ak(X), Y ), tr(Hk) = tr(Ak), k ≥ 1, H1 = H and A1 = A.

We denote by R and R̃ the Riemann–Christoffel curvature tensors ofM and
N , respectively. We denote by UH the set of all points x ∈ M at which A

2

is not a linear combination of A and Id. Note that UH ⊂ US . The Gauss
equation of M in N has the form

(16) R(X1, X2, X3, X4) = R̃(X1, X2, X3, X4) + εH(X1, X2, X3, X4),

where X1, . . . , X4 are vector fields tangent to M and H =
1
2H ∧ H. Let

xr = xr(yh) be the local parametric expression ofM in (N, g̃), where yh and
xr are local coordinates of M and N , respectively, and h, i, j, k, l,m, p, q ∈
{1, . . . , n} and r, s, t, u ∈ {1, . . . , n+1}. Now we can write (16) in the form

(17) Rhijk = R̃rstuB
r
h B

s
i B

t
j B

u
k + εHhijk, B rh =

∂xr

∂yk
,

where R̃rstu, Rhijk, Hhijk = HhkHij −HhjHik and Hhk are the local com-

ponents of the tensors R̃, R,H and H, respectively.
If the ambient space (N, g̃) is conformally flat then the Weyl conformal

curvature tensor of M satisfies (cf. [12])

C = µG+ εH − ε
tr(H)

n− 2
g ∧H + ε

1

n− 2
g ∧H2,(18)

µ =
1

(n− 2)(n− 1)
(κ− 2S̃rsB

r
eB
s
fg
ef ) +

2κ̃

n(n− 2)
.(19)

Using (18) we can easily check that on every hypersurfaceM in a conformally
flat manifold (N, g̃) we have:

C ·H =
ε

n− 2
(Q(g,H3) + (n− 3)Q(H,H2)(20)

− tr(H)Q(g,H2)) + µQ(g,H),

C ·H2 = µQ(g,H2) + ε

(
Q(H,H3) +

1

n− 2
(− tr(H)Q(g,H3)(21)

+Q(g,H4)− tr(H)Q(H,H2))

)
.

From now on we will assume thatM is a hypersurface in a semi-Rieman-
nian space of constant curvature Nn+1s (c), n ≥ 4. Then (17) turns into

(22) Rhijk = εHhijk +
κ̃

n(n+ 1)
Ghijk,
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from which, by contraction with gij and transvection with Hrp , we easily get

Shk = ε(tr(H)Hhk −H
2
hk) +

(n− 1)κ̃

n(n+ 1)
ghk,(23)

HhrS
r
k = ε(tr(H)H

2
hk −H

3
hk) +

(n− 1)κ̃

n(n+ 1)
Hhk,(24)

H2hrS
r
k = ε(tr(H)H

3
hk −H

4
hk) +

(n− 1)κ̃

n(n+ 1)
H2hk.(25)

Moreover, contracting (23) with ghk we obtain

(26) κ = ε((tr(H))2 − tr(H2)) +
(n− 1)κ̃

n+ 1
.

We also note that the following identity holds on M ([3], eq. (22)):

(27) R ·R−
κ̃

n(n+ 1)
Q(g,R) = −Q(H2, H).

We quote the following statements.

Proposition 3.1. Let M be a hypersurface in Nn+1s (c), n ≥ 3.

(i) ([3], Theorem 3.1) If at a point x of M the tensor H has the form

(28) H = βv ⊗ v + γw ⊗ w, v, w ∈ T ∗x (M), β, γ ∈ R,

then at x we have

(29) R ·R =
κ̃

n(n+ 1)
Q(g,R).

(ii) ([13], Lemma 2.1) If at a point x of M the tensor H satisfies

(30) H2 = αH + βg, α, β ∈ R,

then at x we have

(31) R ·R =

(
κ̃

n(n+ 1)
− εβ

)
Q(g,R).

Proposition 3.2 ([4], Theorem 5.1). A hypersurface M in Nn+1s (c),
n ≥ 4, is pseudosymmetric if and only if at every point of M either (28) or
(30) is satisfied.

Proposition 3.3 ([10], Lemma 4.1). Let M be a hypersurface in

Nn+1s (c), n ≥ 4.

(i) If S = (κ/n)g at x ∈M then x ∈M − UH .
(ii) If C = 0 at x ∈M then x ∈M − UH .
(iii) If (1) is satisfied at x ∈M − UH then S = (κ/n)g or C = 0 at x.

