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HISTORIC FORCING FOR Depth

BY
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Abstract. We show that, consistently, for some regular cardinals θ < λ, there exists
a Boolean algebra B such that |B| = λ+ and for every subalgebra B′ ⊆ B of size λ+ we
have Depth(B′) = θ.

0. Introduction. The present paper is concerned with forcing a Boolean
algebra which has some prescribed properties of Depth. Let us recall that,
for a Boolean algebra B, its depth is defined as follows:

Depth(B) = sup{|X| : X ⊆ B is well-ordered by the Boolean ordering},

Depth+(B) = sup{|X|+ : X ⊆ B is well-ordered by the Boolean ordering}.

(Depth+(B) is used to deal with attainment properties in the definition
of Depth(B); see e.g. [5, §1].) The depth (of Boolean algebras) is among
cardinal functions that have more algebraic origins, and their relations to
“topological fellows” is often indirect, though sometimes very surprising. For
example, if we define

DepthH+(B) = sup{Depth(B/I) : I is an ideal in B},

then for any (infinite) Boolean algebra B we will find that DepthH+(B) is
the tightness t(B) of the algebra B (or the tightness of the topological space
Ult(B) of ultrafilters on B; see [3, Theorem 4.21]). A somewhat similar func-
tion to DepthH+ is obtained by taking sup{Depth(B

′) : B′ is a subalgebra
of B}, but clearly this brings nothing new: it is the old Depth. But if one
wants to understand the behaviour of the depth for subalgebras of the
Boolean algebra considered, then looking at the following subalgebra Depth
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relation may be very appropriate:

DepthSr(B) = {(κ, µ) : there is an infinite subalgebra B′ of B such that

|B′| = µ and Depth(B′) = κ}.

A number of results related to this relation are presented by Monk in [3,
Chapter 4]. There he asks if there are a Boolean algebra B and an infinite
cardinal θ such that (θ, (2θ)+) ∈ DepthSr(B), while (ω, (2

θ)+) 6∈ DepthSr(B)
(see Monk [3, Problem 14]; we refer the reader to Chapter 4 of Monk’s
book [3] for the motivation and background of this problem). Here we will
partially answer this question, showing that it is consistent that there are
such B and θ. The question if that can be done in ZFC remains open.

Our consistency result is obtained by forcing, and the construction of the
required forcing notion is interesting per se. We use the method of historic
forcing which was first applied in Shelah and Stanley [9]. The reader familiar
with [9] will notice several correspondences between the construction here
and the method used there. However, we do not rely on that paper and our
presentation here is self-contained.

Let us describe how our historic forcing notion is built. We fix two (reg-
ular) cardinals θ, λ and our aim is to force a Boolean algebra Ḃθλ such that

|Ḃθλ| = λ
+ and for every subalgebra B ⊆ Ḃθλ of size λ

+ we have Depth(B) = θ.

The algebra Ḃθλ will be generated by 〈xi : i ∈ U̇〉 for some set U̇ ⊆ λ
+.

A condition p will be an approximation to the algebra Ḃθλ, it will carry the
information on what the subalgebra Bp = 〈xi : i ∈ u

p〉
Ḃθλ
is like for some

up ⊆ λ+. A natural way to describe algebras in this context is by listing
ultrafilters (or: homomorphisms into {0, 1}):

Definition 1. For a set w and a family F ⊆ 2w we define

cl(F ) = {g ∈ 2w : (∀u ∈ [w]<ω)(∃f ∈ F )(f↾u = g↾u)}.

Let B(w,F ) be the Boolean algebra generated freely by {xα : α ∈ w} except
that if u0, u1 ∈ [w]

<ω and there is no f ∈ F such that f↾u0 ≡ 0, f↾u1 ≡ 1
then

∧

α∈u1

xα ∧
∧

α∈u0

(−xα) = 0.

This description of algebras is easy to handle, for example:

Proposition 2 (see [8, 2.6]). Let F ⊆ 2w. Then:

(1) Each f ∈ F extends (uniquely) to a homomorphism from B(w,F ) to

{0, 1} (i.e. it preserves the equalities from the definition of B(w,F )). If F is
closed , then every homomorphism from B(w,F ) to {0, 1} extends exactly one
element of F .
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(2) If τ(y0, . . . , yl) is a Boolean term and α0, . . . , αl ∈ w are distinct
then

B(w,F ) |= τ(xα0 , . . . , xαl) 6= 0 if and only if

(∃f ∈ F )({0, 1} |= τ(f(α0), . . . , f(αk)) = 1).

(3) If w ⊆ w∗, F ∗ ⊆ 2w
∗

and

(∀f ∈ F )(∃g ∈ F ∗)(f ⊆ g) and (∀g ∈ F ∗)(g↾w ∈ cl(F ))

then B(w,F ) is a subalgebra of B(w∗,F∗).

So each condition p in our forcing notion Pθλ will have a set u
p ∈ [λ+]<λ

and a closed set F p ⊆ 2u
p

(and the relevant algebra will be Bp = B(up,Fp)).
But to make the forcing notion work, we will have to put more restrictions
on our conditions, and we will be taking only those conditions that have
to be taken to make the arguments work. For example, we want that car-
dinals are not collapsed by our forcing, and demanding that Pθλ is λ

+-cc
(and somewhat (<λ)-closed) is natural in this context. How do we argue
that a forcing notion is λ+-cc? Typically we start with a sequence of λ+

distinct conditions, we carry out some “cleaning procedure” (usually involv-
ing the ∆-lemma etc.), and we end up with (at least two) conditions that
“can be put together”. Putting together two (or more) conditions that are
approximations to a Boolean algebra means amalgamating them. There are
various ways to amalgamate conditions—we will pick one that will work
for several purposes. Then, once we declare that some conditions forming a
“clean” ∆-sequence of length θ are in Pθλ, we will be bound to declare that
the amalgamation is in our forcing notion. The amalgamation (and natural
limits) will be the only way to build new conditions from the old ones, but
the description above still misses an important factor. So far, a condition
does not have to know what are the reasons for it to be called to Pθλ. This
information is the history of the condition and it will be encoded by two
functions hp, gp. (Actually, these functions will give histories of all elements
of up describing why and how those points were incorporated into up. Thus
both functions will be defined on up × ht(p), were ht(p) is the height of the
condition p, that is, the step in our construction at which the condition p is
created.) We will also want that our forcing is suitably closed, and getting
“(<λ)-strategically closed” would be fine. To make that happen we will have
to deal with two relations on Pθλ: ≤pr and≤. The first (“pure”) is (<λ)-closed
and it will help in getting the strategic closure of the second (main) one.
In some sense, the relation ≤pr represents “the official line in history”, and
sometimes we will have to rewrite that official history, see Definition 6 and
Lemma 7 (on changing history see also Orwell [4]).
The forcing notion Pθλ has some other interesting features. (For example,

conditions are very much like fractals, they contain many self-similar pieces:
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see Definition 10 and Lemma 11.) The method of historic forcing notions
could be applicable to other problems, and this is why in our presentation
we separated several observations of general character (presented in the first
section) from the problem specific arguments (Section 2).

