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Abstract. We classify the uniserial infinitesimal unipotent commutative groups of
finite representation type over algebraically closed fields. As an application we provide
detailed information on the structure of those infinitesimal groups whose distribution
algebras have a representation-finite principal block.

0. Introduction. A finite-dimensional algebra is called representation-
finite provided it admits only finitely many isomorphism classes of finite-
dimensional indecomposable modules. In this paper we are concerned with
certain Hopf algebras of this kind, namely the distribution algebras of in-
finitesimal unipotent groups.

Every finite algebraic group G, defined over an algebraically closed field
k of positive characteristic p, is the semidirect product of an infinitesimal
normal subgroup G0 and a reduced group Gred, that is,

G ∼= G0 ⋊ Gred

(see [16, Thm. 6.8]). When studying representation-finite algebraic groups
of dimension zero one is thus led to two questions: the classification of the fi-
nite groups of finite representation type, and the solution of this problem for
infinitesimal groups. The first case was addressed in [12]: a finite group G is
representation-finite if and only if all its Sylow p-subgroups are cyclic. While
this condition does not determine the structure of G, representation-finite
infinitesimal groups are to a large extent governed by certain unipotent sub-
quotients. More specifically, an infinitesimal group G has finite representa-
tion type if and only if the quotient group G/M(G) of G by its multiplicative
center M(G) is isomorphic to a semidirect product of a V-uniserial unipo-
tent normal subgroup U , and a multiplicative subgroup of type µpn , that
is,

G/M(G) ∼= U ⋊ µpn

2000 Mathematics Subject Classification: Primary 16G70; Secondary 17B50.

[179]



180 R. FARNSTEINER ET AL.

(see [9, Thm. 2.7]). Accordingly, a description of all infinitesimal groups of
finite representation type entails the classification of the V-uniserial groups.
In this paper we determine the slightly larger class of uniserial unipotent

commutative infinitesimal groups (see Theorem 1.2). Thanks to [5, (V, §1,
no 4.3)] the unipotent commutative groups correspond to Dieudonné mod-
ules. Accordingly, we first classify the uniserial Dieudonné modules in Sec-
tion 2. The proof of Theorem 1.2, presented in Section 3, interprets this clas-
sification within the category of infinitesimal commutative uniserial groups.
Our classification also illustrates some of the subtle differences between

the representation theory of infinitesimal groups and its classical precursor
for finite groups: although there exist more representation-finite infinitesi-
mal unipotent groups than representation-finite p-groups, our results from
Section 4 show that the class of representation-finite infinitesimal groups is
better understood in general.
The second application of Theorem 1.2 shows that, in contrast to fi-

nite groups, representation-finite infinitesimal groups can be described via
Alperin’s notion of complexity. More specifically, we characterize V-uniserial
groups via the complexity of their second Frobenius kernels. This affords an
approach to the main results of [9] that avoids the use of the Friedlander–
Suslin theorem concerning the finite generation of the cohomology ring of
cocommutative Hopf algebras.

1. V-uniserial groups and Hopf structures

1.1. We consider affine group schemes G defined over the algebraically
closed field k of positive characteristic p. By definition, these are repre-
sentable group-valued functors G : Mk → G from the category Mk of com-
mutative k-algebras into the category G of groups. Concerning general facts
and properties of affine group schemes we refer to [5], [13], and [16].
An infinitesimal k-group U is called uniserial provided U has a unique

composition series. If U is unipotent and commutative, then it is called
V-uniserial if the cokernel of the Verschiebung V : U (p) → U is simple, that
is, when cokerV ∼= αp. Likewise, a unipotent infinitesimal group U is called
F-uniserial provided the kernel of the Frobenius morphism F : U → U (p) is
simple, that is, U1 ∼= αp. For the definitions of the morphisms F and V, see
[5, (II, §7, no 1), (IV, §3, no 4.4)]. Let U denote the category of infinitesimal
unipotent commutative groups over k. We denote by D : U→ U the Cartier
duality on U, which is given by