(iv) If H = α̃g+ β̃w⊗w at x ∈M then (1) holds at x, where w ∈ T ∗xM,

α̃, β̃ ∈ R.
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Proposition 3.3(iv) and Theorem 4.1 of [12] yield

Corollary 3.1. On every hypersurface M in Nn+1s (c), n ≥ 4, we have
UH ⊂ UC .

Proposition 3.4 ([10], Lemma 4.2). If M is a hypersurface in a semi-
Euclidean space E

n+1
s , n ≥ 4, satisfying (2)(b) then C · S = 0 on M .

Proposition 3.5 ([10], Proposition 4.1). If M is a Ricci-pseudosym-
metric hypersurface in Nn+1s (c), n ≥ 4, then on UH ⊂M we have

R · S =
κ̃

n(n+ 1)
Q(g, S) and H3 = tr(H)H2 + λH,

where λ is some function on UH .

Lemma 3.1. If M is a Ricci-semisymmetric hypersurface in E
n+1
s , n≥4,

then on UH ⊂M we have

(32) (n− 2)(R · C − C ·R) = Q

(
S −

(
ελ+

κ

n− 1

)
g,R

)
,

where λ is defined in Proposition 3.5.

Proof. By making use of Proposition 3.5, (24) reduces to

(33) HhrS
r
k = −ελHhk.

Transvecting now (22) with S hl and using (33) and (22) we obtain

(34) Alijk = −ελRlijk.

Applying this in (15) we obtain (32). Our lemma is thus proved.

We now present some applications of Proposition 2.2.

Proposition 3.6 ([6], Proposition 5.1). Let M be a hypersurface in

Nn+1s (c), n ≥ 4. If

R · S = LSQ(g, S), S =
κ

n− 1
g + βw ⊗ w, β ∈ R, w ∈ T ∗x (M),

at a point x ∈ US ⊂M , then at x we have

(35) R ·C = Q(S,C)−
(n− 2)κ̃

n(n+ 1)
Q(g,R)+

1

n− 2

(
LS−

(n− 2)κ̃

n(n+ 1)

)
Q(S,G).

In particular, when x ∈ UH , Proposition 3.5 and (35) imply

Proposition 3.7 ([10], Theorem 4.2). Let M be a Ricci-pseudosymmet-
ric hypersurface in Nn+1s (c), n ≥ 4. If S = κ

n−1g+βw⊗w, β ∈ R, w ∈ T ∗xM ,
at every point x of UH then on UH we have

(36) R · C = Q(S,C)−
(n− 2)κ̃

n(n+ 1)
Q(g,R)−

(n− 3)κ̃

(n− 2)n(n+ 1)
Q(S,G).

The last result, together with Proposition 2.4, leads to
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Proposition 3.8 ([10], Corollary 4.1). Let M be a Ricci-semisymmetric
hypersurface in E

n+1
s , n ≥ 4. If S =

κ
n−1g + βw ⊗ w, β ∈ R, w ∈ T ∗xM , at

every point x of UH then on UH we have R · C = Q(S,C) and C · S = 0.

Next, we prove the following four propositions which will be used later.

Proposition 3.9. Let M be a hypersurface in Nn+1s (c), n ≥ 4, satisfy-
ing (∗). Then on UL ⊂M we have

C · S = 0,(37)

R · S =
1

n− 2
Q

(
g, S2 −

κ

n− 1
S

)
,(38)

n

n− 2
H4 =

n+ 2

n− 2
tr(H)H3 + α̃2H

2 + α̃1H + α̃0g,(39)

where

(40)

α̃2 = −
2

n− 2
(tr(H))2 −

εnκ

(n− 2)(n− 1)
+

εnκ̃

(n− 2)(n+ 1)
,

α̃1 = −
εnκ̃

(n− 2)(n+ 1)
tr(H)− tr(H) tr(H2) + tr(H3)

+
εnκ

(n− 2)(n− 1)
tr(H),

α̃0 =
εκ̃

(n− 2)(n+ 1)
(tr(H))2 −

εκ̃

(n− 2)(n+ 1)
tr(H2)

−
κ2

(n− 2)(n− 1)
+
1

n− 2
tr(H4)−

2

n− 2
tr(H) tr(H3)

+
1

n− 2
tr(H2)(tr(H))2 +

κκ̃

(n− 2)(n+ 1)
.

Proof. Let W be the (0, 4)-tensor with local components Whijk defined
by

(41) Whijk = S
p
hCpijk + S

p
jCpikh + S

p
kCpihj .

It is easy to verify that on every semi-Riemannian manifold we have

Whijk = S
p
hRpijk + S

p
jRpikh + S

p
kRpihj .

