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ON UNIFORM DIMENSIONS OF FINITE GROUPS

BY

J. KREMPA (Warszawa) and A. SAKOWICZ (Białystok)

Abstract. Let G be any finite group and L(G) the lattice of all subgroups of G.
If L(G) is strongly balanced (globally permutable) then we observe that the uniform
dimension and the strong uniform dimension of L(G) are well defined, and we show how
to calculate these dimensions.

1. Strongly balanced lattices. All lattices considered in this paper
are finite. We denote by 0 and 1 the least and the greatest element of the
lattice respectively. We will also use some other notation and terminology
about lattices, as for example in [2, 9]. However we will change the termi-
nology proposed in [7] and used in [1] to the form as in [6]. The latter is
more convenient for lattices of subgroups.
Let L be a lattice. As in [6] we will say that L is balanced (permutable

in [1, 7]) if for all x, y, z ∈ L we have

x ∧ y = 0 & (x ∨ y) ∧ z = 0 ⇒ (y ∨ z) ∧ x = 0 & (z ∨ x) ∧ y = 0

and, consequently, L is strongly balanced (globally permutable in [1, 7]) if
all nonempty intervals of L are balanced.
Clearly any sublattice with 0 of a balanced lattice is balanced and any

sublattice of a strongly balanced lattice is strongly balanced. Furthermore,
modular lattices are always strongly balanced, but not conversely (see Sec-
tions 2 and 3 below).
If a, u ∈ L then, as in [4, 7], we will say that a is essential in L if a∧x 6= 0

for every 0 6= x ∈ L, and u is uniform in L if u 6= 0 and every element from
(0, u] is essential in [0, u]. It is obvious that 1 ∈ L is always essential and
any atom in L is a uniform element.
Let X = {x1, . . . , xn} ⊂ L \ {0}. Then, as in [7], we will say that X is

independent if for every 1 ≤ i ≤ n we have xi ∧
∨

k 6=i xk = 0, and a subset
B ⊂ L will be called a base of L if any element of B is uniform and B is a
maximal independent subset of L. If B is a base of L then the cardinality
of B will be called the uniform dimension of L and denoted by u(L).
Because our lattices are finite, below any nontrivial element there exists

a uniform element, for example an atom. Hence from [7] we have:
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Theorem 1.1. Let L be a finite balanced lattice.

(a) There exists a base in L.
(b) Every independent set of uniform elements in L can be extended to

a base of L.
(c) Any two bases of L have the same cardinality. Hence u(L) is well

defined.

One can observe that for nonbalanced lattices the uniform dimension
cannot be well defined. Examples of such lattices are presented in [1, 7] (see
also Example 2.2).
It is easy to verify the following lemma (see [7]) which for the modular

case was proved in [3].

Lemma 1.2. Let L be a balanced lattice and let a, b ∈ L. If a ∧ b = 0
and a ∨ b is essential in L, then u(L) = u([0, a]) + u([0, b]). If K ⊆ L is a
sublattice with the same 0 then u(K) ≤ u(L).

Now let L be a strongly balanced lattice. Then the smallest number α
such that u([a, b]) ≤ α for every nontrivial interval [a, b] ⊆ L will be called
the strong uniform dimension of L (global uniform dimension of L in [7]),
and will be denoted by us(L).
Let L be a strongly balanced lattice. Because L is finite, each of its

nonempty intervals is balanced and finite. Hence, from Theorem 1.1, we
know that its uniform dimension exists. This means that for L the strong
uniform dimension is well defined and we have

us(L) = sup
a∈L

u([a, 1]).

From the facts mentioned above one can see that the uniform dimension
and the strong uniform dimension are well connected with some algebraic
operations on lattices. For example we have

Proposition 1.3. Let L be a strongly balanced lattice. If K ⊆ L is any
sublattice then us(K) ≤ us(L).

Proposition 1.4. Let L1 and L2 be lattices. Then:

(a) L1 and L2 are (strongly) balanced if and only if L1×L2 is (strongly)
balanced.

(b) If L1 and L2 are balanced , then u(L1 × L2) = u(L1) + u(L2).
(c) If L1 and L2 are strongly balanced , then us(L1 × L2) = us(L1) +

us(L2).

