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ON LOCAL DERIVATIONS IN THE KADISON SENSE

BY

ANDRZEJ NOWICKI (Toruń)

Abstract. Let k be a field. We prove that any polynomial ring over k is a Kadison
algebra if and only if k is infinite. Moreover, we present some new examples of Kadison
algebras and examples of algebras which are not Kadison algebras.

1. Introduction. Let k be a field and A a commutative k-algebra with
unity. A k-linear mapping d : A → A is called a derivation of A if d(ab) =
ad(b)+ bd(a) for all a, b ∈ A. A k-linear mapping γ : A→ A is called a local
derivation of A if for each a ∈ A there exists a derivation da of A such that
γ(a) = da(a).
Every derivation of A is a local derivation of A. There exist local deriva-

tions which are not derivations (see [1]). We say that a k-algebra A is a
Kadison algebra if every local derivation of A is a derivation.
R. Kadison [1], in 1990, proved that polynomial rings over C are Kadison

algebras. His proof of this fact is valid for any polynomial algebra over a
field k of characteristic zero. Yong Ho Yon [2], in 1999, tried to prove the
same in the case when k is infinite of any characteristic, but in his proof
there are some gaps. He repeats Kadison’s arguments which are not valid
in positive characteristic. However, the assertion is indeed true. We present
here a short proof of this fact.
We prove that any polynomial ring over k is a Kadison algebra if and only

if k is infinite. Moreover, we present some new examples of Kadison algebras
and examples of algebras which are not Kadison algebras. We prove, among
other things, that if P is a prime ideal of the polynomial ring k[x1, . . . , xn],
then the local algebra k[x1 . . . , xn]P is not a Kadison algebra.

2. Results. We denote by k[x1, . . . , xn] the polynomial algebra over k.
If n = 1, then we denote this algebra by k[t].

Theorem 1. Let S be a multiplicative subset of the polynomial algebra
k[x1, . . . , xn], where k is an infinite field. Let A be the algebra of quotients
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S−1k[x1, . . . , xn] and let

M = {λ ∈ kn : ∃f∈S f(λ) = 0}.

If the set knrM is dense in the Zariski topology of kn, then A is a Kadison
algebra.

Proof. Step 1. Assume that γ : A → A is a local derivation such that
γ(x1) = . . . = γ(xn) = 0. We shall show that γ = 0. To this end, observe
that if λ ∈ kn rM , then for every ϕ ∈ A, we may define, in a natural way,
the value ϕ(λ) belonging to k.
Let w ∈ A and let λ be an arbitrary point belonging to kn rM . Let

h = w −
n
∑

i=1

∂w

∂xi
(λ)xi.

Since γ is a local derivation of A, there exists a derivation δ of A such that
γ(h) = δ(h). Then

γ(h) = γ(w)−
n
∑

i=1

∂w

∂xi
(λ)γ(xi) = γ(w)−

n
∑

i=1

∂w

∂xi
(λ)0 = γ(w)

and

δ(h) = δ(w)−
n
∑

i=1

∂w

∂xi
(λ)δ(xi)

=
n
∑

i=1

∂w

∂xi
δ(xi)−

n
∑

i=1

∂w

∂xi
(λ)δ(xi)

=

n
∑

i=1

(

∂w

∂xi
(λ)−

∂w

∂xi

)

δ(xi),

and so

δ(h)(λ) =

n
∑

i=1

(

∂w

∂xi
(λ)−

∂w

∂xi
(λ)

)

δ(xi)(λ) =

n
∑

i=1

0δ(xi)(λ) = 0.

Thus we have
γ(w)(λ) = γ(h)(λ) = δ(h)(λ) = 0

for any λ ∈ knrM . Since k is infinite and the set knrM is dense, γ(w) = 0.
This implies that γ = 0.

Step 2. Now assume that γ is an arbitrary local derivation of A. Denote
by ϕ1, . . . , ϕn the elements γ(x1), . . . , γ(xn), respectively. There exists a
unique derivation d of A such that d(xi) = ϕi for i = 1, . . . , n. Consider the
mapping β = γ − d. It is a local derivation of A such that β(x1) = . . . =
β(xn) = 0. Then β = 0 (by Step 1) and therefore, γ = d, that is, γ is a
derivation.
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The above theorem implies that if k is infinite and S = {tn : n ≥ 0}, then
S−1k[t] is a Kadison algebra. Using the above theorem in the case when S
is the group of units of k[x1, . . . , xn] we get:

Proposition 2. If k is infinite, then k[x1, . . . , xn] is a Kadison alge-
bra.