D(U)(R) := Hom(UR, µR)

for every R ∈ Mk. Note that D is an involutary anti-equivalence on U (see
[5, (II, §1, no 2.10)]). According to [5, (IV, §3, no 4.9)], Cartier duality on
U sends V-uniserial groups to F -uniserial ones and vice versa.
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1.2. By W :Mk →MZ we denote the affine commutative group scheme
(in rings) of Witt vectors. For m ∈ N let Wm : Mk → MZ be the affine
commutative group scheme of Witt vectors of length m (see [4, (IX, §1)] or
[5, (V, §1, no 1.6)]). SinceWm is defined over Z, the natural transformations
F and V can be viewed as endomorphisms ofWm (cf. [13, (I.9.4)]). It follows
from [5, (V, §1, no 1.9)] and [5, (IV, §3, no 4.11)] that Wm is unipotent. We
define certain infinitesimal subgroups of Wm as follows. Let d, j, n ∈ N.
For n ≥ 1 and d ≥ 2 we denote by Un,d the kernel of the endomorphism
Vd−1 − F : Wm → Wm with m = nd. For n, d ≥ 2 and 1 ≤ j ≤ d − 1
let U jn,d be the intersection of Un,d with the kernel of the endomorphism

V(n−1)d+j :Wm →Wm.
We can now state our principal result, the classification of infinitesimal

unipotent commutative uniserial group schemes.

Theorem. The following is a complete list of representatives of isomor-
phism classes of non-trivial infinitesimal unipotent commutative uniserial

k-groups:

(i) (Wd)1 for d ≥ 1;
(ii) Un,d for n ≥ 1, d ≥ 2;

(iii) U jn,d for n ≥ 2, d ≥ 2, 1 ≤ j ≤ d− 1;
(iv) D((Wd)1) ∼= αpd , d ≥ 2;
(v) D(Un,d) for n ≥ 1, d ≥ 3;

(vi) D(U jn,d) for n ≥ 2, d ≥ 3, 1 ≤ j ≤ d− 1.

The groups labeled (i)–(iii) are V-uniserial , and those in (iv)–(vi) are F-
uniserial. Moreover , the groups Un,2 for n ≥ 1, (W1)1 ∼= αp, and U1n,2 for
n ≥ 2 are self-dual.

1.3. The following result shows that Theorem 1.2 also gives a complete
understanding of the cocommutative Hopf algebras whose underlying as-
sociative k-algebras are truncated polynomial rings of dimension a power
of p.

Theorem. Let G be a finite algebraic k-group whose algebra of measures
H(G) is local and of finite representation type. Then either G is a cyclic
p-group, or G is V-uniserial.

Proof. We decompose G into its infinitesimal and reduced parts G ∼=
G0 ⋊ Gred. Thanks to [9, (4.1)] both constituents are representation-finite,
with at least one of them being linearly reductive.
As H(G) is local, its augmentation ideal H(G)† is nilpotent. Conse-

quently, every Hopf subalgebra of H(G) is also local. Hence, if G0 is linearly
reductive, then H(G0) is semisimple and local, so that G0 = ek. Accord-
ingly, H(G) ∼= k[G(k)] is the group algebra of the finite group of k-rational
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points of G. Owing to [12], this implies that G(k) is a cyclic group of order
a p-power.
Alternatively, H(Gred) ∼= H(G/G0) is local and Gred is linearly reductive,

so that Gred = ek. Consequently, G = G0 is infinitesimal and we may apply
[9, (2.7)] to see that G is V-uniserial.

Remark. Observe that Theorems 1.2 and 1.3 classify the isoclasses of
the representation-finite local, cocommutative Hopf algebras. Two such are
isomorphic as algebras if and only if their underlying groups have the same
length.

2. V-uniserial Dieudonné modules

2.1. As k is perfect, the ring W(k) is a complete discrete valuation
domain with maximal ideal (p) = pW(k). Its residue field isW(k)/pW(k) ∼=
k (cf. [5, (V, §1, no 1.8)]). Moreover, for each m ∈ N we have the canonical
isomorphism

Wm(k) ∼=W(k)/p
mW(k).

The Frobenius morphism F : W → W induces an automorphism on W(k)
which is denoted by w 7→ w(p) (cf. [5, (V, §1, no 3.1)]). In the same fashion
we obtain an automorphism on Wn(k) afforded by F , also denoted by w 7→
w(p). Note that Wn is a reduced algebraic k-group with affine n-space as
underlying scheme.