We will need the following result about the connection of uniform di-
mensions with some mappings of lattices.

Lemma 1.5. Let L,M be lattices and let ϕ : L→M be a meet preserving
mapping.
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(a) If L,M are balanced and ϕ−1(0) = {0} then u(L) ≤ u(M).

(b) If L,M are strongly balanced and ϕ is an injection then us(L) ≤
us(M).

Proof. Let ϕ : L→M be a meet preserving mapping. Then ϕ preserves
the order and in particular, ϕ(x) ∨ ϕ(y) ≤ ϕ(x ∨ y) for any x, y ∈ L. Hence
for all x1, . . . , xn ∈ L,

ϕ(xi) ∧
∨

k 6=i

ϕ(xk) ≤ ϕ
(

xi ∧
∨

k 6=i

xk

)

.

Now if the set {x1, . . . , xn} is independent and ϕ
−1(0) = {0}, then the above

inequality implies that {ϕ(x1), . . . , ϕ(xn)} is independent inM. This means,
with the help of Lemma 1.2, that u(L) ≤ u(M).

Now let L,M be strongly balanced, and let ϕ be an injection. For a fixed
a ∈ L put L′ = [a, 1] ⊆ L and M ′ = [ϕ(a), 1] ⊆ M. If we put ϕ′ = ϕ|L′
then, by assumptions, the triple (L′,M ′, ϕ′) satisfies the conditions of the
first part of our lemma. Hence u([a, 1]) ≤ u([ϕ(a), 1]) ≤ us(M). This means
that us(L) ≤ us(M), because a ∈ L was arbitrarily chosen.

2. Lattices of subgroups. All groups considered here will be finite
with trivial element e. If G is a group then, as in [2, 9], by L(G) we denote
the lattice of all subgroups of G. This lattice is certainly finite.

Let G be a group. Then G will be called (strongly) balanced if the lattice
L(G) is (strongly) balanced and the uniform dimension (strong uniform
dimension) of L(G) will be called the uniform dimension (strong uniform
dimension) of the group G and will be denoted by u(G) (us(G) respectively).

Now we formulate some simple properties of these dimensions of groups.

Proposition 2.1. Let G be a strongly balanced group.

(a) If H ⊆ G is a subgroup then L(H) is a sublattice in L(G) with the
same 0. Hence u(H) ≤ u(G) and us(H) ≤ us(G).

(b) If H ⊆ G is a normal subgroup then L(G/H) ≃ [H,G] ⊆ L(G).
Hence us(G/H) ≤ us(G).

Example 2.2. Let G be a nonabelian group of order 8. If G is a dihedral
group then it is easy to check that G is not strongly balanced and even not
balanced.

On the other hand, if G ≃ Q8 is a quaternion group of order 8 then
G is strongly balanced, and even modular, with u(G) = 1 and us(G) =
u(G/G′) = 2, where G′ is the commutator subgroup of G.

From a property of subgroups of direct products of groups with coprime
orders (see [9]) and from Proposition 1.4 we immediately obtain
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Lemma 2.3. Let G1 and G2 be groups with coprime orders and let G =
G1 ×G2. Then L(G) ≃ L(G1)× L(G2). Moreover :

(a) If G1 and G2 are balanced then u(G) = u(G1) + u(G2).
(b) If G1 and G2 are strongly balanced then us(G) = us(G1) + us(G2).

For further considerations we need the following result, which is in some
sense stronger than Proposition 2.1.

Lemma 2.4. Let G be a strongly balanced group. If P is a normal sub-
group of G, then

u(G) ≤ u(P ) + u(G/P ) and us(G) ≤ us(P ) + us(G/P ).

Proof. Let P ⊆ G be a normal subgroup and K ⊆ G be a maximal
subgroup with the property K ∩ P = {e}. Then from the assumption we
know that K ∨P = KP is essential in L(G), because G is balanced. Hence,
by Lemma 1.2 we get u(G) = u(P ) + u(K).
Put L = L(K), M = L(G/P ) = [P,G] and ϕ(X) = X∨P = XP for any

subgroup X ∈ L. By the isomorphism theorem the triple (L,M,ϕ) satisfies
the assumptions of Lemma 1.5. Hence u(K) ≤ u(G/P ) and consequently

u(G) ≤ u(P ) + u(G/P ).