Notation. Our notation is standard and compatible with that of clas-
sical textbooks on set theory (like Jech [1]) and Boolean algebras (like Monk
[2], [3]). However in forcing considerations we keep the older tradition that

the stronger condition is the greater one.

Let us list some of our notation and conventions.

1. Throughout the paper, θ, λ are fixed regular infinite cardinals, θ < λ.
2. A name for an object in a forcing extension is denoted with a dot

above (like Ẋ) with one exception: the canonical name for a generic filter in
a forcing notion P will be called ΓP. For a P-name Ẋ and a P-generic filter
G over V, the interpretation of the name Ẋ by G is denoted by ẊG.
3. i, j, α, β, γ, δ, . . . will denote ordinals.
4. For a set X and a cardinal λ, [X]<λ stands for the family of all subsets

of X of size less than λ. The family of all functions from Y to X is called
XY . If X is a set of ordinals then its order type is denoted by otp(X).
5. In Boolean algebras we use ∨ (and

∨

), ∧ (and
∧

) and − for the
Boolean operations. If B is a Boolean algebra and x ∈ B then x0 = x,
x1 = −x.
6. For a subset Y of an algebra B, the subalgebra of B generated by Y

is denoted by 〈Y 〉B.

Acknowledgements. We would like to thank the referee for valuable
comments and suggestions.

2. The forcing and its basic properties. Let us start with the def-
inition of the forcing notion Pθλ. By induction on α < λ we will define sets
P θ,λα of conditions, and for each p ∈ P θ,λα we will define up, F p, ht(p), hp

and gp. Also we will define relations ≤α and ≤αpr on P
θ,λ
α . Our inductive

requirements are:

(i)α for each p ∈ P
θ,λ
α : u

p ∈ [λ+]<λ, ht(p) ≤ α, F p ⊆ 2u
p

is a non-empty
closed set, gp is a function with domain dom(gp) = up× ht(p) and values of
the form (l, τ), where l < 2 and τ is a Boolean term, and hp : up × ht(p)→
θ + 2 is a function,
(ii)α ≤

α,≤αpr are transitive and reflexive relations on P
θ,λ
α , and ≤

α ex-
tends ≤αpr,

(iii)α if p, q ∈ P
θ,λ
α , p ≤

α q, then up ⊆ uq, ht(p) ≤ ht(q), and F p =
{f↾up : f ∈ F q}, and if p ≤αpr q, then for every i ∈ u

p and ξ < ht(p) we have
hp(i, ξ) = hq(i, ξ) and gp(i, ξ) = gq(i, ξ),
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(iv)α if β < α then P
θ,λ
β ⊆ P

θ,λ
α , ≤

α
pr extends ≤

β
pr, and ≤

α extends ≤β .

For a condition p ∈ P θ,λα , we will also declare that Bp = B(up,Fp) (the
Boolean algebra defined in Definition 1).

We define P θ,λ0 = {〈ξ〉 : ξ < λ+} and for p = 〈ξ〉 we let F p = 2{ξ},
ht(p) = 0 and hp = ∅ = gp. The relations ≤0pr and ≤

0 are both the equality.
[Clearly these objects are as declared, i.e., clauses (i)0–(iv)0 hold true.]
If γ < λ is a limit ordinal, then we put

P ∗γ = {〈pξ : ξ < γ〉 : (∀ξ < ζ < γ)(pξ ∈ P
θ,λ
ξ & ht(pξ) = ξ & pξ ≤

ζ
pr pζ)},

P θ,λγ =
⋃

α<γ

P θ,λα ∪ P
∗
γ ,

and for p = 〈pξ : ξ < γ〉 ∈ P
∗
γ we let

up =
⋃

ξ<γ

upξ , F p = {f ∈ 2u
p

: (∀ξ < γ)(f↾upξ ∈ F pξ)}, ht(p) = γ

and hp =
⋃

ξ<γ h
pξ and gp =

⋃

ξ<γ g
pξ . We define ≤γ and ≤γpr by:

p ≤γpr q if and only if

either p, q ∈ P θ,λα , α < γ and p ≤
α
pr q,

or q = 〈qξ : ξ < γ〉 ∈ P
∗
γ , p ∈ P

θ,λ
α and p ≤αpr qα for some α < γ,

or p = q;

p ≤γ q if and only if

either p, q ∈ P θ,λα , α < γ and p ≤
α q,

or q = 〈qξ : ξ < γ〉 ∈ P
∗
γ , p ∈ P

θ,λ
α and p ≤α qα for some α < γ,

or p = 〈pξ : ξ < γ〉 ∈ P
∗
γ , q = 〈qξ : ξ < γ〉 ∈ P

∗
γ and

(∃δ < γ)(∀ξ < γ)(δ ≤ ξ ⇒ pξ ≤
ξ qξ).

[It is straightforward to show that clauses (i)γ–(iv)γ hold true.]
Suppose now that α < λ. Let P ∗α+1 consist of all tuples

〈ζ∗, τ∗, n∗, u∗, 〈pξ, vξ : ξ < θ〉〉

such that for each ξ0 < ξ1 < θ:

(α) ζ∗ < θ, n∗ < ω, τ∗ = τ∗(y1, . . . , yn∗) is a Boolean term, u
∗ ∈ [λ+]<λ,

(β) pξ0 ∈ P
θ,λ
α , ht(p) = α, vξ0 ∈ [u

pξ0 ]n
∗

,
(γ) the family {upξ : ξ < θ} forms a ∆-system with heart u∗ and upξ0 \u∗

6= ∅ and

sup(u∗) < min(upξ0 \ u∗) ≤ sup(upξ0 \ u∗) < min(upξ1 \ u∗),

(δ) otp(upξ0 ) = otp(upξ1 ) and if H : upξ0 → upξ1 is the order iso-
morphism then H↾u∗ is the identity on u∗, F pξ0 = {f ◦ H : f ∈ F pξ1},
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H[vξ0 ] = vξ1 and

(∀j ∈ upξ0 )(∀β < α)(hpξ0 (j, β) = hpξ1 (H(j), β) &

gpξ0 (j, β) = gpξ1 (H(j), β)).