2.2. Let D be the skew polynomial ring D :=W(k)[F, V ] subject to the
relations

(i) FV = V F = p ∈ W(k),
(ii) Fw = w(p)F for w ∈ W(k), and
(iii) wV = V w(p) for w ∈ W(k).

The ring D is customarily called the Dieudonné ring (see [5, (V, §1,
no 3.1)]). Note thatDV n andDFn are two-sided ideals of D for each n ∈ N.

2.3. Let modD be the category of D-modules of finite length on which
F and V operate nilpotently. Consequently, a module M in modD can be
viewed as a module over the ring D/(DFn +DV n) for a suitable n ∈ N.
Moreover, since pn = (FV )n = FnV n, the module M is also a Wn(k)-
module. In particular, the residue field k of W(k) with V and F operating
trivially is the unique simple module in modD. This implies that the length
of M in modD coincides with the length of M viewed as a W(k)-module. In
what follows we refer to the members of modD as Dieudonné modules.

2.4. According to [5, (IV, §3, no 4.11), (V, §1, no 4.3, 4.6)] there is an
anti-equivalence of categories

Υ : U→ modD .
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The functor Υ induces, via Cartier duality, an anti-equivalence of categories
D : modD → modD, satisfying

Υ (D(U)) ∼= D(Υ (U)),

where U ∈ U (see [5, (V, §4, no 5.6)]). We refer to D as duality on modD.

2.5. A Dieudonné module M is called uniserial if it has a unique com-
position series;M is called V -uniserial ifM ⊃ VM ⊃ V 2M ⊃ . . . ⊃ (0) is a
composition series ofM . Observe thatM is V -uniserial if and only ifM/VM
is a simple D-module. Since l(M) = l(VM) + l(kerV ), this is equivalent to
kerV being a simple Dieudonné module. Analogously, we define F -uniserial
Dieudonné modules.

The duality on modD sends F -uniserial modules to V -uniserial ones and
vice versa [5, (V, §4, no 5.2)].

The anti-equivalence Υ : U → modD takes uniserial groups to uniserial
Dieudonné modules, and accordingly V-uniserial groups to V -uniserial D-
modules, likewise for F -uniserial groups.

Lemma. Let M be in modD. Then the following statements hold :

(i) M is uniserial if and only if it is V -uniserial or F -uniserial.

(ii) M is V -uniserial if and only if M/F 2M is V -uniserial.

(iii) If M is V -uniserial , then M =W(k)m+VM for any m ∈M \VM .

Proof. (i) IfM is V -uniserial or F -uniserial, then it is uniserial, since the
simple D-modules are annihilated by F and V . For the other implication,
let M be uniserial of length l(M) ≥ 2, and N ⊆ M its unique submodule
of length l(N) = l(M) − 2. If M is neither V -uniserial nor F -uniserial,
then VM + FM ⊆ N . Thus, M/N is a uniserial module of length 2 for
D/(DF +DV ) ∼= k, a contradiction.

(ii) Suppose that M/F 2M is V -uniserial. Then M/(VM + F 2M) is
simple. Let J = (F, V ) be the Jacobson radical of D. If M 6= (0), then
M 6= JM = VM + FM . Consequently, VM + FM = VM + F 2M , so
that F ·M/VM = F 2 ·M/VM . This implies F ·M/VM = (0), whence
FM ⊂ VM . As a result, M/VM = M/(VM + F 2M) is simple, and M is
V -uniserial.

(iii) Since M is V -uniserial, the proper submodule FM is contained in
VM . Consequently, W(k)m + VM is a D-submodule of M , which is not
contained in the unique maximal submodule VM .