Now let us consider the strong uniform dimension. For this let H ⊆ G
be any subgroup. We need to estimate the uniform dimension of the interval
[H,G].
Let, as assumed, P ⊆ G be a normal subgroup. Certainly H ⊆ HP. Let

K ⊆ G be a maximal subgroup with the property K∩HP = H. Because, by
assumption, [H,G] is a balanced lattice, by definition the elementK∨HP =
KHP = KP is essential in [H,G]. Hence, by Lemma 1.2 we obtain

u([H,G]) = u([H,K]) + u([H,HP ]).(1)

Put L = [H,K], M = L(G/P ) = [P,G] and ϕ(X) = XP for any subgroup
X ∈ L. If X,Y ∈ L then by an elementary coset calculation one can see
that ϕ(X ∧ Y ) = ϕ(X) ∧ ϕ(Y ) and ϕ(X) = ϕ(Y ) if and only if X = Y.
Hence, by Lemma 1.5,

u([H,K]) = u(L) ≤ u(M) = u(G/P ).(2)

To estimate u([H,HP ]) put L = [H,HP ], M = L(P ) and ϕ(X) = X∧P
for any X ∈ L. Clearly ϕ is a meet preserving mapping. Moreover, it can
be calculated that ϕ is an injection of L into M. Applying Lemma 1.5 we
obtain

u([H,HP ]) = u(L) ≤ u(M) = u(P ).(3)

Now our claim is a consequence of formulas (1)–(3).

The above lemma cannot be extended to a general result for strongly
balanced lattices. As in [7] let us consider the following example:
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Example 2.5. Let n ≥ 2, and let Bn be the Boolean algebra with atoms
b1, . . . , bn. Denote by Ln the lattice obtained form Bn by adding an element
x such that 0 < x < b1. From the construction of Ln it follows that this
lattice is strongly balanced and it can be checked that u(Ln) = us(Ln) = n.

On the other hand, u([0, x]) + u([x, 1]) = 1 + 1 = 2 and us([0, x]) +
us([x, 1]) = 1 + n− 1 = n.

The above example and Example 2.2 show that formulas connected with
dimensions of extensions of lattices and groups should be applied carefully.
However, as a consequence of Lemma 2.4 we obtain the following stronger
version of Lemma 2.3.

Theorem 2.6. Let G1 and G2 be subgroups of a group G such that G =
G1⋊G2 and any subgroup of G1 is invariant under conjugation by elements
from G2.

(a) If G is balanced then u(G) = u(G1) + u(G2).

(b) If G is strongly balanced then us(G) = us(G1) + us(G2).

Proof. Clearly G1 ∧ G2 = {e} and G1 ∨ G2 = G is essential in L(G).
Hence, by Lemma 1.2 we have u(G) = u(G1) + u(G2).

Now let G be strongly balanced. For G1 = P and G2 ≃ G/P we obtain,
by Lemma 2.4, us(G) ≤ us(G1) + us(G2).

Let H ⊆ G1 be a subgroup such that us(G1) = u([H,G1]) and K ⊆ G2
be a subgroup such that us(G2) = u([K,G2]). Then, by assumption about
the action of G2 on subgroups of G1, we have G1K ∧HG2 = HK and, by
Lemma 1.2,

u([HK,G]) = u([HK,G1K]) + u([HK,HG2]).

On the other hand, one can check that [H,G1] ≃ [HK,G1K] and [K,G2] ≃
[HK,HG2]. Hence the result follows.

3. Uniform dimensions of groups. In this section we are going to
calculate u(G) and us(G) for all strongly balanced groups G. We start with
the characterization of uniform elements in L(G). From ([8], 5.3.6), we im-
mediately have

Lemma 3.1. Let G be a group and H ∈ L(G). Then H is uniform in
L(G) (u(H) = 1) if and only if H is isomorphic either to a cyclic p-group
or to a generalized quaternion group.