Applying the Gauss equation (22) we get

εWhijk = S
p
hHpkHij − S

p
hHpjHik + S

p
jHphHik − S

p
jHpkHih(42)

+ SpkHpjHih − S
p
kHphHij .

Further, (24) implies SphHpk = S
p
kHph, which means that (42) reduces to

(43) SphCpijk + S
p
jCpikh + S

p
kCpihj = 0.
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On the other hand, contracting (7) with gij we get LgijQ(S,C)hijklm = 0,
and since L is nonzero at every point of UL, we obtain

SpmCpklh + S
p
l Cpkhm + S

p
mCphlk + S

p
l Cphkm = 0.

Applying (43) we find

(44) (C · S)hklm = S
p
hCpklm + S

p
kCphlm = 0,

i.e. the equality (37). Hence, applying (6) we get (38). Further, contracting
(44) with ghm we obtain ShkChijk = 0, which, by (6), turns into

2

n− 2
S2ij + S

hkRhijk −
nκ

(n− 2)(n− 1)
Sij +

1

n− 2

(
κ2

n− 1
− tr(S2)

)
gij = 0.

Applying now (22)–(25) we find (39), completing the proof.

Proposition 3.10. Let M be a hypersurface in Nn+1s (c), n ≥ 4, satis-
fying (∗). Then on UL ⊂M we have

n

n− 2
H4 =

n+ 2

n− 2
tr(H)H3 + α2H

2 + α1H + α0g,(45)

tr(H) tr(H3) = 0,(46)

where

(47)

α2 = −
2

n− 2
(tr(H))2 − εnµ,

α1 = εnµ tr(H)− tr(H) tr(H
2) + tr(H3),

α0 = εµ(tr(H
2)− (tr(H))2) +

1

n− 2
((tr(H))2 tr(H2)

− tr(H) tr(H3) + tr(H4))

and µ, defined by (19), is expressed by

(48) µ =
κ

(n− 2)(n− 1)
−

2κ̃

(n− 2)(n− 1)n(n+ 1)
.

Proof. Applying in (44) the identity (23) we obtain

(49) tr(H)(C ·H)hklm − (C ·H
2)hklm = 0,

which, by making use of (20) and (21), turns into

(50)
1

n− 2
Q(g,H4)hklm =

2

n− 2
tr(H)Q(g,H3)hklm

−

(
εµ+

(tr(H))2

n− 2

)
Q(g,H2)hklm + εµ tr(H)Q(g,H)hklm

+ tr(H)Q(H,H2)hklm −Q(H,H
3)hklm.
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Contracting this with ghm we obtain (45). Further, from (45) we get

n

n− 2
tr(H4) =

n+ 2

n− 2
tr(H) tr(H3) + α2 tr(H

2) + α1 tr(H) + nα0.

This, by (47), reduces to (46), which completes the proof.

Proposition 3.11. Let M be a hypersurface in Nn+1s (c), n ≥ 4, satis-
fying (∗). If (30) is satisfied at a point x ∈ UL ⊂M then at x we have

(51) (tr(H)− α)κ̃ = 0.

Proof. Comparing (45) with (39) we obtain

(52) (α2 − α̃2)H
2 + (α1 − α̃1)H + (α0 − α̃0)g = 0,

which by (30) yields

(53) (α(α2 − α̃2) + α1 − α̃1)H + (β(α2 − α̃2) + α0 − α̃0)g = 0.

Using now (40) and (47) we find

α2 − α̃2 = −
εκ̃

n− 1
,(54)

α1 − α̃1 =
εκ̃

n− 1
tr(H).(55)

From (53), by our assumptions, it follows that α(α2 − α̃2) + α1 − α̃1 = 0.
Applying (55) we hence obtain (51), which completes the proof.

We now restrict our considerations to the subset UH ∩UL ⊂ U consisting
of all points of U at which the tensor H2 is not a linear combination of H
and g and the associated function L is nonzero.

Proposition 3.12. Let M be a hypersurface in Nn+1s (c), n ≥ 4, satis-
fying (∗). Then on UH ∩ UL we have

κ̃ = 0,(56)

n

n− 2
H4 =

n+ 2

n− 2
tr(H)H3 + β̃2H

2 + β̃1H + β̃0g,(57)

H3 = tr(H)H2 + λH + β0g, λ ∈ R,(58)

where

(59)

β̃2 = −
3n− 2

(n− 2)(n− 1)
(tr(H))2 +

n

(n− 2)(n− 1)
tr(H2),

β̃1 =
n

(n− 2)(n− 1)
(tr(H))3 −

n2 − 2n+ 2

(n− 2)(n− 1)
tr(H) tr(H2)

+ tr(H3),

β̃0 = −
1

(n− 2)(n− 1)
(tr(H))4 +

n+ 1

(n− 2)(n− 1)
(tr(H))2 tr(H2)
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−
1

(n− 2)(n− 1)
(tr(H2))2 −

2

n− 2
tr(H) tr(H3)

+
1

n− 2
tr(H4),

(60) β0 =
1

n
(− tr(H) tr(H2)− λ tr(H) + tr(H3)),

(61)

(a) λ =
1

n− 1
(tr(H2)− (tr(H))2), (b) λ = −

1

n− 1
εκ,

(c) µ+
1

n− 2
ελ = 0.

