
COLLOQU IUM MATHEMAT ICUM
VOL. 89 2001 NO. 2

ON THE SET REPRESENTATION OF AN ORTHOMODULAR POSET

BY

JOHN HARDING (Las Cruces, NM) and PAVEL PTÁK (Praha)

Abstract. Let P be an orthomodular poset and let B be a Boolean subalgebra of P .
A mapping s : P → 〈0, 1〉 is said to be a centrally additive B-state if it is order preserving,
satisfies s(a′) = 1 − s(a), is additive on couples that contain a central element, and
restricts to a state on B. It is shown that, for any Boolean subalgebra B of P , P has an
abundance of two-valued centrally additive B-states. This answers positively a question
raised in [13, Open question, p. 13]. As a consequence one obtains a somewhat better set
representation of orthomodular posets and a better extension theorem than in [2, 12, 13].
Further improvement in the Boolean vein is hardly possible as the concluding example
shows.

Our notation is standard. We use OMP to abbreviate orthomodular
poset, OML to abbreviate orthomodular lattice, Z to denote the centre of an
orthomodular poset, ⊂ for set inclusion, and 〈0, 1〉 for the real unit interval.
We remind the reader that a subset B of an orthomodular poset P is called
a Boolean subalgebra of P if B is closed under orthocomplementation and
finite orthogonal joins and B forms a Boolean algebra under these inherited
operations. It is well known that any two elements of B also have a join
(resp., a meet) in P and that the join (resp., the meet) taken in B coincides
with the join (resp., the meet) taken in P . For general background on or-
thomodular posets the reader should consult [11], on orthomodular lattices
[1, 6], and for various results related to set representations of orthomodular
posets [2, 5, 7, 8, 9, 13, 14].

Definition 1. Let P be an OMP and s : P → 〈0, 1〉 be a map that
satisfies

(1) s(0) = 0,
(2) s(a′) = 1− s(a) for all a ∈ P ,
(3) if a ≤ b then s(a) ≤ s(b).
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We say s is a state if it satisfies

(4) if a ≤ b′, then s(a ∨ b) = s(a) + s(b).

We say s is a centrally additive state if it satisfies

(4′) if a ≤ b′ and b ∈ Z, then s(a ∨ b) = s(a) + s(b).

If B is a Boolean subalgebra of P we say s is a B-state if it satisfies

(4′′) if a ≤ b′ and a, b ∈ B, then s(a ∨ b) = s(a) + s(b).

Centrally additive states are obtained by weakening the additivity re-
quirement for states to those orthogonal pairs where at least one element
belongs to the centre, and B-additive states are obtained by weakening the
additivity requirement for states to those orthogonal pairs where both ele-
ments belong to the subalgebra B. Note that a centrally additive state is
more than just a B-additive state for B being the Boolean algebra Z. We
shall call a state two-valued if its range is {0, 1}. The following notion is key
to the study of two-valued centrally additive states.

Definition 2. Let P be an OMP. We say I ⊂ P is a central ideal if

(1) b ∈ I and a ≤ b imply a ∈ I,

(2) if a ∈ I then a′ /∈ I for every a ∈ P ,
(3) if a ≤ b′, a, b ∈ I, and b ∈ Z then a ∨ b ∈ I,
(4) I contains a prime ideal of Z.

Lemma 3. Let I be a central ideal of P and a′ 6∈ I. Then

J = {x ∈ L | x ≤ m ∨ a for some m ∈ I ∩ Z} ∪ I

is a central ideal of P containing I and the element a.

Proof. Let Q = I ∩ Z. By assumption (4), Q contains a prime ideal of
the centre, hence by assumption (2), Q is a prime ideal of the centre.
As J is the union of two order ideals, it is an order ideal. Hence J satisfies

the first condition.

For the second condition suppose x, x′ ∈ J . Obviously not both x, x′ ∈ I.
If x ≤ m1∨a and x

′ ≤ m2∨a, then 1 = (m1∨m2)∨a, giving a
′ ≤ m1∨m2.

As m1∨m2 belongs to Q, we have the contradiction a
′ ∈ I. We are left with

the possibility that x ∈ I and x′ ≤ m ∨ a for some m ∈ Q. This implies
m′∧a′ ≤ x, hence m′∧a′ ∈ I. As m ∈ Q and I is a central ideal we see that
m ∨ (m′ ∧ a′) = m ∨ a′ ∈ I, yielding the contradiction a′ ∈ I. Note that the
second condition implies J ∩ Z = I ∩ Z since I ∩ Z is a prime ideal of Z.
For the third condition suppose x, y ∈ J , x ≤ y′ and y ∈ Z. Then y ∈ Q.

