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Abstract. Given a group G of k-linear automorphisms of a locally bounded k-
category R, the problem of existence and construction of non-orbicular indecomposable
R/G-modules is studied. For a suitable finite sequence B of G-atoms with a common sta-
bilizer H, a representation embedding @ : I,-spr(H) — mod(R/G), which yields large
families of non-orbicular indecomposable R/G-modules, is constructed (Theorem 3.1). It
is proved that if a G-atom B with infinite cyclic stabilizer admits a non-trivial left Kan
extension B with the same stabilizer, then usually the subcategory of non-orbicular inde-

composables in mod{]~3 B}(R/G) is wild (Theorem 4.1, also 4.5). The analogous problem

for the case of different stabilizers is discussed in Theorem 5.5. It is also shown that if R
is tame then B ~ B for any infinite G-atom B with Endg(B)/J(Endgr(B)) ~ k (Theo-
rem 7.1). For this purpose the techniques of neighbourhoods (Theorem 7.2) and extension
embeddings for matrix rings (Theorem 6.3) are developed.

Introduction. For more than twenty years now, the Galois coverings
have remained one of the most efficient techniques in contemporary repre-
sentation theory of algebras over a field and matrix problems. They were
successfully used in solutions of various important classification and theo-
retical problems. The covering method often allowed a reduction of a given
problem for modules over an algebra to an analogous one for its cover cate-
gory, usually much simpler than the original one. Initially, the method was
invented for studying representation-finite algebras [22, 15, 2, 17], later de-
veloped for the representation-infinite case ([11, 10, 12], also [3, 4, 6]) and
effectively applied in [30, 31, 32, 16, 21, 19|, in the meantime adopted for
matrix problems [23, 24, 25, 14, 9].

The main interest in covering techniques was always concentrated on ap-
plications. The results answering theoretical questions, only indirectly im-
portant for applications, played a minor role. For a long time the central
position in this area was occupied by the important, difficult and stimulating
problem of determining if Galois coverings preserve the tame representation
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type. An affirmative solution of this problem in full generality was announced
by Drozd and Ovsienko more than ten years ago, but the preprint [13] con-
taining a written version of the proof appeared only a few months ago (see
also [3, 10, 12, 3, 4, 6] for partial results).

In the same time other, more detailed questions, closely related to the
above one, were intensively studied. One of them is the so-called “stabilizer
conjecture”, which says that for a representation tame locally bounded cat-
egory R over an algebraically closed field, the stabilizers of infinite G-atoms
(see 1.3) with respect to a free action of a torsionfree group G on R are
infinite cyclic groups (proved in [6, 8]).

Another group of interesting problems which have been studied recently
concerns the notion of orbicular (resp. non-orbicular) module. A module X
in mod(R/G) is called orbicular (resp. non-orbicular) if the “pull-up” Fe X
of X with respect to the Galois covering F' : R — R/G decomposes into
a direct sum of indecomposable locally finite-dimensional modules which
belong (resp. do not belong) to one G-orbit (see 1.3). One should recall
that all indecomposable R/G-modules in the tame case (studied in terms of
Galois coverings) are orbicular (with respect to G), and are formed in fact,
according to a conjecture formulated long time ago, by use of one standard
construction (see 1.3). In this context, posing the general question when
all indecomposable R/G-modules are orbicular seems to be very natural.
In particular, it is interesting to know if R/G admits indecomposable non-
orbicular modules in the tame case (resp. in the case G ~ Z). Generally,
it has been unknown how to construct non-orbicular indecomposables, and
how the “bonds” which fix G-atoms into such modules could look like.

In this paper we study the problems described above. We present a
construction of a representation embedding into the category mod(R/G)
of finite-dimensional R/G-modules whose image contains a large, usually
wild, subcategory consisting of non-orbicular indecomposable modules (see
Theorem 3.1). This construction is based on the generalized tensor prod-
uct functor, defined by a fixed finite sequence of non-isomorphic G-atoms
with a common stabilizer H in G (see 2.4). In some situations, when H
is an infinite cyclic group, we can describe the structure of this category,
in fact of the image of the embedding, in terms of the generalized sub-
space problem for linearly ordered finite posets over the group algebra kH.
The specialization of this result to the case of the canonical sequence of
length 2 consisting of a G-atom B and its left Kan extension B (see Theo-
rem 4.1) supplies, in the case B % B, a method of constructing “algebras”
R/G, G ~ Z, which admit a large number of non-orbicular indecompos-
able modules (Corollary 4.4). It is proved that in this situation R/G is
representation-wild, in fact the full subcategory formed by non-orbicular
indecomposables in the category mods(R/G) (see [12]) is wild. We also dis-
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cuss (on an example of the canonical sequence consisting of B and E) how
to construct non-orbicular indecomposable R/G-modules in case the mem-
bers of the sequence have different stabilizers (see Theorem 5.5). Finally, we
study the problem of how the properties of B and of the left Kan extension
of B influence the representation type of R (see Theorems 7.1 and 7.6). We
show that if the cover category R admits an infinite G-atom B such that
Endg(B)/J(Endgr(B)) ~ k and B # B then R is representation-wild. To
prove this result we apply the extension embeddings technique for matrix
rings (see Theorem 6.3) and the neighbourhood approach to indecomposable
locally finite-dimensional modules (see Theorem 7.2 and Proposition 7.5).

