COLLOQUIUM MATHEMATICUM

VOL. 89
2001
NO. 2

ON THE SET REPRESENTATION OF AN ORTHOMODULAR POSET

BY
JOHN HARDING (Las Cruces, NM) and PAVEL PTÁK (Praha)

Abstract

Let P be an orthomodular poset and let B be a Boolean subalgebra of P. A mapping $s: P \rightarrow\langle 0,1\rangle$ is said to be a centrally additive B-state if it is order preserving, satisfies $s\left(a^{\prime}\right)=1-s(a)$, is additive on couples that contain a central element, and restricts to a state on B. It is shown that, for any Boolean subalgebra B of P, P has an abundance of two-valued centrally additive B-states. This answers positively a question raised in [13, Open question, p. 13]. As a consequence one obtains a somewhat better set representation of orthomodular posets and a better extension theorem than in [2, 12, 13]. Further improvement in the Boolean vein is hardly possible as the concluding example shows.

Our notation is standard. We use OMP to abbreviate orthomodular poset, OML to abbreviate orthomodular lattice, Z to denote the centre of an orthomodular poset, \subset for set inclusion, and $\langle 0,1\rangle$ for the real unit interval. We remind the reader that a subset B of an orthomodular poset P is called a Boolean subalgebra of P if B is closed under orthocomplementation and finite orthogonal joins and B forms a Boolean algebra under these inherited operations. It is well known that any two elements of B also have a join (resp., a meet) in P and that the join (resp., the meet) taken in B coincides with the join (resp., the meet) taken in P. For general background on orthomodular posets the reader should consult [11], on orthomodular lattices $[1,6]$, and for various results related to set representations of orthomodular posets $[2,5,7,8,9,13,14]$.

Definition 1. Let P be an OMP and $s: P \rightarrow\langle 0,1\rangle$ be a map that satisfies
(1) $s(0)=0$,
(2) $s\left(a^{\prime}\right)=1-s(a)$ for all $a \in P$,
(3) if $a \leq b$ then $s(a) \leq s(b)$.

[^0]We say s is a state if it satisfies
(4) if $a \leq b^{\prime}$, then $s(a \vee b)=s(a)+s(b)$.

We say s is a centrally additive state if it satisfies
$\left(4^{\prime}\right)$ if $a \leq b^{\prime}$ and $b \in Z$, then $s(a \vee b)=s(a)+s(b)$.
If B is a Boolean subalgebra of P we say s is a B-state if it satisfies
$\left(4^{\prime \prime}\right)$ if $a \leq b^{\prime}$ and $a, b \in B$, then $s(a \vee b)=s(a)+s(b)$.
Centrally additive states are obtained by weakening the additivity requirement for states to those orthogonal pairs where at least one element belongs to the centre, and B-additive states are obtained by weakening the additivity requirement for states to those orthogonal pairs where both elements belong to the subalgebra B. Note that a centrally additive state is more than just a B-additive state for B being the Boolean algebra Z. We shall call a state two-valued if its range is $\{0,1\}$. The following notion is key to the study of two-valued centrally additive states.

Definition 2. Let P be an OMP. We say $I \subset P$ is a central ideal if
(1) $b \in I$ and $a \leq b$ imply $a \in I$,
(2) if $a \in I$ then $a^{\prime} \notin I$ for every $a \in P$,
(3) if $a \leq b^{\prime}, a, b \in I$, and $b \in Z$ then $a \vee b \in I$,
(4) I contains a prime ideal of Z.

Lemma 3. Let I be a central ideal of P and $a^{\prime} \notin I$. Then

$$
J=\{x \in L \mid x \leq m \vee \text { a for some } m \in I \cap Z\} \cup I
$$

is a central ideal of P containing I and the element a.
Proof. Let $Q=I \cap Z$. By assumption (4), Q contains a prime ideal of the centre, hence by assumption (2), Q is a prime ideal of the centre.

As J is the union of two order ideals, it is an order ideal. Hence J satisfies the first condition.

For the second condition suppose $x, x^{\prime} \in J$. Obviously not both $x, x^{\prime} \in I$. If $x \leq m_{1} \vee a$ and $x^{\prime} \leq m_{2} \vee a$, then $1=\left(m_{1} \vee m_{2}\right) \vee a$, giving $a^{\prime} \leq m_{1} \vee m_{2}$. As $m_{1} \vee m_{2}$ belongs to Q, we have the contradiction $a^{\prime} \in I$. We are left with the possibility that $x \in I$ and $x^{\prime} \leq m \vee a$ for some $m \in Q$. This implies $m^{\prime} \wedge a^{\prime} \leq x$, hence $m^{\prime} \wedge a^{\prime} \in I$. As $m \in Q$ and I is a central ideal we see that $m \vee\left(m^{\prime} \wedge a^{\prime}\right)=m \vee a^{\prime} \in I$, yielding the contradiction $a^{\prime} \in I$. Note that the second condition implies $J \cap Z=I \cap Z$ since $I \cap Z$ is a prime ideal of Z.