If x ∈ I, then as I is a central ideal we have x∨y ∈ I. Otherwise x ≤ m∨a
for some m ∈ Q. Then x ∨ y ≤ m ∨ a ∨ y = (m ∨ y) ∨ a and since both
m, y ∈ Q it follows that x ∨ y ∈ J .
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Finally, the fourth condition follows trivially as I contains a prime ideal
of Z.

Corollary 1. For I a central ideal of P these are equivalent :

(1) I is a maximal central ideal.
(2) For each a ∈ P exactly one of a, a′ belongs to I.

The connection between maximal central ideals and two-valued centrally
additive states can now be made clear.

Proposition 4. Let P be an OMP and B be a Boolean subalgebra of
P . For s : P → {0, 1} these are equivalent :

(1) s is a centrally additive B-state.
(2) s−1(0) is a maximal central ideal which contains a prime ideal of B.

For I ⊂ P these are equivalent :

(3) I is a maximal central ideal which contains a prime ideal of B.
(4) I = s−1(0) for some two-valued centrally additive B-state s.

Proof. (1)⇒(2). Set I = s−1(0). As s restricts to a state on Z, I ∩ Z is
a prime ideal of Z. Similarly, as s restricts to a state on B, I ∩B is a prime
ideal of B. Obviously, I is a downset and for each a ∈ P exactly one of a, a′

belongs to I. Finally, if x, y ∈ I, x ≤ y′ and y ∈ Z, then as s is centrally
additive, s(x ∨ y) = s(x) + s(y) = 0, yielding x ∨ y ∈ I.
(2)⇒(1). Set I = s−1(0). As 0 ∈ I we have s(0) = 0, and as I is a

downset, s is order preserving. As I is maximal, exactly one of a, a′ belongs
to I for each a ∈ P , so s(a′) = 1− s(a). Assume x ≤ y′ with either x, y ∈ B
or y ∈ Z. To show s(x ∨ y) = s(x) + s(y) it suffices to show this under
the assumption that x, y ∈ I. The result follows from the assumptions that
I ∩B is a prime ideal of B and that I is a central ideal.
(3)⇒(4). Define s : P → {0, 1} by setting s(x) = 0 if x ∈ I and s(x) = 1

if x 6∈ I. Then I = s−1(0). That s is a centrally additive B-state then follows
from the equivalence of (1) and (2).
(4)⇒(3). This follows directly from the equivalence of (1) and (2).

The following result is crucial for the representation theorem.

Lemma 5. Let L be an OMP. Let B be a Boolean subalgebra of L con-
taining Z and let a, b ∈ L with a 6≤ b. Then there is a central ideal I with
a′, b ∈ I such that I ∩B is a prime ideal of B.

Proof. Set X = {x ∈ B | a ≤ x}∪ {y ∈ B | b′ ≤ y}∪ {z ∈ Z | a ≤ z ∨ b}.
We first claim that X generates a proper filter of B. As each of the three
sets involved in the definition of X is closed under finite meets, it suffices
to show that for x, y ∈ B and z ∈ Z with a ≤ x, b′ ≤ y, a ≤ z ∨ b we have
x∧ y ∧ z 6= 0. Assume to the contrary that x∧ y ∧ z = 0. We want to derive
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the contradiction a ≤ b. Certainly, a ≤ z ∨ b implies by the centrality of z
that a ∧ z′ ≤ b ∧ z′. Also, x ∧ y ∧ z = 0 implies z ≤ x′ ∨ y′. As a ≤ x and
z ≤ x′ ∨ y′ we have a ∧ z ≤ x ∧ (x′ ∨ y′) = x ∧ y′ ≤ y′ ≤ b, so a ∧ z ≤ b ∧ z.
As a ∧ z ≤ b ∧ z and a ∧ z′ ≤ b ∧ z′, the centrality of z yields a ≤ b.