Remark. Let U be an infinitesimal commutative unipotent k-group.
Since Υ (kerF2U )

∼= cokerF 2Υ (U) (cf. [5, (V, §1, n
o 4.6)]), Lemma 2.5(ii) shows

that the group U is V-uniserial if and only if its second Frobenius kernel U2
has this feature.
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2.6. Given l ∈ Z we denote the lth iterate of the automorphim w 7→ w(p)

of W(k) by w 7→ w(p
l). The induced automorphism on Wn(k) is labeled in

the same fashion. LetM be aWn(k)-module. ByM (l) we denote theWn(k)-
module with underlying abelian group M and module structure given by

w · m = w(p
l)m for w ∈ Wn(k) and m ∈ M . Let FM : M → M (1) and

VM : M → M (−1) be two Wn(k)-module maps. Then the two morphisms
FM and VM define the structure of a D-module on M that is compatible
with theWn(k)-module structure if and only if FM ◦VM = p·idM = VM ◦FM .
IfM is free, then it suffices to define FM and VM on a basis. In the following
certain Dieudonné modules are defined in this fashion.

Definition. Let d, j, n ∈ N. Let M be a free Wn(k)-module with basis
{e1, . . . , ed}.

(i) For d ≥ 2 we denote by En,d the Dieudonné module with underlying
Wn(k)-space M and operations given by

(a) VM (ei) = ei+1 for 1 ≤ i ≤ d− 1, and VM (ed) = pe1;
(b) FM (e1) = ed, FM (ei) = pei−1 for 2 ≤ i ≤ d.

(ii) For n ≥ 2, d ≥ 2 and 1 ≤ j ≤ d− 1 we define the D-module Ejn,d as
the quotient

Ejn,d := En,d/V
(n−1)d+jEn,d.

(iii) For d ≥ 1 we write Ed for the Dieudonné module with underlying
W1(k)-space M and operations given by

(a) VM (ei) = ei+1 for 1 ≤ i ≤ d− 1, and VM (ed) = 0;
(b) FM = 0.

Lemma. The Dieudonné modules En,d for n≥1, d≥2, E
j
n,d for n, d ≥ 2,

1 ≤ j ≤ d− 1, and Ed for d ≥ 1 are V -uniserial and pairwise distinct.

Proof. Observe that V , F and thus FV = p act trivially on En,d/V En,d.
Therefore, En,d/V En,d ∼= k is a simple D-module, and En,d is V -uniserial.

Hence, its factor modules Ejn,d have the same property. Similarly, we have
Ed/V Ed ∼= k, so that Ed is also V -uniserial.
By definition, En,d is a freeWn(k)-module of rank d and thus has length

dn (viewed as a module for Wn(k) or D). Since En,d is V -uniserial, the

module Ejn,d has length (n−1)d+ j. Because the Loewy length of a Wn(k)-
module is the minimal power of p that annihilates it, n is the Loewy length
of the Wn(k)-modules En,d and E

j
n,d = En,d/p

n−1V jEn,d. Moreover, the

length of the quotients En,d/pEn,d ∼= E1,d ∼= E
j
n,d/pE

j
n,d is d.

By the above, the modules En,d, E
j
n,d are pairwise non-isomorphic. Since

rankEd = d, no two modules of this type are isomorphic. As F acts trivially
on Ed, this module is not isomorphic to one of the form En,d or E

j
n,d.
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2.7. We are now in a position to prove the chief result of this section,
which is a revision of the approach in [15].

Theorem. The following provides a complete list of representatives of
isomorphism classes of non-zero uniserial Dieudonné modules:

(i) Ed for d ≥ 1;

(ii) En,d for n ≥ 1, d ≥ 2;

(iii) Ejn,d for n ≥ 2, d ≥ 2, 1 ≤ j ≤ d− 1;

(iv) DEd for d ≥ 2;

(v) DEn,d for n ≥ 1, d ≥ 3;

(vi) DEjn,d for n ≥ 2, d ≥ 3, 1 ≤ j ≤ d− 1.

The modules labeled (i)–(iii) are V -uniserial , and the ones listed in (iv)–(vi)
are F -uniserial. Moreover , the modules E1, En,2 for n ≥ 1, and E1n,2 for
n ≥ 2 are self-dual.

Proof. Proceeding in several steps, we first determine the list of V -
uniserial modules.

(a) Let M be a V -uniserial Dieudonné module of length d such that
pM = (0). Then M is isomorphic to either E1,d or Ed.

Since pM = (0), M is a k-vector space of dimension d. Moreover, V
acts on M as a semilinear nilpotent operator of order d. If m ∈M satisfies
V d−1m 6= 0, then {m,Vm, V 2m, . . . , V d−1m} is a k-basis ofM . As V Fm =
pm = 0, we get Fm ∈ kerV = kV d−1m, so that Fm = λV d−1m for some
λ ∈ k.