For the third condition suppose $x, y \in J, x \leq y^{\prime}$ and $y \in Z$. Then $y \in Q$. If $x \in I$, then as I is a central ideal we have $x \vee y \in I$. Otherwise $x \leq m \vee a$ for some $m \in Q$. Then $x \vee y \leq m \vee a \vee y=(m \vee y) \vee a$ and since both $m, y \in Q$ it follows that $x \vee y \in J$.

Finally, the fourth condition follows trivially as I contains a prime ideal of Z.

Corollary 1. For I a central ideal of P these are equivalent:
(1) I is a maximal central ideal.
(2) For each $a \in P$ exactly one of a, a^{\prime} belongs to I.

The connection between maximal central ideals and two-valued centrally additive states can now be made clear.

Proposition 4. Let P be an OMP and B be a Boolean subalgebra of P. For $s: P \rightarrow\{0,1\}$ these are equivalent:
(1) s is a centrally additive B-state.
(2) $s^{-1}(0)$ is a maximal central ideal which contains a prime ideal of B.

For $I \subset P$ these are equivalent:
(3) I is a maximal central ideal which contains a prime ideal of B.
(4) $I=s^{-1}(0)$ for some two-valued centrally additive B-state s.

Proof. (1) $\Rightarrow(2)$. Set $I=s^{-1}(0)$. As s restricts to a state on $Z, I \cap Z$ is a prime ideal of Z. Similarly, as s restricts to a state on $B, I \cap B$ is a prime ideal of B. Obviously, I is a downset and for each $a \in P$ exactly one of a, a^{\prime} belongs to I. Finally, if $x, y \in I, x \leq y^{\prime}$ and $y \in Z$, then as s is centrally additive, $s(x \vee y)=s(x)+s(y)=0$, yielding $x \vee y \in I$.
$(2) \Rightarrow(1)$. Set $I=s^{-1}(0)$. As $0 \in I$ we have $s(0)=0$, and as I is a downset, s is order preserving. As I is maximal, exactly one of a, a^{\prime} belongs to I for each $a \in P$, so $s\left(a^{\prime}\right)=1-s(a)$. Assume $x \leq y^{\prime}$ with either $x, y \in B$ or $y \in Z$. To show $s(x \vee y)=s(x)+s(y)$ it suffices to show this under the assumption that $x, y \in I$. The result follows from the assumptions that $I \cap B$ is a prime ideal of B and that I is a central ideal.
$(3) \Rightarrow(4)$. Define $s: P \rightarrow\{0,1\}$ by setting $s(x)=0$ if $x \in I$ and $s(x)=1$ if $x \notin I$. Then $I=s^{-1}(0)$. That s is a centrally additive B-state then follows from the equivalence of (1) and (2).
$(4) \Rightarrow(3)$. This follows directly from the equivalence of (1) and (2).
The following result is crucial for the representation theorem.
Lemma 5. Let L be an OMP. Let B be a Boolean subalgebra of L containing Z and let $a, b \in L$ with $a \not \leq b$. Then there is a central ideal I with $a^{\prime}, b \in I$ such that $I \cap B$ is a prime ideal of B.

Proof. Set $X=\{x \in B \mid a \leq x\} \cup\left\{y \in B \mid b^{\prime} \leq y\right\} \cup\{z \in Z \mid a \leq z \vee b\}$. We first claim that X generates a proper filter of B. As each of the three sets involved in the definition of X is closed under finite meets, it suffices to show that for $x, y \in B$ and $z \in Z$ with $a \leq x, b^{\prime} \leq y, a \leq z \vee b$ we have $x \wedge y \wedge z \neq 0$. Assume to the contrary that $x \wedge y \wedge z=0$. We want to derive
the contradiction $a \leq b$. Certainly, $a \leq z \vee b$ implies by the centrality of z that $a \wedge z^{\prime} \leq b \wedge z^{\prime}$. Also, $x \wedge y \wedge z=0$ implies $z \leq x^{\prime} \vee y^{\prime}$. As $a \leq x$ and $z \leq x^{\prime} \vee y^{\prime}$ we have $a \wedge z \leq x \wedge\left(x^{\prime} \vee y^{\prime}\right)=x \wedge y^{\prime} \leq y^{\prime} \leq b$, so $a \wedge z \leq b \wedge z$. As $a \wedge z \leq b \wedge z$ and $a \wedge z^{\prime} \leq b \wedge z^{\prime}$, the centrality of z yields $a \leq b$.