Since X generates a proper filter, there is a prime ideal Q of B which is
disjoint from X. Let I0 = {x ∈ L | x ≤ p for some p ∈ Q}. We claim that
I0 is a central ideal. The first condition is trivial from the definition. The
second follows as I0 is the downset generated by a proper ideal of B. The
third condition also follows: I0 is closed under all finite joins. The fourth
follows as I0 contains a prime ideal of B and the centre is contained in B.
We next want to show that a, b′ 6∈ I0. Indeed, if a ∈ I0 then a ≤ x for some
x ∈ Q. But then x ∈ X ∩Q, a contradiction. Similarly, if b′ ∈ I0 then b

′ ≤ y
for some y ∈ Q and y ∈ X ∩Q, a contradiction. Let us set

I1 = {x ∈ L | x ≤ m ∨ b for some m ∈ I0 ∩ Z} ∪ I0.

By Lemma 3, I1 is a central ideal of L. We claim that a 6∈ I1. Indeed, a ∈ I1
would imply that a ≤ z∨b for some z ∈ I0∩Z. But this z would then belong
to X ∩ Q, which is absurd. As a 6∈ I1, we apply Lemma 3 again to extend
I1 to a central ideal containing both a

′, b.

Theorem 6. Let P be an OMP , B be a Boolean subalgebra of P , and
a 6≤ b be elements of P . Then there is a centrally additive B-state s : P →
{0, 1} such that s(a) = 1 and s(b) = 0.

Proof. Taking the subalgebra generated by B ∪ Z if necessary, we may
assume without loss of generality that B contains the centre of P . Use
Lemma 5 to produce a central ideal I with a′, b ∈ I such that I ∩ Z is
a prime ideal of B. By a standard Zorn’s lemma argument extend I to a
maximal central ideal M . By Proposition 4 there is a centrally additive
B-state s : P → {0, 1} with M = s−1(0). Then a′, b ∈M yield s(a) = 1 and
s(b) = 0.

Theorem 7. Let P be an OMP and let B be a Boolean subalgebra of
P . Then there is a set S and a mapping σ : P → expS into the power set
of S such that , for any a, b ∈ L,

(1) a ≤ b if and only if σ(a) ⊂ σ(b),

(2) σ(a′) = S − σ(a),

(3) if a, b ∈ B then σ(a ∨ b) = σ(a) ∪ σ(b) and σ(a ∧ b) = σ(a) ∩ σ(b),

(4) if a ∈ Z, then σ(a ∨ b) = σ(a) ∪ σ(b) and σ(a ∧ b) = σ(a) ∩ σ(b).

Proof. The proof closely follows the Boolean patterns and we therefore
omit the details. Let S be the set of all two-valued centrally additive B-states
on P . Define σ : P → expS by setting σ(a) = {s ∈ S | s(a) = 1}.
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The “topological” version of the above representation theorem is also
in force. Again, the technique is similar to the Boolean case. The resulting
Stone space will however be a closure space only (see [13] for details; recall
that a closure space (see [3]) differs from a topological space in that the
union of two closed sets need not be closed).

Theorem 8. Let P be an OMP and let B be a Boolean subalgebra of
P . Then there exists a compact Hausdorff closure space C and a mapping
σ : L→ Clop(C) to the collection Clop(C) of all clopen subspaces of C such
that

(1) a ≤ b if and only if σ(a) ⊂ σ(b),
(2) σ(a′) = S − σ(a),
(3) if a, b ∈ B then σ(a ∨ b) = σ(a) ∪ σ(b) and σ(a ∧ b) = σ(a) ∩ σ(b),
(4) if a ∈ Z, then σ(a ∨ b) = σ(a) ∪ σ(b) and σ(a ∧ b) = σ(a) ∩ σ(b).

Further , if P is an OML then the map σ is onto Clop(C).

Proof. Let S and σ be as in the previous theorem. Let C be the closure
space whose underlying set is S and whose basic closed sets are {σ(a) |
a ∈ P}. As each σ(a) and its complement are closed, each σ(a) is clopen.
For distinct states s, t ∈ S there is a ∈ P with s(a) 6= t(a) hence σ(a) is a
clopen set separating these points. Therefore C is Hausdorff. As the state
space S is compact under the subspace topology inherited from 〈0, 1〉P , and
each σ(a) is closed in this subspace topology, the collection {σ(a) | a ∈ P}
has the finite intersection property, and it follows that C is also compact.
Conditions (1) through (4) of the theorem are established in the previous
result.
For the further remark assume P is an OML. Let A ⊂ S be a clopen

set of C. Using the compactness of C and the fact that A is open, we have
A = σ(a1) ∪ . . . ∪ σ(an) for some a1, . . . , an ∈ P . But A is closed so for
some T ⊂ P we have A =

⋂
{σ(a) | a ∈ T}. It follows from (1) that

A ⊂ σ(a1 ∨ . . . ∨ an) ⊂
⋂
{σ(a) | a ∈ T} hence equality. This shows σ is

onto.