If λ = 0, then M ∼= Ed. Alternatively, let ξ ∈ k be a solution of the

equation λp
d−1

Xp
d

− X = 0. Replacing m by ξm, we may assume that
λ = 1. Consequently, ei 7→ V i−1m defines an isomorphism E1,d ∼=M .

(b) Let M be a V -uniserial Dieudonné module such that pM 6= (0)
and l(M/pM) = d. Then there exists an element m ∈ M \ VM so that
Fm = V d−1m.

By (a), M/pM is isomorphic to E1,d or Ed. In the latter case we have
FM ⊆ pM , so that pM = V FM ⊆ V pM = pVM ⊆ pM , whence V pM =
pM . Since V operates nilpotently onM , we have pM = (0), a contradiction.
Hence M/pM ∼= E1,d and there exists an element m0 ∈ M \ VM with
Fm0 ≡ V d−1m0 mod pM . Since l(M/pM) = d, we have V dM = pM .

We are going to construct inductively a sequence (mj)j∈N0 of elements
in M , satisfying the following properties:

(i) mj+1 ≡ mj mod V j+1M , and

(ii) Fmj ≡ V d−1mj mod V d+jM .
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The initial element m0 is the one from above. Suppose that a sequence
{m0,m1, . . . ,mj} satisfying (i) and (ii) has already been constructed. Since
mj ≡ m0 mod VM , it follows thatmj 6∈ VM . By (ii) there exists an element
m′ ∈ M such that Fmj = V d−1mj + V

d+jm′. Recall that M is a Wn(k)-
module for some n. Thanks to Lemma 2.5(iii) we may writem′ = amj+V m

′′

for some a ∈ Wn(k) and m′′ ∈M . Thus, we obtain

Fmj = V
d−1mj + V

d+j(amj + V m
′′)(1)

≡ V d−1mj + V
d+jamj mod V

d+j+1M.

Since Wn(k) is a connected affine algebraic group defined over the field
with pd elements, the Corollary [3, (16.5)] to the Theorem of Lang applies.
Consequently, there is an element ξ ∈ Wn(k) satisfying

ξ(p
d) − ξ + a = 0.

We set mj+1 := mj + V
j+1ξmj . In virtue of (1) we obtain

Fmj+1 = Fmj + FV
j+1ξmj = Fmj + ξ

(p−j)V j+1Fmj

≡ V d−1mj + V
d+jamj + ξ

(p−j)V d+jmj mod V
d+j+1M

≡ V d−1mj + V
d+jamj + V

d+jξ(p
d)mj mod V

d+j+1M

≡ V d−1mj + V
d+jξmj mod V

d+j+1M

≡ V d−1mj+1 mod V
d+j+1M.

Let j be such that V d+jM = (0). Then mj has the requisite properties.

(c) Let M be a V -uniserial Dieudonné module with pM 6= (0), l(M/pM)
= d, and such that n is the Loewy length of the W(k)-module M . Then
M ∼= En,d if l(pn−1M) = d and M ∼= E

j
n,d if j := l(p

n−1M) < d.

For m ∈ M \ VM as in (b) we consider the Wn(k)-module morphism
φ : En,d → M which maps ei to V

i−1m for 1 ≤ i ≤ d. Direct computation
shows that φ is in fact a map of D-modules. Since M is generated by m (cf.
Lemma 2.5(iii)), the map φ is surjective.

If l(pn−1M) = d = l(M/pM), it follows that l(M) = nd = l(En,d), so
that φ is an isomorphism in this case.

Alternatively, l(pn−1M) = j < d and kerφ 6= (0). Note that pn−1En,d 6⊆
kerφ, because the Loewy length of M is n. Since M is uniserial, we obtain
kerφ ⊆ pn−1En,d. As φ|pn−1En,d : p

n−1En,d → pn−1M is surjective, we have

l(kerφ) = d− j, so that kerφ = pn−1V jEn,d = V (n−1)d+jEn,d.