Since X generates a proper filter, there is a prime ideal Q of B which is disjoint from X. Let $I_{0}=\{x \in L \mid x \leq p$ for some $p \in Q\}$. We claim that I_{0} is a central ideal. The first condition is trivial from the definition. The second follows as I_{0} is the downset generated by a proper ideal of B. The third condition also follows: I_{0} is closed under all finite joins. The fourth follows as I_{0} contains a prime ideal of B and the centre is contained in B. We next want to show that $a, b^{\prime} \notin I_{0}$. Indeed, if $a \in I_{0}$ then $a \leq x$ for some $x \in Q$. But then $x \in X \cap Q$, a contradiction. Similarly, if $b^{\prime} \in I_{0}$ then $b^{\prime} \leq y$ for some $y \in Q$ and $y \in X \cap Q$, a contradiction. Let us set

$$
I_{1}=\left\{x \in L \mid x \leq m \vee b \text { for some } m \in I_{0} \cap Z\right\} \cup I_{0}
$$

By Lemma 3, I_{1} is a central ideal of L. We claim that $a \notin I_{1}$. Indeed, $a \in I_{1}$ would imply that $a \leq z \vee b$ for some $z \in I_{0} \cap Z$. But this z would then belong to $X \cap Q$, which is absurd. As $a \notin I_{1}$, we apply Lemma 3 again to extend I_{1} to a central ideal containing both a^{\prime}, b.

Theorem 6. Let P be an $O M P, B$ be a Boolean subalgebra of P, and $a \not \leq b$ be elements of P. Then there is a centrally additive B-state $s: P \rightarrow$ $\{0,1\}$ such that $s(a)=1$ and $s(b)=0$.

Proof. Taking the subalgebra generated by $B \cup Z$ if necessary, we may assume without loss of generality that B contains the centre of P. Use Lemma 5 to produce a central ideal I with $a^{\prime}, b \in I$ such that $I \cap Z$ is a prime ideal of B. By a standard Zorn's lemma argument extend I to a maximal central ideal M. By Proposition 4 there is a centrally additive B-state $s: P \rightarrow\{0,1\}$ with $M=s^{-1}(0)$. Then $a^{\prime}, b \in M$ yield $s(a)=1$ and $s(b)=0$.

Theorem 7. Let P be an OMP and let B be a Boolean subalgebra of P. Then there is a set S and a mapping $\sigma: P \rightarrow \exp S$ into the power set of S such that, for any $a, b \in L$,
(1) $a \leq b$ if and only if $\sigma(a) \subset \sigma(b)$,
(2) $\sigma\left(a^{\prime}\right)=S-\sigma(a)$,
(3) if $a, b \in B$ then $\sigma(a \vee b)=\sigma(a) \cup \sigma(b)$ and $\sigma(a \wedge b)=\sigma(a) \cap \sigma(b)$,
(4) if $a \in Z$, then $\sigma(a \vee b)=\sigma(a) \cup \sigma(b)$ and $\sigma(a \wedge b)=\sigma(a) \cap \sigma(b)$.

Proof. The proof closely follows the Boolean patterns and we therefore omit the details. Let S be the set of all two-valued centrally additive B-states on P. Define $\sigma: P \rightarrow \exp S$ by setting $\sigma(a)=\{s \in S \mid s(a)=1\}$.

The "topological" version of the above representation theorem is also in force. Again, the technique is similar to the Boolean case. The resulting Stone space will however be a closure space only (see [13] for details; recall that a closure space (see [3]) differs from a topological space in that the union of two closed sets need not be closed).

Theorem 8. Let P be an OMP and let B be a Boolean subalgebra of P. Then there exists a compact Hausdorff closure space C and a mapping $\sigma: L \rightarrow \operatorname{Clop}(C)$ to the collection $\operatorname{Clop}(C)$ of all clopen subspaces of C such that
(1) $a \leq b$ if and only if $\sigma(a) \subset \sigma(b)$,
(2) $\sigma\left(a^{\prime}\right)=S-\sigma(a)$,
(3) if $a, b \in B$ then $\sigma(a \vee b)=\sigma(a) \cup \sigma(b)$ and $\sigma(a \wedge b)=\sigma(a) \cap \sigma(b)$,
(4) if $a \in Z$, then $\sigma(a \vee b)=\sigma(a) \cup \sigma(b)$ and $\sigma(a \wedge b)=\sigma(a) \cap \sigma(b)$.