Now we shall show that polynomial algebras over finite fields are not
Kadison algebras.

Proposition 3. Let k be a finite field of cardinality q and let A =
k[x1, . . . , xn]. Then the mapping γ : A→ A defined by

γ(f) =
∂f

∂x1
−

(

∂f

∂x1

)q

(for f ∈ A)

is a local derivation of A which is not a derivation.

Proof. Let p = char(k) and let q = pr for some r ≥ 1. Each element
λ of k satisfies the equality λq = λ. Moreover, (f + g)q = fq + gq for all
polynomials f and g. Hence, γ is a k-linear mapping.
Observe that γ(x1) = 0 and γ(x

p+1
1 ) = x

p
1 − x

qp
1 6= 0. This implies that

γ is not a derivation because in the opposite case we have a contradiction:
0 = (p+ 1)xp1γ(x1) = γ(x

p+1
1 ) 6= 0.

Now assume that f is an arbitrary polynomial from A and denote by v
its partial derivative ∂f/∂x1. Then γ(f) = v − v

q. Let d : A → A be the
derivation such that d(x1) = 1− v

q−1 and d(x2) = . . . = d(xn) = 0. Then

d(f) =

n
∑

i=1

∂f

∂xi
d(xi) =

∂f

∂x1
d(x1) = v(1− v

q−1) = v − vq = γ(f).

Therefore, γ is a local derivation of A.

As a consequence of Propositions 2 and 3 we get

Theorem 4. If k is a field , then the polynomial ring k[x1, . . . , xn] is a
Kadison algebra if and only if k is infinite.

In the above theorems and propositions all the algebras of polynomials
have a finite set of variables. The same proofs work for algebras of polyno-
mials in an arbitrary set of variables.
If P is a prime ideal of k[x1, . . . , xn], then we denote by k[x1, . . . , xn]P

the algebra S−1k[x1, . . . , xn] of quotients with respect to the multiplicative
subset S = k[x1, . . . , xn]r P .

Theorem 5. No algebra of the form k[x1, . . . , xn]P , where P is a prime
ideal , is a Kadison algebra.

Proof. Put k[X] = k[x1, . . . , xn], A = k[X]P , B = k[X]/P . Let
π : k[X] → B be the natural homomorphism and let L be the field of



196 A. NOWICKI

quotients of B. Denote by b1, . . . , bn the elements π(x1), . . . , π(xn), respec-
tively, and let b = (b1, . . . , bn) ∈ L

n. Since k ⊂ L is a field extension, L is a
vector space over k. Consider a basis of L over k containing 1 and let µ(v)
(for every v ∈ L) be the coefficient of 1 in the basis representation of v.
Then µ : L→ k, v 7→ µ(v), is a k-linear mapping.
It is clear that if f ∈ k[X], then f 6∈ P if and only if f(b) 6= 0. Thus, for

any element ϕ ∈ A, we may define, in a natural way, the value ϕ(b) which
belongs to L. Observe that if ϕ ∈ A, then ϕ is invertible in A if and only if
ϕ(b) 6= 0.
We define a mapping γ : A→ A by

γ(ϕ) = µ

(

∂ϕ

∂x1
(b)

)

for ϕ ∈ A.

It is a k-linear mapping. We shall show that γ is a local derivation which is
not a derivation.
Let ϕ ∈ A. If γ(ϕ) = 0, then γ(ϕ) = d(ϕ) where d is the zero derivation

of A. Now assume that γ(ϕ) 6= 0. Then (∂ϕ/∂x1)(b) 6= 0 and so ∂ϕ/∂x1 is
invertible in A. Put v = (∂ϕ/∂x1)

−1 and let d : A → A be the derivation
such that d(x1) = γ(ϕ)v and d(xi) = 0 for i ≥ 2. It is easy to check that
γ(ϕ) = d(ϕ). This means that γ is a local derivation of A.
Now suppose that γ is a derivation. Observe that γ(x1) = 1 and

γ(A) ⊆ k. If char(k) 6= 2, then we have a contradiction: 2x1 = γ(x
2
1) ∈ k. If

char(k) = 2, then we also have a contradiction: x21 = γ(x
3
1) ∈ k. Therefore,

γ is not a derivation and consequently, A is not a Kadison algebra.

Corollary 6 ([1], [2]). No field k(x1, . . . , xn) of rational functions is a
Kadison algebra.

Proof. This follows from Theorem 5 for P = 0.

The next proposition shows that the class of Kadison algebras is not
closed with respect to homomorphic images.

Proposition 7. Let n be a nonnegative integer and let Rn = k[t]/(t
n).