We put P θ,λα+1 = P
θ,λ
α ∪ P

∗
α+1 and for p = 〈ζ

∗, τ∗, n∗, u∗, 〈pξ, vξ : ξ < θ〉〉 ∈
P ∗α+1 we let u

p =
⋃

ξ<θ u
pξ and

F p = {f ∈ 2u
p

: (∀ξ < θ)(f↾upξ ∈ F pξ) and for all ξ < ζ < θ,

f(σmaj(τ3·ξ, τ3·ξ+1, τ3·ξ+2)) ≤ f(σmaj(τ3·ζ , τ3·ζ+1, τ3·ζ+2))},

where τξ = τ
∗(xi : i ∈ vξ) for ξ < θ (so τξ is an element of the algebra

Bpξ = B(upξ ,Fpξ )), and σmaj(y0, y1, y2) = (y0 ∧ y1) ∨ (y0 ∧ y2) ∨ (y1 ∧ y2).
Next we let ht(p) = α+1 and we define functions hp, gp on up × (α+1) by

hp(j, β) =











hpξ(j, β) if j ∈ upξ , ξ < θ, β < α,
θ if j ∈ u∗, β = α,
θ + 1 if j ∈ upζ∗ \ u∗, β = α,
ξ if j ∈ upξ \ u∗, ξ < θ, ξ 6= ζ∗, β = α,

gp(j, β) =







gpξ(j, β) if j ∈ upξ , ξ < θ, β < α,
(1, τ∗) if j ∈ vξ, ξ < θ, β = α,
(0, τ∗) if j ∈ upξ \ vξ, ξ < θ, β = α.

Next we define the relations ≤α+1pr and ≤
α+1 by:

p ≤α+1pr q if and only if

either p, q ∈ P θ,λα and p ≤αpr q,

or q = 〈ζ∗, τ∗, n∗, u∗, 〈qξ, vξ : ξ < θ〉〉 ∈ P
∗
α+1, p ∈ P

θ,λ
α , and p ≤

α
pr qζ∗ ,

or p = q;

p ≤α+1 q if and only if

either p, q ∈ P θ,λα and p ≤α q,
or q = 〈ζ∗, τ∗, n∗, u∗, 〈qξ, vξ : ξ < θ〉〉 ∈ P

∗
α+1, p ∈ P

θ,λ
α , and p ≤

α qξ for
some ξ < θ,

or p = 〈ζ∗∗, τ∗, n∗, u∗, 〈pξ, vξ : ξ < θ〉〉, q = 〈ζ
∗, τ∗, n∗, u∗, 〈qξ, vξ : ξ < θ〉〉

are from P ∗α+1 and

(∀ξ < θ)(pξ ≤
α qξ & u

pξ = uqξ).

[Again, it is easy to show that clauses (i)α+1–(iv)α+1 are satisfied.]
After the construction is carried out we let

Pθλ =
⋃

α<λ

P θ,λα , ≤pr =
⋃

α<λ

≤αpr, ≤ =
⋃

α<λ

≤α.

One easily checks that≤pr is a partial order on Pθλ, the relation≤ is transitive
and reflexive, and ≤pr ⊆ ≤.
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Lemma 3. Let p, q ∈ Pθλ.

(1) If p ≤ q then ht(p) ≤ ht(q), up ⊆ uq and F p = {f↾up : f ∈ F q} (so
Bp is a subalgebra of Bq). If p ≤ q and ht(p) = ht(q), then q ≤ p.

(2) For each j ∈ up, the set {β < ht(p) : hp(j, β) < θ} is finite.

(3) If p ≤pr q and i ∈ u
p, then hq(i, β) ≥ θ for all β such that ht(p) ≤

β < ht(q).

(4) If i, j ∈ up are distinct , then there is β < ht(p) such that θ 6=
hp(i, β) 6= hp(j, β) 6= θ.

(5) For each finite set X ⊆ ht(p) there is i ∈ up such that

{β < ht(p) : hp(i, β) < θ} = X.

(6) If p ≤pr q then there is a ≤pr-increasing sequence 〈pξ : ξ ≤ ht(p)〉 ⊆
Pθλ such that pht(p) = p, pht(q) = q and ht(pξ) = ξ (for ξ ≤ ht(p)). (In
particular , if p ≤pr q and ht(p) = ht(q) then p = q.)

(7) If ht(p) = γ is a limit ordinal and p = 〈pξ : ξ < γ〉, then for each
i ∈ up and ξ < γ,

i ∈ upξ if and only if (∀ζ < γ)(ξ ≤ ζ ⇒ hp(i, ζ) ≥ θ).

Proof. (1) Should be clear (an easy induction).

(2) Suppose that p ∈ Pθλ and j ∈ u
p are a counterexample with the

minimal possible value of ht(p). Necessarily ht(p) is a limit ordinal, p =
〈pξ : ξ < ht(p)〉, ht(pξ) = ξ and ζ < ξ < ht(p) ⇒ pζ ≤pr pξ. Let ξ < ht(p)
be the first ordinal such that j ∈ upξ . By the choice of p, the set {β ≤ ξ :
hp(j, β) < θ} is finite, but clearly hp(j, β) ≥ θ for all β ∈ (ξ, ht(p)).

(3) An easy induction on ht(q) (with fixed p).

(4) We show this by induction on ht(p). Suppose that ht(p) = α+ 1, so
p = 〈ζ∗, τ∗, n∗, u∗, 〈pξ, vξ : ξ < θ〉〉, and i, j ∈ u

p are distinct. If i, j ∈ upξ for
some ξ < θ, then by the inductive hypothesis we find β < α such that

θ 6= hp(i, β) = hpξ(i, β) 6= hpξ(j, β) = hp(j, β) 6= θ.

If i ∈ upξ\u∗, j ∈ upζ \u∗ and ξ, ζ < θ are distinct, then look at the definition
of hp(i, α), hp(j, α)—these two values cannot be equal (and both are distinct
from θ). Finally suppose that ht(p) is limit, so p = 〈pξ : ξ < ht(p)〉. Take
ξ < ht(p) such that i, j ∈ upξ and apply the inductive hypothesis to pξ
getting β < ξ such that hp(i, β) 6= hp(j, β) (and both are not θ).