By combining Lemma 2.6 with (a) and (c) we obtain

(d) The modules in (i)–(iii) form a complete list of representatives of the
V -uniserial Dieudonné modules.
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(e) The modules E1, En,2 for n ≥ 1, or E1n,2 for n ≥ 2 are precisely the
self-dual uniserial Dieudonné modules.

Let M be a self-dual, uniserial Dieudonné module. According to Lem-
ma 2.5, M is both V -uniserial and F -uniserial. By inspection we find that
En,2, E

1
n,2, and E1 are the only F -uniserial modules listed in (i)–(iii).

Clearly, E1 ∼= k is self-dual. As En,2 and E
1
n,2 are V -uniserial and

F -uniserial of lengths 2n and 2(n − 1) + 1, respectively, their duals have
the same property. Consequently, these modules are self-dual.

(f) Let M be a uniserial Dieudonné module. Then M is isomorphic to
exactly one of the modules listed in (i)–(vi).

By Lemma 2.5, M is V -uniserial or F -uniserial. In the first instance the
assertion follows from (d). If M is not V -uniserial, then DM is V -uniserial
but not self-dual. Thus, observing (e), we see that M ∼= D2M belongs to
(iv)–(vi).

3. Proof of Theorem 1.2. By abuse of notation, we denote the images
of F and V in the quotientsDm := D/DV

m again by F and V , respectively.

Lemma. We have

(i) Υ (Un,d) ∼= En,d,

(ii) Υ (U jn,d)
∼= E

j
n,d, and

(iii) Υ ((Wd)1) ∼= Ed.

Proof. (i) Letm = nd. By definition, the linear mapDm → En,d sending

1 to e1 factors through to the quotient D̂m := Dm/Dm(V
d−1 − F ). The

resulting map ψ : D̂m → En,d is obviously surjective. As l(D̂m) ≤ nd, we
see that ψ is in fact an isomorphism. The anti-equivalence Υ sends the exact
sequence

ek → Un,d →Wm
Vd−1−F
−−−−→Wm

to the exact sequence

Dm → Dm → Υ (Un,d)→ (0),

where the left-hand map is right multiplication by V d−1 −F (cf. [5, (V, §1,
no 4.2)]). Hence we get the isomorphism Υ (Un,d) ∼= En,d.
(ii) The endomorphisms Vd−1−F and V(n−1)d+j ofWm commute. Thus,

V(n−1)d+j induces an endomorphism of Un,d. This affords an exact sequence
of groups

ek → U
j
n,d → Un,d

V(n−1)d+j

−−−−−→ Un,d.

In view of (i), Υ sends the above exact sequence of groups to an exact
sequence of left D-modules

En,d → En,d → Υ (U jn,d)→ (0),
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where the left-hand map is right multiplication by V (n−1)d+j. Thus, we have
Υ (U jn,d)

∼= E
j
n,d, as desired.

(iii) Consider the exact sequence of groups

ek → (Wd)1 →Wd
F
→Wd.

An application of Υ yields the exact sequence of left D-modules

Dd
F
→ Dd → Υ ((Wd)1)→ (0).

Since Dd/DdF ∼= Ed, we obtain Υ ((Wd)1) ∼= Ed.

Proof of Theorem 1.2. Except for the isomorphism D((Wd)1) ∼= αpd ,
Theorem 1.2 now follows from Theorem 2.7, the lemma above, and the fact
that the functor Υ from 2.3 is an anti-equivalence of categories.

Since αpd is an F -uniserial group of length d that is annihilated by V
(see [5, (IV, §3, no 4.5)]), its dual is a V-uniserial group of length d that is
annihilated by F . Thus, D(αpd) ∼= (Wd)1, and D((Wd)1) ∼= αpd .

4. Representation-finite infinitesimal groups

4.1. Let X be an indeterminate over k and for given n ∈ N0 set x :=
X + (Xp

n

). We consider the k-functor R 7→ Ln(R), where

Ln(R) :=
n−1⊕

i=0

Rxp
i

⊆ R[X]/(Xp
n

)

for every R ∈ Mk. Note that Ln(R) is an abelian restricted R-Lie algebra
with p-map given by the ordinary p-power operator. For m, l ∈ N0 satisfying
0 ≤ l ≤ pm−1 and such that p does not divide l, we define the group scheme

T m,ln := Ln ⋊ µpm

with operation on T m,ln (R) given by

( n−1∑

i=0

aix
pi , r
)
·
( n−1∑

i=0

bix
pi , s
)
:=
( n−1∑

i=0

(ai + r
lpibi)x

pi , rs
)
.