Further, if P is an $O M L$ then the map σ is onto $\operatorname{Clop}(C)$.
Proof. Let S and σ be as in the previous theorem. Let C be the closure space whose underlying set is S and whose basic closed sets are $\{\sigma(a) \mid$ $a \in P\}$. As each $\sigma(a)$ and its complement are closed, each $\sigma(a)$ is clopen. For distinct states $s, t \in S$ there is $a \in P$ with $s(a) \neq t(a)$ hence $\sigma(a)$ is a clopen set separating these points. Therefore C is Hausdorff. As the state space S is compact under the subspace topology inherited from $\langle 0,1\rangle^{P}$, and each $\sigma(a)$ is closed in this subspace topology, the collection $\{\sigma(a) \mid a \in P\}$ has the finite intersection property, and it follows that C is also compact. Conditions (1) through (4) of the theorem are established in the previous result.

For the further remark assume P is an OML. Let $A \subset S$ be a clopen set of C. Using the compactness of C and the fact that A is open, we have $A=\sigma\left(a_{1}\right) \cup \ldots \cup \sigma\left(a_{n}\right)$ for some $a_{1}, \ldots, a_{n} \in P$. But A is closed so for some $T \subset P$ we have $A=\bigcap\{\sigma(a) \mid a \in T\}$. It follows from (1) that $A \subset \sigma\left(a_{1} \vee \ldots \vee a_{n}\right) \subset \bigcap\{\sigma(a) \mid a \in T\}$ hence equality. This shows σ is onto.

Our next theorem generalizes the extension property for Boolean states.
Theorem 9. Let P be an OMP and B_{1}, B_{2} be Boolean subalgebras of P. Let $s: B_{1} \rightarrow\langle 0,1\rangle$ be a (Boolean) state on B_{1}. Then there is a centrally additive B_{2}-state $t: P \rightarrow\langle 0,1\rangle$ that restricts to s on B_{1}.

Proof. Assume first s is two-valued. From well known properties of states on Boolean algebras, s can be extended to a two-valued state on the Boolean subalgebra of P generated by $B_{1} \cup Z$, so we may assume without loss of generality that B_{1} contains Z. Also, from the form of the problem, we may assume that B_{2} contains Z. Let $J=s^{-1}(0)$, a prime ideal of B_{1}. Note that
J contains a prime ideal of Z. By the prime ideal theorem, there is a prime ideal K of B_{2} containing $\left\{x \in B_{2} \mid x \leq j\right.$ for some $\left.j \in J\right\}$. Then K contains $J \cap B_{2}$. Hence $K \cap Z$ contains $J \cap B_{2} \cap Z=J \cap Z$ and as both are prime ideals of Z we have $K \cap Z=J \cap Z$. Let

$$
I=\{x \in P \mid x \leq y \text { for some } y \in J \cup K\}
$$

We claim I is a central ideal. Obviously, I is a downset. Suppose $x, x^{\prime} \in I$. Then as both J, K are closed under finite joins and neither contains 1 we deduce that $x \leq j$ for some $j \in J$ and $x^{\prime} \leq k$ for some $k \in K$. Then $k^{\prime} \leq j$. But this would imply $k^{\prime} \in K$, contrary to K being a prime ideal. Since $I \supset J, K$ it follows that I contains $J \cap Z=K \cap Z$, a prime ideal of Z, and as we have shown that I never contains an element and its orthocomplement, $I \cap Z=J \cap Z=K \cap Z$. Suppose $x, y \in I$ with $x \leq y^{\prime}$ and $y \in Z$. If $x \leq j$ for some $j \in J$, then as $y \in I \cap Z=J \cap Z$ we have $j, y \in J$ hence $j \vee y \in J$, and as $x \vee y \leq j \vee y$ we have $x \vee y \in I$. If $x \leq k$ for some $k \in K$ the argument is similar. Therefore I is a central ideal of P.

Taking the two-valued centrally additive state $t: P \rightarrow\{0,1\}$ associated with I we see that t extends s since $I \supset J$ and t is a B_{2} state since I contains a prime ideal of B_{2}. We have proved every two-valued state s on B_{1} can be extended to a two-valued centrally additive B_{2}-state on P. The general result then follows from the compactness and convexity of the space of all centrally additive B_{2}-states on P by using a standard argument found e.g. in [13].