Our next theorem generalizes the extension property for Boolean states.

Theorem 9. Let P be an OMP and B1, B2 be Boolean subalgebras of
P . Let s : B1 → 〈0, 1〉 be a (Boolean) state on B1. Then there is a centrally
additive B2-state t : P → 〈0, 1〉 that restricts to s on B1.

Proof. Assume first s is two-valued. From well known properties of states
on Boolean algebras, s can be extended to a two-valued state on the Boolean
subalgebra of P generated by B1 ∪ Z, so we may assume without loss of
generality that B1 contains Z. Also, from the form of the problem, we may
assume that B2 contains Z. Let J = s

−1(0), a prime ideal of B1. Note that
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J contains a prime ideal of Z. By the prime ideal theorem, there is a prime
ideal K of B2 containing {x ∈ B2 | x ≤ j for some j ∈ J}. Then K contains
J ∩ B2. Hence K ∩ Z contains J ∩ B2 ∩ Z = J ∩ Z and as both are prime
ideals of Z we have K ∩ Z = J ∩ Z. Let

I = {x ∈ P | x ≤ y for some y ∈ J ∪K}.

We claim I is a central ideal. Obviously, I is a downset. Suppose x, x′ ∈ I.
Then as both J, K are closed under finite joins and neither contains 1 we
deduce that x ≤ j for some j ∈ J and x′ ≤ k for some k ∈ K. Then
k′ ≤ j. But this would imply k′ ∈ K, contrary to K being a prime ideal.
Since I ⊃ J,K it follows that I contains J ∩ Z = K ∩ Z, a prime ideal
of Z, and as we have shown that I never contains an element and its or-
thocomplement, I ∩ Z = J ∩ Z = K ∩ Z. Suppose x, y ∈ I with x ≤ y′

and y ∈ Z. If x ≤ j for some j ∈ J , then as y ∈ I ∩ Z = J ∩ Z we have
j, y ∈ J hence j ∨ y ∈ J , and as x ∨ y ≤ j ∨ y we have x ∨ y ∈ I. If
x ≤ k for some k ∈ K the argument is similar. Therefore I is a central ideal
of P .

Taking the two-valued centrally additive state t : P → {0, 1} associated
with I we see that t extends s since I ⊃ J and t is a B2 state since I
contains a prime ideal of B2. We have proved every two-valued state s on
B1 can be extended to a two-valued centrally additive B2-state on P . The
general result then follows from the compactness and convexity of the space
of all centrally additive B2-states on P by using a standard argument found
e.g. in [13].

To conclude this note, let us show by an example that our results are in
a sense best possible. Let P be an OMP and B be a Boolean subalgebra of
P . Let us call a mapping s : P → 〈0, 1〉 a strong B-state if

(1) s(0) = 0,

(2) s(a′) = 1− s(a) for any a ∈ P ,

(3) if a ≤ b then s(a) ≤ s(b), and

(4′′′) if a ≤ b′ and b ∈ B, then s(a ∨ b) = s(a) + s(b).

It turns out that there is no hope for a representation theorem via these
states—there are finite OMP’s which do not have an order determining set
of two-valued strong B-states. We will show this using the Greechie paste
technique (see [4]).

Example 10. Let us consider the OMP , P , given by the Greechie dia-
gram indicated below. Let us consider elements a, b therein. Then a 6≤ b′.
Let B be the maximal Boolean subalgebra of P containing the atom a. Then
there is no two-valued strong B-state with s(a) = 1 and s(b′) = 0.
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Proof. If s(a) = 1, then s(c) = s(d) = 0 (the elements c, a, d constitute
all atoms of B). Suppose s(b′) = 0. Then s(b) = 1. Since e ≤ b′, we see
that s(e) = 0. This implies that s(f) = 1, and therefore s(g) = 0. As
s(c) = s(g) = 0, we infer that s(h) = 1. This yields s(i) = 0, and therefore
s(j) = 1. As a consequence, s(k) = 0. Since s(c) = s(k) = 0, we have
s(l) = 1. But s(f) = s(l) = 1, a contradiction. Thus, there is no two-valued
strong B-state on P with s(a) = 1 and s(b′) = 0.
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