Proof. Let x ∈ UH∩UL. From (52) it follows that α2 = α̃2 at x. Applying
(40), (47) and (48) we get κ̃ = 0. Now (39) and (45) reduce to (57). Next,
applying (45) in (50) and using (47) we obtain

(62)
1

n
(tr(H3)− tr(H) tr(H2))Q(g,H) +

1

n
(tr(H))2Q(g,H2)

−
1

n
tr(H)Q(g,H3)− tr(H)Q(H,H2) +Q(H,H3) = 0,

which can be written in the form

Q

(
H −

1

n
tr(H)g,H3 − tr(H)H2 +

1

n
(tr(H) tr(H2)− tr(H3))g

)
= 0.

But the last relation, in view of Lemma 3.4 of [1], implies (58), where β0 is
defined by (60). Finally, using (57)–(59) and the fact that at every point of
UL the tensor H

2 is not a linear combination of H and g, we obtain (61)(a).
(61)(b) and (61)(c) are immediate consequences of (26), (56) and (19). Our
proposition is thus proved.

4. Main results

Proposition 4.1. Let M be a hypersurface in E
n+1
s , n ≥ 4, satisfying

(∗). Then on UH ∩ UL we have

β0 = 0,(63)

R · S = 0,(64)

S2 =
κ

n− 1
S,(65)

κ(L− 1) = 0.(66)

Moreover , if κ vanishes at a point x ∈ UH ∩ UL then at x we have

(67) rank(S) = 1.

Proof. First of all, we note that (20), by making use of (58) and (61)(c),
reduces to
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(68) C ·H =
n− 3

n− 2
εQ(H,H2).

Transvecting (44) with Hmq and symmetrizing the resulting equality in q, l
we obtain

Sph(H
m
q Cmlkp +H

m
l Cmqkp) + S

p
k(H

m
q Cmlhp +H

m
l Cmqhp) = 0,

which, by (24), (25), (56), (58) and (68), reduces to

β0(−2(HjkHhl +HlkHhj) + ghlH
2
kj + ghjH

2
kl + gklH

2
hj + gkjH

2
hl) = 0.

Contracting this with gkl and using the fact that at every point of UL the
tensor H2 is not a linear combination of H and g, we get (63). Now (58)
reduces to H3 − tr(H)H2 = λH. Applying this and (56) in (24) we obtain
HhrS

r
k = 0. Transvecting now (22) with S

h
l and using the last relation we

easily obtain (64). Further, (38), by (64), reduces to Q
(
g, S2 − κ

n−1S
)
= 0,

which, by an application of Lemma 2.4(i) of [12], shows that S2− κ
n−1S = τg,

τ ∈ R, at every x ∈ UL. From the last relation, by making use of (23), (56),
(58), (61)(a), (61)(b) and (63), we find τ = 0, which means that (65) holds
on UL.
We now prove that (66) holds on UL. First of all we note that (4), in

view of (64), reduces to R · R = LQ(S,C), which, by (27) and (56), turns
into

−Q(H2, H)hijklm = LQ(S,C)hijklm.

Contracting this with ghm and using (43) we obtain

(69) (tr(H2)− λ)(HlkHij −HljHik) + tr(H)(HikH
2
lj −HijH

2
kl −HklH

2
ij

+HljH
2
ik)− (H

2
ljH

2
ik −H

2
lkH

2
ij)

= L(κCiljk − ε(tr(H)H
p
i −H

2p
i )Cpljk).

Transvecting this with Hiq and using (58), (61)(a) and (63) we find

(70) (n− 1)λ(HlkH
2
qj −HljH

2
qk) + λ tr(H)(HqkHlj −HqjHkl)

+ λ(HljH
2
qk −HlkH

2
qj −HqkH

2
lj +HqjH

2
lk) =

n− 2

n− 1
LκHpqCpljk.