(5) Again, it goes by induction on ht(p). First consider a limit stage, and
suppose that ht(p) = γ is a limit ordinal, X ∈ [γ]<ω and p = 〈pξ : ξ < γ〉.
Let ξ < γ be such that X ⊆ ξ. By the inductive hypothesis we find i ∈ upξ

such that {β < ξ : hp(i, β) < θ} = X. Applying clause (3) we may conclude
that this i is as required. Now consider a successor case ht(p) = α + 1. Let
p = 〈ζ∗, τ∗, n∗, u∗, 〈pξ, vξ : ξ < θ〉〉, and let ξ < θ be ζ

∗ if α ∈ X, and ζ∗ + 1
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otherwise. Apply the inductive hypothesis to pξ and X ∩ α to get suitable
i ∈ upξ , and note that this i also works for p and X.
(6), (7) Straightforward.

Definition 4. We say that conditions p, q ∈ Pθλ are isomorphic if ht(p)
= ht(q), otp(up) = otp(uq), and if H : up → uq is the order isomorphism,
then for every β < ht(p),

(∀j ∈ up)(hp(j, β) = hq(H(j), β) & gp(j, β) = gp(H(j), β)).

[In this situation we may say that H is the isomorphism from p to q.]

Lemma 5. Suppose that q0, q1 ∈ Pθλ are isomorphic conditions and H is
the isomorphism from q0 to q1.

(1) If ht(q0) = ht(q1) = γ is a limit ordinal , ql = 〈q
l
ξ : ξ < γ〉 (for l < 2),

then H↾uq
0
ξ is an isomorphism from q0ξ to q

1
ξ .

(2) If ht(q0) = ht(q1) = α + 1, α < λ, and ql = 〈ζ
∗
l , τ
∗
l , n

∗
l , u
∗
l , 〈q

l
ξ, v
l
ξ :

ξ < θ〉〉 (for l < 2), then ζ∗0 = ζ
∗
1 , τ

∗
0 = τ

∗
1 , n

∗
0 = n

∗
1, H↾uq

0
ξ is an isomor-

phism from q0ξ to q
1
ξ and H[v

0
ξ ] = v

1
ξ (for ξ < θ).

(3) F q0 = {f ◦H : f ∈ F q1}.
(4) Assume p0 ≤ q0. Then there is a unique condition p1 ≤ q1 such that

H↾up0 is the isomorphism from p0 to p1. [The condition p1 will be called
H(p0).]

Proof. (1), (2) Straightforward (for (1) use Lemma 3(7)).
(3), (4) Easy inductions on ht(q0) using (1), (2) above.

Definition 6. By induction on α < λ, for conditions p, q ∈ P θ,λα such
that p ≤α q, we define the p-transformation Tp(q) of q.

• If α = 0 (so necessarily p = q) then Tp(q) = p.
• Assume that ht(q) = α + 1 and q = 〈ζ∗, τ∗, n∗, u∗, 〈qξ, vξ : ξ < θ〉〉. If

p ≤ qξ for some ξ < θ, then let ξ
∗ be such that p ≤ qξ∗ . Next for ξ < θ let

q′ξ = THξ∗,ξ(p)(qξ), where Hξ∗,ξ is the isomorphism from qξ∗ to qξ. Define
Tp(q) = 〈ξ

∗, τ∗, n∗, u∗, 〈q′ξ, vξ : ξ < θ〉〉.

Suppose now that p = 〈ζ∗∗, τ∗, n∗, u∗, 〈pξ, vξ : ξ < θ〉〉 and u
pξ = uqξ ,

pξ ≤ qξ (for ξ < θ). Let q
′
ξ = Tpξ(qξ) and put

Tp(q) = 〈ζ
∗∗, τ∗, n∗, u∗, 〈q′ξ, vξ : ξ < θ〉〉.

• Assume now that ht(q) is a limit ordinal and q = 〈qξ : ξ < ht(q)〉.
If ht(p) < ht(q) then p ≤ qε for some ε < ht(q), and we may choose q

′
ξ

(for ξ < ht(q)) such that ht(q′ξ) = ξ, ξ < ξ
′ < ht(q) ⇒ q′ξ ≤pr q

′
ξ′ , and

q′ζ = Tp(qζ) for ζ ∈ [ε, ht(q)). Next we let Tp(q) = 〈q
′
ζ : ζ < θ〉.

If ht(p) = ht(q), p = 〈pξ : ξ < ht(p)〉 and pξ ≤ qξ for ξ > δ (for some
δ < ht(p)) then we define Tp(q) = p.
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To show that the definition of Tp(q) is correct one proves inductively
(parallel to the definition of the p-transformation of q) the following facts.

Lemma 7. Assume p, q ∈ Pθλ, p ≤ q. Then:

(1) Tp(q) ∈ Pθλ, u
Tp(q) = uq, ht(Tp(q)) = ht(q),

(2) p ≤pr Tp(q) ≤ q ≤ Tp(q),
(3) ht(p) = ht(q)⇒ Tp(q) = p,

(4) if q′ ∈ Pθλ is isomorphic to q and H : u
q → uq

′

is the isomorphism

from q to q′, then H is the isomorphism from Tp(q) to TH(p)(q
′),

(5) if q ≤pr q
′ then Tp(q) ≤pr Tp(q

′).

Proposition 8. Every ≤pr-increasing chain in Pθλ of length < λ has a
≤pr-upper bound , that is, the partial order (P

θ
λ,≤pr) is (<λ)-closed.

Let us recall that a forcing notion (Q,≤) is (<λ)-strategically closed if
the second player has a winning strategy in the following game aλ(Q).

The game aλ(Q) lasts λ moves. The first player starts by choosing a
condition p∗ ∈ Q. Later, in her ith move, the first player chooses an open
dense subset Di of Q. The second player (in his ith move) picks a condition
pi ∈ Q so that p0 ≥ p

∗, pi ∈ Di and pi ≥ pj for all j < i. The second player
looses the play if for some i < λ he has no legal move.

It should be clear that (<λ)-strategically closed forcing notions do not
add sequences of ordinals of length less than λ. The reader interested in this
kind of properties of forcing notions and iterating them is referred to [6], [7].

Proposition 9. Assume that θ < λ are regular cardinals, λ<λ = λ.
Then (Pθλ,≤) is a (<λ)-strategically closed λ

+-cc forcing notion.