(1) If n ≤ 2, then Rn is a Kadison algebra.
(2) R3 is a Kadison algebra if and only if char(k) = 2.
(3) If n > 3, then Rn is not a Kadison algebra.

Proof. Each element w of Rn has a unique representation of the form

w = an−1τ
n−1 + . . .+ a1τ

1 + a0,

where a0, . . . , an−1 ∈ k and τ = t+ (t
n). In this case we denote by w(0) the

constant term a0, and by w
′ the element

(n− 1)an−1τ
n−2 + (n− 2)an−2τ

n−3 + . . .+ 2a2τ + a1.

Note that if w ∈ Rn, then w is invertible in Rn if and only if w(0) 6= 0.
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R1 is a Kadison algebra, because R1 = k. If d is a derivation of R2, then

d(τ) =

{

yτ if char(k) 6= 2,
x+ yτ if char(k) = 2,

for some x, y ∈ k. This implies that if β is a local derivation of R2 and
char(k) 6= 2, then there exists y ∈ k such that β(a + bτ) = byτ for all
a, b ∈ k, and if char(k) = 2, then there exist x, y ∈ k such that β(a+ bτ) =
b(x+ yτ) for all a, b ∈ k. In both cases such a β is a derivation of R2. Thus,
R2 is a Kadison algebra.

Now let n > 2. Consider the mapping γ : Rn → Rn defined by

γ(w) = w′(0)τ for w ∈ Rn.

We will show that γ is a local derivation of Rn. Let w ∈ Rn. If w
′(0) = 0,

then γ(w) = 0 = d(w) where d is the zero derivation of Rn. Assume that
w′(0) 6= 0. Then w′ is invertible in Rn. Put v = (w

′)−1w′(0)τ and let
d : Rn → Rn be the mapping s 7→ s

′v. It is clear that d is a derivation of
Rn and γ(w) = d(w). This means that γ is a local derivation.

Note that γ(τ) = τ . Assume that n > 3 and suppose that γ is a derivation
of Rn. If char(k) 6= 2 then we have a contradiction: 0 = γ(τ

2) = 2τγ(τ) =
2τ2 6= 0. If char(k) = 2 then we also have a contradiction: 0 = γ(τ3) =
3τ2γ(τ) = τ3 6= 0. Therefore, if n > 3, then γ is not a derivation. So we
have (3). The same happens in the case when n = 3 and char(k) 6= 2.

It remains to prove that if char(k) = 2, then R3 is a Kadison algebra.
Assume that char(k) = 2 and let α : R3 → R3 be a local derivation. Then
there exists a derivation d of R3 such that α(τ) = d(τ). Put d(τ) = x+yτ +
zτ2, where x, y, z ∈ k. Then

0 = d(0) = d(τ3) = 3τ2d(τ) = τ2(x+ yτ + zτ2) = xτ2

and so x = 0, that is, α(τ) = yτ +zτ2 for some y, z ∈ k. Moreover, α(1) = 0
and, since char(k) = 2, α(τ2) = 0. Hence,

α(a+ bτ + cτ2) = b(yτ + zτ2)

for all a, b, c ∈ k, and this implies that α is a derivation of R3. Therefore, if
char(k) = 2, then R3 is a Kadison algebra.

Let us end this paper with the following theorem.

Theorem 8. The algebra k[[x1, . . . , xn]] of formal power series over a
field k is not a Kadison algebra.

Proof. Put A = k[[x1, . . . , xn]]. If f ∈ A, then we denote by γ(f) the
coefficient of the monomial x1 in f . We shall show that the mapping γ :
A→ A, f 7→ γ(f), is a local derivation of A which is not a derivation. It is
clear that γ is k-linear.



198 A. NOWICKI

Let f ∈ A. If γ(f) = 0, then γ(f) = d(f) where d is the zero derivation
of A. Assume now that γ(f) 6= 0 and denote by v the partial derivative
∂f/∂x1. The constant term of v is not zero (because it coincides with γ(f)).
Hence v is an invertible element of A. Consider the derivation d of A such
that d(x1) = v

−1γ(f) and d(xi) = 0 for i ≥ 2. Then we have

d(f) =
n
∑

i=1

∂f

∂xi
d(xi) =

∂f

∂x1
d(x1) = vv

−1γ(f) = γ(f).

Hence, γ is a local derivation of A. Note that γ(x1) = 1 and γ(f) ∈ k for all
f ∈ A.
Suppose now that γ is a derivation of A. Then for any s ≥ 2 we have

sxs−11 = γ(xs1) ∈ k, which is a contradiction. Therefore, γ is not a derivation
of A.
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