Symmetrizing this in l, j and using (68) we obtain (66).
We now assume that κ vanishes at x ∈ UH ∩ UL. Thus (58) and (65)

reduce to

H3 = tr(H)H2,(71)

S2 = 0,(72)

respectively. Transvecting (22) and (6) with Shl and using (24), (56), (71)
and (72) we find

Spl Rpijk = 0,(73)
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Spl Cpijk = −
1

n− 2
(SlkSij − SljSik).(74)

Next, transvecting (7) with Smp and using (73) and (74) we get

(75) Sli(ShkSpj − ShjSpk) + Slh(SpkSij − SpjSik)

+ Slj(ShkSip − ShpSik) + Slk(ShpSij − ShjSip) = 0.

Let V , with local components V p, be a vector at x such that the covector w
with local components Wk = V

pSpk is nonzero at x. Transvecting now (75)
with V l we obtain

Wi(ShkSpj − ShjSpk) +Wh(SpkSij − SpjSik)

+Wj(ShkSip − ShpSik) +Wk(ShpSij − ShjSip) = 0,

which, in view of Lemma 4 of [14], implies (67). Our proposition is thus
proved.

Theorem 4.1. Let M be a hypersurface in E
n+1
s , n ≥ 4, satisfying (∗).

Then R · C = Q(S,C) on UH ∩ UL ⊂M .

Proof. First of all we note that (9) holds on M . Further, Proposition
3.11 states that κ(L− 1) = 0 on UL. In the case when κ vanishes at a point
x ∈ UH ∩ UL, our assertion is a consequence of Propositions 2.3 and 4.1.

Theorem 4.2. Let M be a hypersurface in E
n+1
s , n ≥ 4, satisfying (∗).

Then at every point x of UH ∩ UL the Ricci tensor S has the form

(76) S =
κ

n− 1
g + βw ⊗ w, β ∈ R, w ∈ T ∗xM, A(W ) = 0,

where the vector W is related to the covector w by w(X) = g(W,X) for all
X ∈ Tx(M).

Proof. From Theorem 4.1 it follows that R · C = Q(S,C) on UH ∩ UL.
This by (64) turns into R ·R = Q(S,C). Applying (5) we get

R ·R = Q(S,R)−
1

n− 2
Q(S, g ∧ S) +

κ

(n− 1)(n− 2)
Q(S,G),

which, by (9), reduces to Q(S, g∧S) = κ
n−1Q(S,G). Applying now Proposi-

tion 2.1 we find Q
(
g, S− κ

n−1g∧S
)
= 0, whence it follows that ([2], Section

2.3)

(77) S −
κ

n− 1
g ∧ S = ψ̃G

on UH ∩ UL, where ψ̃ is some function on UH ∩ UL. Note that (77) can be
represented in the form

(78) A = ψG,
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where A = S − κ
n−1g and ψ = ψ̃ +

κ2

(n−1)2 . Further, (78) implies

(79) Q(A,A) = ψQ(A,G).

Evidently, Q(A,A) = 0. Thus from (79) we easily get

ψ

(
A−
1

n
tr(A)g

)
= 0.

If A = (1/n) tr(A)g at a point x ∈ UH ∩ UL, then S = (κ/n)g, a contradic-
tion. Thus ψ vanishes on UH ∩ UL and, in consequence, at every point of
UH ∩ UL we have (76), which completes the proof.

Proposition 4.2. Let M be a Ricci-semisymmetric hypersurface in

E
n+1
s , n ≥ 4, satisfying (∗). Then on UH ∩ UL we have

(80) C ·R =
n− 3

n− 2
Q(S,R).

Proof. From Theorems 1.1(i) and 4.2 it follows that (2)(b) holds on
UH ∩ UL. Now Lemma 3.1 implies

(81) (n− 2)(R · C − C ·R)hijklm = Q(S,R)hijklm.

This, by making use of (9), leads to (80), which completes the proof.

Propositions 3.8, 3.12 and 4.2 and Theorems 4.1 and 4.2 lead to our main
result.

Theorem 4.3. Let M be a hypersurface in Nn+1s (c), n ≥ 4, satisfying
(∗). If UH∩UL 6= ∅ then the ambient space is semi-Euclidean and on UH∩UL
we have

(82)

R · S = 0, C · S = 0, R · C = Q(S,C),

C ·R =
n− 3

n− 2
Q(S,R), A3 = tr(A)A2 −

εκ

n− 1
A, ε = ±1,

A(W ) = 0, S =
κ

n− 1
g + βw ⊗ w, w ∈ T ∗xM, β ∈ R,

where g(W,X) = w(X) for all X ∈ TxM .

Examples of hypersurfaces satisfying (82), with UH ∩UL nonempty, were
found in [5].
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