Proof. It follows from Lemma 7(2) that if D ⊆ Pθλ is an open dense set,
p ∈ Pθλ, then there is a condition q ∈ D such that p ≤pr q. Therefore, to win
the game aλ(P

θ
λ), the second player can play so that the conditions pi that

he chooses are ≤pr-increasing, and thus there are no problems with finding
≤pr-bounds (remember Proposition 8).
Now, to show that Pθλ is λ

+-cc, suppose that 〈pδ : δ < λ
+〉 is a sequence

of distinct conditions from Pθλ. We may find a set A ∈ [λ
+]λ

+

such that:

• conditions {pδ : δ ∈ A} are pairwise isomorphic,
• the family {upδ : δ ∈ A} forms a ∆-system with heart u∗,
• if δ0 < δ1 are from A then

sup(u∗) < min(upδ0 \ u∗) ≤ sup(upδ0 \ u∗) < min(upδ0 \ u∗).

Take an increasing sequence 〈δξ : ξ < θ〉 of elements of A, let τ
∗ = 1, vξ = ∅

(for ξ < θ), and look at p = 〈0, τ∗, 0, u∗, 〈pδξ , vξ : ξ < θ〉〉. It is a condition

in Pθλ stronger than all pδξ ’s.
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Definition 10. By induction on ht(p) we define α-components of p (for
p ∈ Pθλ, α ≤ ht(p)):

• First we declare that the only ht(p)-component of p is the p itself.
• If ht(p) = β + 1, p = 〈ζ∗, τ∗, n∗, u∗, 〈pξ, vξ : ξ < θ〉〉 and α = β, then

the α-components of p are pξ (for ξ < θ); if α < β, then the α-components
of p are those q which are α-components of pξ for some ξ < θ.

• If ht(p) is a limit ordinal, p = 〈pξ : ξ < ht(p)〉 and α < ht(p), then the
α-components of p are the α-components of pξ for ξ ∈ [α, ht(p)).

Lemma 11. Assume p ∈ Pθλ and α < ht(p).

(1) If q is an α-component of p then q ≤ p, ht(q) = α, and for all
j0, j1 ∈ u

q and every β ∈ [α, ht(p))

hp(j0, β) 6= θ & h
p(j1, β) 6= θ ⇒ h

p(j0, β) = h
p(j1, β).

Moreover , for each i ∈ up there is a unique α-component q of p such that
i ∈ uq and

(∀j ∈ uq)(∀β ∈ [α, ht(p)))(hp(i, β) ≥ θ ⇒ hp(j, β) ≥ θ).

(2) If H is an isomorphism from p onto p′ ∈ Pθλ, and q is an α-component
of p, then H(q) is an α-component of p′. If q0, q1 are α-components of p
then q0, q1 are isomorphic.

(3) There is a unique α-component q of p such that q ≤pr p.

Proof. Easy inductions on ht(p).

Definition 12. By induction on ht(p) we define when a set Z ⊆ λ is
p-closed for a condition p ∈ Pθλ:

• If ht(p) = 0 then every Z ⊆ λ is p-closed.
• If ht(p) is limit, p = 〈pξ : ξ < ht(p)〉, then Z is p-closed provided it is

pξ-closed for each ξ < ht(p).

• If ht(p) = α+1, p = 〈ζ∗, τ∗, n∗, u∗, 〈pξ, vξ : ξ < θ〉〉 and α 6∈ Z, then Z
is p-closed whenever it is pζ∗ -closed.

• If ht(p) = α+1, p = 〈ζ∗, τ∗, n∗, u∗, 〈pξ, vξ : ξ < θ〉〉 and α ∈ Z, then Z
is p-closed provided it is pζ∗ -closed and

{β < α : (∃j ∈ vζ∗ ∪ {min(u
pζ∗ \ u∗)})(hpζ∗ (j, β) < θ)} ⊆ Z.

Lemma 13. (1) If p ∈ Pθλ and w ∈ [ht(p)]
<ω, then there is a finite p-

closed set Z ⊆ ht(p) such that w ⊆ Z.
(2) If p, q ∈ Pθλ are isomorphic and Z is p-closed , then Z is q-closed.

If Z is p-closed , α < ht(p) and p∗ is an α-component of p, then Z ∩ α is
p∗-closed.

Proof. Easy inductions on ht(p) (remember Lemma 3(2)).
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Definition 14. Suppose that p ∈ Pθλ and Z ⊆ ht(p) is a finite p-closed
set. Let Z = {α0, . . . , αk−1} be the increasing enumeration.

(1) We define

U [p, Z] := {j ∈ up : (∀β < ht(p))(hp(j, β) < θ ⇒ β ∈ Z)}.

(2) We let

Υp(Z) = 〈ζl, τl, nl, 〈gl, h
l
0, . . . , h

l
nl−1
〉 : l < k〉,

where, for l < k, ζl is an ordinal below θ, τl is a Boolean term, nl < ω and
gl, h

l
0, . . . , h

l
nl−1
: l → 2, and they are all such that for every (equivalently:

some) αl+1-component q = 〈ζ
∗, τ∗, n∗, u∗, 〈qξ, vξ : ξ < θ〉〉 of p we have ζl =

ζ∗, τl = τ
∗, nl = n

∗ and if vξ = {j0, . . . , jnl−1} (the increasing enumeration)
then

(∀m < nl)(∀l
′ < l)(hlm(l

′) = hq(jm, αl′)),

and if i0 = min(u
qζ∗ \ u∗) then (∀l′ < l)(gl(l

′) = hq(i0, αl′)). (Note that
ζl, τl, nl, gl, h

l
0, . . . , h

l
nl−1
are well defined by Lemma 11. Necessarily, for all

m < nl and β ∈ αl \Z we have h
q(i0, β), h

q(jm, β) ≥ θ; remember that Z is
p-closed.)

Note that if Z ⊆ ht(p) is a finite p-closed set, α = max(Z) and p∗ is the
α+ 1-component of p satisfying p∗ ≤pr p (see 11(3)), then U [p, Z] ⊆ u

p∗ .

Lemma 15. Suppose that p ∈ Pθλ and Z0, Z1 ⊆ ht(p) are finite p-closed
sets such that Υp(Z0) = Υp(Z1). Then otp(U [p, Z0]) = otp(U [p, Z1]), and
the order preserving isomorphism π : U [p, Z0]→ U [p, Z1] satisfies

(⊗) (∀l < k)(hp(i, α0l ) = h
p(π(i), α1l )), where {α

x
0 , . . . , α

x
k−1} is the in-

creasing enumeration of Zx (for x = 0, 1).

Proof. We prove this by induction on |Z0| = |Z1| (for all p, Z0, Z1 satis-
fying the assumptions).