As a consequence of this lemma and Example 2.2 we deduce that for any
n > 3 the generalized quaternion group Q2n is balanced, but not strongly
balanced, because it has the dihedral group of order 8 as its homomorphic
image.
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Now we will characterize all groups G with us(G) = 1. Since L(G) is a
chain if and only if G is a cyclic p-group (see [9]) and the strong uniform
dimension has value 1 exactly for chains, we have

Lemma 3.2. Let G be a group. Then us(G) = 1 if and only if G is a
cyclic p-group.

To consider the general case we recall the description of strongly bal-
anced groups given in [1]. For brevity, call a group G an exceptional strongly
balanced group (ESB-group) if G = P⋊Q, where P is an elementary abelian
p-group, Q = 〈y | yq

m

= 1〉 is a cyclic q-group and y−1xy = xk for all x ∈ P,
where k is an integer such that kq

m

≡ 1 (mod p) but k 6≡ 1 (mod p).

Theorem 3.3 ([1]). Let G be a group. Then G is strongly balanced if
and only if it is one of the following groups:

(a) a modular p-group;

(b) an ESB-group;

(c) a direct product of groups given in (a) and (b) with pairwise coprime
orders.

Remarks. It is known that an ESB-group is modular exactly in the
case when m = 1 can be taken in the above definition. For the smallest
example of a nonmodular ESB-group, see page 68 in [1].

It can be checked that the direct decomposition from (c) in the above
theorem is unique up to the order of components.

Further, if G is a p-group, then by Φ(G), Ω(G), Gp we will denote,
respectively, the Frattini subgroup, the subgroup generated by all elements
of order p and the subgroup generated by all pth powers of elements of G.

Let G be a strongly balanced group. Then, due to Lemma 2.3 and The-
orem 3.3(c) we have to calculate the uniform dimensions of G only if G is as
in (a) or (b) of the above theorem. According to a classical result of Iwasawa
(see [9]), case (a) can be divided into the following subcases:

(a1) G is an abelian p-group.

(a2) G is a hamiltonian 2-group.

(a3) G is a nonabelian p-group containing an abelian normal subgroup
A and an element b such that G = A〈b〉. Moreover, there exists a positive
integer s such that b−1ab = a1+p

s

for all a ∈ A, with s ≥ 2 in the case p = 2,
and A ∩ 〈b〉 ⊆ Ap.

(a4) G is as in (a3), but A ∩ 〈b〉 6⊆ A
p.

It is well known that the presentation of a modular p-group G in cases
(a3) and (a4) need not be unique (see [9], p. 65). Now we show that these
cases are not disjoint.
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Example 3.4. Let p be a prime number and 1 ≤ s < r (2 ≤ s < r if
p = 2) be natural numbers and let

G = 〈a, b | ap
r

= bp
r

= e, b−1ab = a1+p
s

〉.

Put A1 = 〈a〉 and B = 〈b〉. Then for any x ∈ A1 we have b
−1xb = x1+p

s

and
G = A1⋊B. This means that G = A1B satisfies the conditions of case (a3),
because A1 ∩B = {e} ⊆ A

p
1
.

Now let C = 〈c〉 where c = bp
r−s

, and let A2 = 〈a, c〉. Then |C| = p
s,

b−1xb = x1+p
s

for any x ∈ A2, and A2 = A1C ≃ A1⊕C is an abelian normal
subgroup of G with G = A2B. However in this case A2 ∩B = C 6⊆ A

p
2
. This

means that this presentation of G fits case (a4).

Theorem 3.5. Let G be a modular p-group. Then us(G) is equal to the
cardinality of a minimal system of generators of G.

Proof. Let G be any modular p-group. From the Iwasawa characteriza-
tion of such groups mentioned above it is easy to deduce that Φ(G) = Gp,
G/Φ(G) is an elementary abelian p-group and it is known that the cardinal-
ity of a minimal system of generators of G is just the dimension of G/Φ(G)
viewed as a vector space over the field Fp with p elements (see [5]). From
the same characterization we also infer that Ω(G) is an elementary abelian
p-group. Clearly in the proof it is enough to consider the four cases listed
above.