Note that T m,ln is trigonalizable with unipotent radical Ln on which, by the
choice of l, the group µpm operates faithfully via conjugation.

4.2. We denote the principal block of the distribution algebra of an
infinitesimal k-group G by B0(G) ⊆ H(G). The following result refines [9,
(2.7)].

Theorem. Let G be an infinitesimal k-group with representation-finite
principal block B0(G). Then G/M(G) is isomorphic to either Un,d, U

j
n,d, or

T m,ln for a suitable choice of parameters.
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Proof. By [9, (2.7)], the factor group G/M(G) ∼= U ⋊ µpm is a semidi-
rect product with a V-uniserial normal subgroup U on which µpm operates
faithfully via conjugation.

Suppose that U has height at least 2. Thanks to [8, (3.1)], the connected
component of the automorphism scheme of U is unipotent. Accordingly,
µpm operates trivially, so that µpm = ek. The assertion now follows from
Theorem 1.2.

Alternatively, U has height 1 and is thus isomorphic to (Wn)1. The Lie
algebra Ln of (Wn)1 is nil-cyclic of dimension n, and µpm operates on Ln via
the adjoint representation. Let K be the kernel of this operation. By virtue
of [5, (II, §7, no 4.3)], we have

LieK ⊆ CentLie T m,ln
(Ln) = Lie(CENT T m,ln

((Wn)1)) = Lie(Wn)1 = Ln.

Thus, LieK ⊆ Lieµpm∩Ln = (0). Since K is infinitesimal, we obtain K = ek,
implying that µpm operates faithfully on Ln.

Note that the subspace V generated by L
[p]
n is a µpm-submodule of codi-

mension 1. As µpm is multiplicative, there is a one-dimensional µpm-stable
complement ky to V in Ln. The group µpm operates on ky via a character

λ : µpm → µk. Thus r(y⊗1)[p]
i

= λ(r)p
i

(y⊗1) for r ∈ R and R ∈Mk. Since

Ln =
n−1⊕

i=0

ky[p]
i

,

it follows that λ is injective. This readily implies the existence of an integer
0 ≤ l ≤ pm − 1 not divisible by p such that λR(r) = rl. Consequently,
the map sending y to x and fixing µpm pointwise defines an isomorphism
G/M(G) ∼= T m,ln .

Corollary. Let G be an infinitesimal k-group and B ⊆ H(G) a re-
presentation-finite block admitting a one-dimensional module. Then either

B ∼= k[X]/(Xp
n

), or B ∼= H(T m,ln ) for a suitable choice of parameters. In
particular , B is a Nakayama algebra.

Proof. Let λ : H(G) → k be the character defining the one-dimensional
B-module kλ. The convolution λ ∗ idH(G) is an automorphism ψλ of H(G)
whose composition ε ◦ψλ with the counit ε of H(G) coincides with λ. Thus,
ε(ψλ(B)) 6= (0), so that ψλ sends B onto B0(G). In particular, B0(G) is
representation-finite and Theorem 4.2 determines the structure of G/M(G).
Thanks to [9, (2.4)], we have B0(G) ∼= H(G/M(G)), and the assertion fol-
lows.

Remark. The foregoing result suggests that representation-finite blocks
of distribution algebras are Nakayama algebras. This is known to be true
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for groups of height at most 1 and supersolvable groups of arbitrary height;
see [6, (3.2)] and [7, (5.3)].

5. Unipotent groups of complexity 1

5.1. The notion of the complexity of a module, first introduced by
Alperin in [1] and then systematically elaborated on by Alperin and Evens
in [2], plays an important rôle in the representation theory of self-injective
algebras. For instance, modules belonging to representation-finite and tame
algebras have complexities bounded by 1 and 2, respectively.

For a finite-dimensional moduleM over a finite-dimensional k-algebra Λ,
the complexity cΛ(M) of M is defined to be the rate of growth of a minimal
projective resolution (Pn)n∈N0 of M . Thus, we have

cΛ(M) := min{c ∈ N0 ∪ {∞} :

there exists λ > 0 such that dimk Pn ≤ λn
c−1 for all n ≥ 1}.