Step |Z0| = |Z1| = 1; Z0 = {α
0
0}, Z1 = {α

1
0}. Take the α

x
0 + 1-

component qx of p such that qx ≤pr p. Then, for x = 0, 1, qx = 〈ζ, τ, n, u
x,

〈qxξ , v
x
ξ : ξ < θ〉〉, and for each i ∈ v

x
ξ and β < α

x
0 we have h

qxξ (i, β) ≥ θ.

Also, if ix0 = min(u
qxζ \ ux) and β < αx0 , then h

qxζ (ix0 , β) ≥ θ. Consequently,
n = |vxξ | ≤ 1, and if n = 1 then {i

x
0} = v

x
ζ (remember Lemma 3(4)). More-

over,

U [p, Zx] = U [qx, Zx] = {H
x
ξ,ζ(i

x
0) : ξ < θ},

where Hxξ,ζ is the isomorphism from q
x
ζ to q

x
ξ . Now it should be clear that

the mapping π : H0ξ,ζ(i
0
0) 7→ H

1
ξ,ζ(i

1
0) : U [p, Z0] → U [p, Z1] is the order

preserving isomorphism (remember clause (γ) of the definition of P ∗α+1),
and it has the property described in (⊗).



110 A. ROSŁANOWSKI AND S. SHELAH

Step |Z0| = |Z1| = k + 1; Z0 = {α
0
0, . . . , α

0
k}, Z1 = {α

1
0, . . . , α

1
k}. Let

Υp(Z0) = Υp(Z1) = 〈ζl, τl, nl, 〈gl, h
l
0, . . . , h

l
nl−1
〉 : l ≤ k〉.

For x = 0, 1, let qx = 〈ζ, τ, n, u
x, 〈qxξ , v

x
ξ : ξ < θ〉〉 be the α

x
k + 1-component

of p such that qx ≤pr p. The sets Zx ∩ α
x
k (for x = 0, 1) are q

x
ξ -closed for

every ξ < θ, and clearly Υp(Z0 ∩α
0
k) = Υp(Z1 ∩α

1
k). Hence, by the inductive

hypothesis, otp(U [q0ξ , Z0\{α
0
k}]) = otp(U [q

1
ξ , Z1\{α

1
k}]) (for each ξ < θ), and

the order preserving mappings πξ : U [q
0
ξ , Z0\{α

0
k}]→ U [q

1
ξ , Z1\{α

1
k}] satisfy

the demand in (⊗). Let ixξ = min(u
qxξ \ux). Then, as qxξ and q

x
ζ are isomorphic

and the isomorphism is the identity on ux, we have (∀l < k)(hp(ixξ , α
x
l ) =

gk(l)). Hence πξ(i
0
ξ) = i

1
ξ, and therefore πξ[u

0 ∩ U [q0ξ , Z0 \ {α
0
k}]] = u

1 ∩

U [q1ξ , Z1 \ {α
1
k}]. But since the mappings πξ are order preserving, the last

equality implies that πξ↾(u
0 ∩U [q0ξ , Z0 \{α

0
k}]) = πζ↾(u

0 ∩U [q0ζ , Z0 \{α
0
k}]),

and hence π =
⋃

ξ<θ πξ is a function, and it is an order isomorphism from
U [q0, Z0] = U [p, Z0] onto U [q1, Z1] = U [p, Z1] satisfying (⊗).

2. The algebra and why it is OK (in VP
θ
λ). Let Ḃθλ and U̇ be

Pθλ-names such that



P
θ
λ
“ Ḃθλ =

⋃

{Bp : p ∈ Γ
P
θ
λ
} ” and 


P
θ
λ
“ U̇ =

⋃

{up : p ∈ Γ
P
θ
λ
} ”.

Note that U̇ is (a name for) a subset of λ+. Let Ḟ be a Pθλ-name such that



P
θ
λ
“ Ḟ = {f ∈ 2U̇ : (∀p ∈ Γ

P
θ
λ
)(f↾up ∈ Ḟ p)} ”.

Proposition 16. Assume θ < λ are regular and λ<λ = λ. Then in VP
θ
λ :

(1) Ḟ is a non-empty closed subset of 2U̇ , and Ḃθλ is the Boolean algebra

generated B(U̇ ,Ḟ ) (see Definition 1).

(2) |U̇ | = |Ḃθλ| = λ
+.

(3) For every subalgebra B ⊆ Ḃθλ of size λ
+ we have Depth+(B) > θ.

Proof. (2) Note that if p ∈ Pθλ and sup(u
p) < j < λ+ then there is a

condition q ≥ p such that j ∈ uq. Hence 
 |U̇ | = λ+. To show that, in VP
θ
λ ,

the algebra Ḃθλ is of size λ
+ it is enough to prove the following claim.

Claim 16.1. Let p ∈ Pθλ and j ∈ u
p. Then xj 6∈ 〈xi : i ∈ j ∩ u

p〉Bp .

Proof. Suppose not, and let p, j be a counterexample with the smallest
possible ht(p). Necessarily, ht(p) is a successor ordinal, say ht(p) = α + 1.
So let p = 〈ζ∗, τ∗, n∗, u∗, 〈pξ, vξ : ξ < θ〉〉 and suppose that v ∈ [u

p ∩ j]<ω

is such that xj ∈ 〈xi : i ∈ v〉Bp . If j ∈ u
∗ then v ⊆ u∗ and we immediately

get a contradiction (applying the inductive hypothesis to pζ∗). So let ξ < θ
be such that j ∈ upξ \ u∗. We know that xj 6∈ 〈xi : i ∈ u

∗ ∪ (v ∩ upξ)〉Bpξ
(remember clause (γ) of the definition of P ∗α+1), so we may take functions
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f0, f1 ∈ F
pξ such that f0↾(u

∗∪(v∩upξ)) = f1↾(u
∗∪(v∩upξ)) and f0(j) = 0,

f1(j) = 1. Let g0, g1 : u
p → 2 be such that gl↾u

pξ = fl and gl↾u
pζ = f0◦Hζ,ξ

for ζ 6= ξ (where Hζ,ξ is the order isomorphism from u
pζ to upξ). Now one

easily checks that g0, g1 ∈ F
p (remember the definition of the term σmaj).

By our choices, g0(i) = g1(i) for all i ∈ v, and g0(j) 6= g1(j), and this is a
clear contradiction with the choice of i and v.