To conclude this note, let us show by an example that our results are in a sense best possible. Let P be an OMP and B be a Boolean subalgebra of P. Let us call a mapping $s: P \rightarrow\langle 0,1\rangle$ a strong B-state if
(1) $s(0)=0$,
(2) $s\left(a^{\prime}\right)=1-s(a)$ for any $a \in P$,
(3) if $a \leq b$ then $s(a) \leq s(b)$, and
$\left(4^{\prime \prime \prime}\right)$ if $a \leq b^{\prime}$ and $b \in B$, then $s(a \vee b)=s(a)+s(b)$.
It turns out that there is no hope for a representation theorem via these states - there are finite OMP's which do not have an order determining set of two-valued strong B-states. We will show this using the Greechie paste technique (see [4]).

Example 10. Let us consider the $O M P, P$, given by the Greechie diagram indicated below. Let us consider elements a, b therein. Then $a \not \leq b^{\prime}$. Let B be the maximal Boolean subalgebra of P containing the atom a. Then there is no two-valued strong B-state with $s(a)=1$ and $s\left(b^{\prime}\right)=0$.

Proof. If $s(a)=1$, then $s(c)=s(d)=0$ (the elements c, a, d constitute all atoms of B). Suppose $s\left(b^{\prime}\right)=0$. Then $s(b)=1$. Since $e \leq b^{\prime}$, we see that $s(e)=0$. This implies that $s(f)=1$, and therefore $s(g)=0$. As $s(c)=s(g)=0$, we infer that $s(h)=1$. This yields $s(i)=0$, and therefore $s(j)=1$. As a consequence, $s(k)=0$. Since $s(c)=s(k)=0$, we have $s(l)=1$. But $s(f)=s(l)=1$, a contradiction. Thus, there is no two-valued strong B-state on P with $s(a)=1$ and $s\left(b^{\prime}\right)=0$.

REFERENCES

[1] L. Beran, Orthomodular Lattices (Algebraic Approach), Academia, Prague, 1984.
[2] J. Binder and P. Pták, A representation of orthomodular lattices, Acta Univ. Carolin. Math. Phys. 31 (1990), 21-26.
[3] E. Čech, Topological Spaces, Wiley-Interscience, New York, 1966.
[4] R. J. Greechie, Orthomodular lattices admitting no states, J. Combin. Theory Ser. A 10 (1971), 119-132.
[5] L. Iturrioz, A representation theory for orthomodular lattices by means of closure spaces, Acta Math. Hungar. 47 (1986), 145-151.
[6] G. Kalmbach, Orthomodular Lattices, Academic Press, London, 1983.
[7] R. Mayet, Une dualité pour les ensembles ordonnés orthocomplémentés, C. R. Acad. Sci. Paris Sér. I 294 (1982), 63-65.
[8] P. Ovchinnikov, Exact topological analogs to orthoposets, Proc. Amer. Math. Soc. 125 (1997), 2839-2841.
[9] P. Pták, Weak dispersion-free states and the hidden variables hypothesis, J. Math. Phys. 24 (1983), 839-840.
[10] -, Extensions of states on logics, Bull. Polish Acad. Sci. Math. 33 (1985), 493-497.
[11] P. Pták and S. Pulmannová, Orthomodular Structures as Quantum Logics, Kluwer, 1991.
[12] P. Pták and J. D. M. Wright, On the concreteness of quantum logics, Apl. Mat. 30 (1985), 274-285.
[13] J. Tkadlec, Partially additive states on orthomodular posets, Colloq. Math. 62 (1991), 7-14.
[14] N. Zierler and M. Schlessinger, Boolean embeddings of orthomodular sets and quantum logic, Duke Math. J. 32 (1965), 251-262.

Department of Mathematical Sciences
New Mexico State University
Las Cruces, NM 88003, U.S.A.
E-mail: jharding@nmsu.edu

Department of Mathematics
Faculty of Electrical Engineering
Czech Technical University
Technická 2
16627 Praha 6, Czech Republic
E-mail: ptak@math.feld.cvut.cz

[^0]: 2000 Mathematics Subject Classification: 06C15, 81P10.
 Key words and phrases: orthomodular poset, Boolean algebra, state, set representation.

 The second author acknowledges the support of grant 201/00/0331 of the Grant Agency of the Czech Republic and project VS96049 of the Czech Ministry of Education.