If G is a finite algebraic k-group, we let cG := cH(G)(k) be the complexity
of the trivial module of the algebra of measures on G. Thus, cG = 0 if and
only if H(G) is semisimple, and cG ≤ 1 whenever G is representation-finite.
By Nagata’s Theorem (cf. [5, (IV, §3, no 3.6)]), the infinitesimal groups of
complexity 0 are just the multiplicative groups.

Let H ⊂ G be a subgroup. Since H(G) is a free H(H)-module (cf. [14,
(2.6)]), we readily obtain cH ≤ cG . The Künneth formula implies cαpr = r.

If U is a V-uniserial group of length n, then H(U) ∼= k[X]/(Xp
n

), so that
cU = 1.

5.2. In this subsection we characterize V-uniserial groups in terms of
subgroups of αp2 .

Lemma. Let U be an infinitesimal unipotent k-group such that U con-
tains exactly one copy of αp and no copy of αp2 . Then U is V-uniserial.

Proof. We proceed by induction on the length l(U) of U , and denote by
U ′ the unique subgroup of U that is isomorphic to αp. Note that U ′ lies in
the center of U , and consider the factor group U ′′ := U/U ′.

If U ′′ = ek, then U ∼= αp is V-uniserial. Alternatively, U ′′ contains a
central subgroup Z that is isomorphic to αp (cf. [5, (IV, §4, no 1.3)]).

Suppose U ′′ contains a subgroup X 6= Z isomorphic to αp2 or αp. We
put N ′′ := X in the former case, and N ′′ := XZ in the latter. Let N ⊂ U
be the preimage of N ′′ under the canonical projection U → U ′′. Then we
have l(N ) = 3 and N/U ′ ∼= αp2 , or N/U

′ ∼= αp × αp. Owing to [5, (IV, §3,
no 4.5)] the group N/U ′ is annihilated by VN/U ′ . Thus, [9, (2.5)] and [10,
(1.2)] apply, and N contains a copy of αp2 , a contradiction.
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By inductive hypothesis the group U ′′ is V-uniserial and [11, (2.3)] (which
also holds for p = 2) ensures the commutativity of U . Note that U is uniserial,
so that U2 also has this property. If U2 is not V-uniserial, then Lemma 2.5
implies that U2 is F -uniserial, whence l(U2) = 2. According to Theorem 1.2
this readily implies U2 ∼= αp2 , a contradiction. Our result now follows from
Remark 2.5.

5.3. We now establish the main result of this section, which characterizes
V-uniseriality in terms of the structure and the complexity of the second
Frobenius kernel.

Theorem. Let U 6= ek be an infinitesimal unipotent k-group. Then the
following statements are equivalent :

(i) U is V-uniserial.
(ii) U2 is V-uniserial.
(iii) cU2 = 1.

Proof. Since the implications (i)⇒(ii)⇒(iii) are trivial, we only verify
(iii)⇒(i). Suppose that N ⊂ U is a subgroup such that N ∼= αp2 . Then
cN = 2 and N ⊂ U2, a contradiction. Let Z be a subgroup of the center of
U that is isomorphic to αp. If N ⊂ U is another subgroup of type αp, then
M := NZ ⊂ U1 is isomorphic to αp × αp. As cM = 2, this contradicts (iii).
Consequently, Lemma 5.2 yields the V-uniseriality of U .

Corollary. Let U 6= ek be an infinitesimal unipotent uniserial group
of height ≤ 1. Then U ∼= (Wd)1 for some d ≥ 1.

Proof. This follows directly from Theorems 1.2 and 5.3.

Remark. Lemma 5.2 affords the following approach towards the clas-
sification of infinitesimal groups of complexity 1. Let G be an infinitesimal
group with cG2 = 1. Then G is supersolvable (cf. [9, (2.1)]), so that G/M(G)
is a semidirect product of a unipotent normal subgroup U and a multiplica-
tive group (cf. [9, (2.3)]). The assumption cG2 = 1 implies that U satisfies
the conditions of Lemma 5.2. Hence U is V-uniserial.
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