(3) Suppose that 〈ȧξ : ξ < λ
+〉 is a Pθλ-name for a λ

+-sequence of distinct

members of Ḃθλ and let p ∈ Pθλ. Applying standard cleaning procedures we
find a set A ⊆ λ+ of order type θ, an ordinal α < λ and τ∗, n∗, u∗ and
〈pξ, vξ : ξ ∈ A〉 such that p ≤ pξ, ht(pξ) = α, pξ 
 ȧξ = τ

∗(xi : i ∈ vξ) and

q := 〈0, τ∗, n∗, u∗, 〈pξ, vξ : ξ ∈ A〉〉 ∈ P
∗
α+1,

where A is identified with θ by the increasing enumeration (so we will think
A = θ). For ξ < θ let τξ = τ

∗(xi : i ∈ vξ) ∈ Bpξ . Since ȧξ were (forced to
be) distinct we know that Bq |= τξ 6= τζ for distinct ξ, ζ. Hence τξ 6∈ 〈xi :
i ∈ u∗〉Bpξ (for each ξ) and therefore we may find functions f

0
ξ , f

1
ξ ∈ F

pξ

such that f0ξ ↾u
∗ = f1ξ ↾u

∗, and f0ξ (τξ) = 0, f
1
ξ (τξ) = 1, and if ξ < ζ < θ,

and Hξ,ζ is the isomorphism from pξ to pζ , then f
l
ξ = f

l
ζ ◦ Hξ,ζ . Now fix

ξ < ζ < θ and let

g :=
⋃

α≤3·ξ+2

f0α ∪
⋃

3·ξ+2<α<θ

f1α.

It should be clear that g is a function from uq to 2, and moreover g ∈ F q.
Also,

g(σmaj(τ3·ξ, τ3·ξ+1, τ3·ξ+2)) = 0, g(σmaj(τ3·ζ , τ3·ζ+1, τ3·ζ+2))} = 1.

Hence we may conclude that

Bq |= σmaj(τ3·ξ, τ3·ξ+1, τ3·ξ+2) < σmaj(τ3·ζ , τ3·ζ+1, τ3·ζ+2)

for ξ < ζ < θ (remember the definition of F q and Proposition 2). Conse-
quently, we get q 
 Depth+(〈ȧξ : ξ < λ

+〉
Ḃ
θ
λ
) > θ, finishing the proof.

Theorem 17. Assume θ < λ are regular and λ = λ<λ. Then 

P
θ
λ

Depth(Ḃθλ) = θ.

Proof. By Proposition 16 we know that 
 Depth+(Ḃθλ) > θ, so what
we have to show is that there are no increasing sequences of length θ+ of
elements of Ḃθλ. We will show this under the additional assumption that
θ+ < λ (after the proof is carried out, it will be clear how to modify it to
deal with the case λ = θ+). Due to this additional assumption, and since
the forcing notion Pθλ is (<λ)-strategically closed (by Proposition 9), it is
enough to show that Depth(Bp) ≤ θ for each p ∈ Pθλ.
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So suppose that p ∈ Pθλ is such that Depth(B
p) ≥ θ+. Then we find a

Boolean term τ , an integer n and sets w̺ ∈ [u
p]n (for ̺ < θ+) such that

̺0 < ̺1 < θ
+ ⇒ Bp |= τ(xi : i ∈ w̺0) < τ(xi : i ∈ w̺1).

For each ̺ < θ+ use Lemma 13 to choose a finite p-closed set Z̺ ⊆ ht(p)
containing the set

{β < ht(p) : (∃j ∈ w̺)(h
p(j, β) < θ)}.

Look at Υp(Z̺) (see Definition 14). There are only θ possibilities for the
values of Υp(Z̺), so we find ̺0 < ̺1 < θ

+ such that:

(i) |Z̺0 | = |Z̺1 |, and

Υp(Z̺0) = Υp(Z̺1) = 〈ζl, τl, nl, 〈gl, h
l
0, . . . , h

l
nl−1
〉 : l < k〉,

(ii) if π∗ : Z̺0 → Z̺1 is the order isomorphism, then π
∗↾Z̺0 ∩Z̺1 is the

identity on Z̺0 ∩ Z̺1 ,

(iii) if π : U [p, Z̺0 ] → U [p, Z̺1 ] is the order isomorphism, then π[w̺0 ]
= w̺1 .

Note that, by Lemma 15, otp(U [p, Z̺0 ]) = otp(U [p, Z̺1 ]) and the order
isomorphism π satisfies

(∀j ∈ U [p, Z̺0 ])(∀β ∈ Z̺0)(h
p(j, β) = hp(π(j), π∗(β))),

and hence π is the identity on U [p, Z̺0 ] ∩ U [p, Z̺1 ] (remember Lemma 3).

For a function f ∈ F p let G̺0̺1(f) : u
p → 2 be defined by

G̺0̺1(f)(j) =

{

f(π(j)) if j ∈ U [p, Z̺0 ],
f(π−1(j)) if j ∈ U [p, Z̺1 ] \ U [p, Z̺0 ],
0 otherwise.

Claim 17.1. For each f ∈ F p, G̺0̺1(f) ∈ F
p.

Proof. By induction on α ≤ ht(p) we show that for each α-component q
of p, the restriction G̺0̺1(f)↾u

q is in F q.

If α is limit, we may easily use the inductive hypothesis to show that,
for any α-component q of p, G̺0̺1(f)↾u

q ∈ F q.
Assume α = β + 1 and let q = 〈ζ∗, τ∗, n∗, u∗, 〈qξ, vξ : ξ < θ〉〉 be an

α-component of p. We will consider four cases.

Case 1: β 6∈ Z̺0 ∪ Z̺1 . Then (U [p, Z̺0 ] ∪ U [p, Z̺1 ]) ∩ u
q ⊆ uqζ∗ and

G̺0̺1(f)↾(u
qξ \ u∗) ≡ 0 for each ξ 6= ζ∗. Since, by the inductive hypothesis,

G̺0̺1(f)↾u
qξ ∈ F qξ for each ξ < θ, we may use the definition of P ∗β+1 and

conclude that G̺0̺1(f)↾u
q ∈ F q (remember the definition of the term σmaj).

Case 2: β ∈ Z̺0 \ Z̺1 . Let Z̺0 = {α0, . . . , αk−1} be the increasing
enumeration. Then β = αl for some l < k and ζ

∗ = ζl, τ
∗ = τl, n

∗ = nl.
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Moreover, if vξ = {j
ξ
0 , . . . , j

ξ
nl−1
} (the increasing enumeration), ξ < θ, then

for m < nl,

(∀l′ < l)(hlm(αl′) = h
q(jξm, αl′)) and (∀γ ∈ β \ Z̺0)(h

q(jξm, γ) ≥ θ).