Case (a1). Let G be an abelian p-group and let Gi, i = 1, . . . , n, be
cyclic subgroups of G such that G = G1 × · · · ×Gn. Then, by Theorem 2.6
and Lemma 3.2, we have u(G) = us(G) = n.

On the other hand, it is evident that n is exactly the minimal number
of generators of G.

Case (a2). Let G be any hamiltonian 2-group. Then G = Q8×A, where
A is an elementary abelian 2-group (see [8]). Hence, by Theorem 2.6 and
Example 2.2 we obtain u(G) = u(A) + 1 and us(G) = us(A) + 2.

Let |A| = 2n. Then, by case (a1) of this proof, we have

u(G) = n+ 1 while us(G) = n+ 2.

On the other hand we know that Φ(G) = G2. Hence the group G/Φ(G) is
elementary abelian of order 2n+2. This means that G is generated by exactly
n+ 2 elements.

Case (a3). Now we can assume that our group G is nonabelian of the
form G = AB where A is an abelian p-group and B = 〈b〉 is a cyclic p-group
such that b−1ab = a1+p

s

for some s ≥ 1. Moreover, C = A ∩B ⊆ Ap.

Let us(A) = n. Then, by case (a1), a minimal system of generators of A
has n elements. Moreover, Ap ⊆ Φ(G) is normal in G and G/Ap is an abelian
group with exactly n+1 generators because, by assumption, C ⊆ Ap. Hence,



230 J. KREMPA AND A. SAKOWICZ

it can be calculated that G/Φ(G) is an elementary abelian group of order
pn+1 and a minimal system of generators of G has n+ 1 elements.
On the other hand, by assumption, there exists a ∈ A such that a 6∈ C

but ap ∈ C. LetD = 〈a, b〉. ThenD∩A = 〈a〉 is cyclic. Hence |D∩Ω(A)| = p.
From Lemma 3.1 we have u(D) > 1 and consequently, Ω(D) 6⊆ Ω(A).
This means that Ω(G) is elementary abelian of order at least pn+1. Hence,
n + 1 ≤ u(G). But from Theorem 2.6, us(G) = n + 1. These facts together
give

u(G) = us(G) = n+ 1.

Case (a4). Let us keep the notation of the previous case. However, by
assumption, we have C 6⊆ Ap. Let C = 〈c〉. Then c ∈ A \ Ap. Hence, by
case (a1) and since u(A) = n, for some a1, . . . , an−1 ∈ A we have A =
〈a1, . . . , an−1, c〉. This means that G = 〈a1, . . . , an−1, b〉 and the images of
these generators modulo Ap are independent over Fp. Hence G has exactly
n generators.
On the other hand, let A1 = 〈a1, . . . , an−1〉. Then u(A1) = n − 1 and

G = A1 ⋊B. From this equality and Theorem 2.6 we have

u(G) = us(G) = n

and the proof of the theorem is complete.

Theorem 3.6. Let G be an ESB-group. Then us(G) is equal to the car-
dinality of a minimal system of generators of G.

Proof. Let G be an ESB-group. Then, under the notation of the defi-
nition, G = P ⋊ Q, where P is an elementary abelian p-group of order pn

and Q is a cyclic q-group. Then, by Theorem 3.5, u(P ) = n and u(Q) = 1.
Hence, by Theorem 2.6,

u(G) = us(G) = us(P ) + us(Q) = n+ 1.

On the other hand, let g1, . . . , gr be any system of generators of G.
Because Q ≃ G/P is a cyclic q-group, we can assume that for example the
coset g1P generates G/P. Hence, after small modifications if necessary, we
can assume that g2, . . . , gr ∈ P. Now, by induction on the value of n = u(P )
one can prove that the cardinality of any minimal system of generators of
G is equal to n+ 1.

As a consequence of the results of this section and their proofs we im-
mediately have

Theorem 3.7. Let G be a strongly balanced group. Then us(G) =
u(G) + 1 if and only if G has a direct factor which is the quaternion group
of order 8. In any other case us(G) = u(G).
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