Note that U [p, Z̺1 ]∩u
q ⊆ uqζ∗ , so if U [p, Z̺0 ]∩u

q = ∅, then we may proceed
as in the previous case. Therefore we may assume that U [p, Z̺0 ] ∩ u

q 6= ∅.
So, for each γ ∈ Z̺0 \ α we may choose iγ ∈ U [p, Z̺0 ] ∩ u

q such that

(∀i ∈ U [p, Z̺0 ] ∩ u
q)(hp(i, γ) 6= θ ⇒ hp(i, γ) = hp(iγ , γ))

(remember Lemma 11(1)). Let i∗ = max{iγ : γ ∈ Z̺0 \α} (if β = max(Z̺0),
then let i∗ be any element of U [p, Z̺0 ] ∩ u

q). Note that then

(∀i ∈ U [p, Z̺0 ] ∩ u
q)(∀γ ∈ Z̺0 \ α)(h

p(i, γ) 6= θ ⇒ hp(i, γ) = hp(i∗, γ)).

[Why? Remember Lemma 11(1) and clause (γ) of the definition of P ∗β+1.]
By Lemma 11, we find a (π∗(β) + 1)-component q′ = 〈ζ ′, τ ′, n′, u′, 〈q′ε, v

′
ε :

ε < θ〉〉 of p such that π(i∗) ∈ uq
′

and

(∀j ∈ uq
′

)(∀γ ∈ (π∗(β), ht(p)))(hp(π(i∗), γ) ≥ θ ⇒ hp(j, γ) ≥ θ).

We claim that then

(⊠) (∀j ∈ U [p, Z̺0 ] ∩ u
q)(π(j) ∈ uq

′

∩ U [p, Z̺1 ]).

Why? Fix j ∈ U [p, Z̺0 ]∩u
q. Let r, r′ be components of p such that r ≤pr p,

r′ ≤pr p, ht(r) = β+1, ht(r
′) = π∗(β)+1 (so r, q and r′, q′, are isomorphic).

The sets Z̺0 ∩ (β+1) and Z̺1 ∩ (π
∗(β)+1) are p-closed, and they have the

same values of Υ , and therefore U [p, Z̺0∩(β+1)] and U [p, Z̺1∩(π
∗(β)+1)]

are (order) isomorphic. Also, these two sets are included in ur and ur
′

,
respectively. So looking back at our j, we may successively choose j0 ∈
ur ∩U [p, Z̺0 ∩ (β + 1)], j1 ∈ u

r′ ∩U [p, Z̺1 ∩ (π
∗(β) + 1)], and j∗ ∈ uq such

that:

• (∀γ ≤ β)(hq(j, γ) = hr(j0, γ)),
• (∀l′ ≤ l)(hr(j0, αl′) = h

r′(j1, π
∗(αl′))), and

• (∀γ ≤ π∗(β))(hr
′

(j, γ) = hq
′

(j∗, γ)).

Then we have
(∀l′ ≤ l)(hq(j, αl′) = h

q′(j∗, π∗(αl′)),

(∀γ ∈ π∗(β) \ Z̺1)(h
q′(j∗, γ) ≥ θ).

To deduce (⊠) it is enough to show that π(j) = j∗. If this equality fails, then
there is γ < ht(p) such that θ 6= hp(π(j), γ) 6= hp(j∗, γ) 6= θ. If γ ≤ π∗(β),
then necessarily γ ∈ Z̺1 , and this is impossible (remember h

p(j, αl′) =
hp(π(j), π∗(αl′)) for l

′ ≤ l). So γ > π∗(β). If hp(π(j), γ) = θ + 1, then
hp(j∗, γ) < θ and (by the choice of q′) hp(π(i∗), γ) < θ. Then γ ∈ Z̺1 and
hp(i∗, (π∗)−1(γ)) < θ, and also hp(i∗, (π∗)−1(γ)) = hp(j, (π∗)−1(γ)) = θ + 1
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(by the choice of i∗), a contradiction. Thus necessarily hp(π(j), γ) < θ (so
γ ∈ Z̺1) and therefore

θ > hp(j, (π∗)−1(γ)) = hp(i∗, (π∗)−1(γ)) = hp(π(i∗), γ) = hp(j∗, γ)

(as the last is not θ), again a contradiction. Thus the statement in (⊠) is
proven.
Now we may finish considering the current case. By the definition of the

function Υ (and by the choice of ̺0, ̺1) we have

ζ ′ = ζl, τ
′ = τl, n

′ = nl, and π[vξ] = v
′
ξ for ξ < θ

(and π↾vξ is order preserving). Therefore

G̺0̺1(f)(τ
∗(xi : i ∈ vξ)) = f(τ

′(xi : i ∈ v
′
ξ)) (for every ξ < θ).

By the inductive hypothesis, G̺0̺1(f)↾u
qξ ∈ F qξ (for ξ < θ), so as f ∈ F p

(and hence f↾uq
′

∈ F q
′

) we may conclude that G̺0̺1(f)↾u
q ∈ F q.

Case 3: β ∈ Z̺1 \ Z̺0 . Similar.

Case 4: β ∈ Z̺0 ∩ Z̺1 . If U [p, Z̺0 ] ∩ u
q = ∅ = U [p, Z̺1 ] ∩ u

q, then
G̺0̺1(f)↾u

q ≡ 0 and we are easily done. If one of the intersections is non-
empty, then we may argue exactly as in the previous cases (2 or 3).

Now we may conclude the proof of the theorem. Since

Bp |= τ(xi : i ∈ w̺0) < τ(xi : i ∈ w̺1),

we find f ∈ F p such that f(τ(xi : i ∈ w̺0)) = 0 and f(τ(xi : i ∈ w̺1)) = 1.
It should be clear from the definition of the function G̺0̺1(f) (and the choice
of ̺0, ̺1) that

G̺0̺1(f)(τ(xi : i ∈ w̺0)) = 1, G̺0̺1(f)(τ(xi : i ∈ w̺1)) = 0.

But it follows from Claim 17.1 that G̺0̺1(f) ∈ F
p, a contradiction.

Conclusion 18. It is consistent that for some uncountable cardinal θ
there is a Boolean algebra B of size (2θ)+ such that

Depth(B) = θ but (ω, (2θ)+) 6∈ DepthSr(B).

Problem 19. Assume θ < λ = λ<λ are regular cardinals. Does there
exist a Boolean algebra B such that |B| = λ+ and for every subalgebra
B′ ⊆ B of size λ+ we have Depth(B′) = θ?
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