The paper is organized as follows. In Section 1 we recall basic defini-
tions and fix notation used in the paper. There, a precise definition of a
non-orbicular module is given. Section 2 is devoted to the construction of a
generalized tensor product functor defined by a sequence of group represen-
tations, and R-modules with an R-action of a subgroup G C Auty(R), where
R is a locally bounded category over a field k. In Section 3 the main result
of the paper “on constructing indecomposable non-orbicular R/G-modules
by use of a sequence of G-atoms with a common stabilizer” (Theorems 3.1)
is formulated and proved. Section 4 is devoted to a specialization of Theo-
rem 3.1 to the case of length 2 (resp. 3) sequences formed from a G-atom
B by use of its Kan extensions (see Theorems 4.1 and 4.5, Corollary 4.4).
The behaviour of the above construction in the case of different stabilizers,
also in the context of the base field characteristic problem, is discussed in
Section 5 (see Theorem 5.5). In Section 6 extension embeddings for matrix
rings (a tool for the proof of Theorem 7.6) are studied and Theorem 6.3 is
proved. Section 7 is devoted to the proofs of Theorems 7.1 and 7.6. For this
purpose, we develop the technique of neighbourhoods, for the case where k
is not algebraically closed; in particular, we prove Theorem 7.2 and Propo-
sition 7.5.

Some of the results contained in this paper were presented in seminar
talks at Torun University, in May 1998.

1. Basic definitions and notation. Now we briefly describe the sit-
uation we are dealing with. Throughout the paper we use in principle the
notation and definitions established in [4, 7]. For basic information concern-
ing representation theory of algebras (resp. rings and modules, and notions
of category theory) we refer to [26] (resp. [1], [18]).

1.1. Let & be a field (not necessarily algebraically closed) and R be a lo-
cally bounded k-category, i.e. all objects of R have local endomorphism rings,
different objects are non-isomorphic, and the sums »_ p dimy, R(z,y) and
> yer dimy R(y, ) are finite for each « € R, where R(x,y) is the k-linear
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space of morphisms from z to y in R. By an R-module we mean a con-
travariant k-linear functor from R to the category of all k-vector spaces.
An R-module M is locally finite-dimensional (resp. finite-dimensional) if
dimg M(x) is finite for each z € R (resp. the dimension dimp M =
> wepdimg M(z) of M is finite). We denote by MOD R the category of
all R-modules, by Mod R (resp. mod R) the full subcategory of all locally
finite-dimensional (resp. finite-dimensional) R-modules and by Ind R (resp.
ind R) the full subcategory of all indecomposable R-modules in Mod R (resp.
mod R). By the support of an object M in MOD R we mean the full sub-
category supp M of R formed by the set {x € R : M(x) # 0}. We denote
by Jr the Jacobson radical of the category Mod R.

For any k-algebra A we denote analogously by MOD A (resp. mod A) the
category of all (resp. all finite-dimensional) right A-modules and by J(A)
the Jacobson radical of A.

To any finite full subcategory C' of R we can attach the finite-dimensional
algebra A(C) = @w’y@b o R(z,y) endowed with the multiplication given by
composition in R. It is well known that the mapping M — @, ., o M(z)
yields an equivalence

mod C' ~ mod A(C).

1.2. Let G be a group of k-linear automorphisms of R acting freely on
the objects of R. Then G acts on the category MOD R by translations 9(—),
which assign to each M in MOD R the R-module 9M = M o g~! and to
each f : M — N in MOD R the R-homomorphism 9f : ¥M — 9N given by
the family (f(g~%(x)))zer of k-linear maps.

Given M in MOD R the subgroup

Gu={9€G: M ~ M}
of G is called the stabilizer of M.

Let R/G be the orbit category of the action of G on R. Then R/G is again

a locally bounded k-category (see [15]). We can study the module category

mod(R/G) in terms of the category Mod R. The tool at our disposal is the
pair of functors

F
MOD R F:’ MOD(R/G)

where F, : MOD(R/G) — MOD R is the “pull-up” functor associated with
the canonical Galois covering functor F' : R — R/G, assigning to each X
in MOD(R/G) the R-module X o F', and the “push-down” functor F) :
MOD R — MOD(R/G) is the left adjoint to F,.

The classical results from [15] state that if G acts freely on (ind R)/~
(i.e. Gpr = {idr} for every M in ind R) then F) induces an embedding of
the set ((ind R)/~)/G of the G-orbits of isoclasses of objects in ind R into
(ind(R/G))/=~.
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Let H be a subgroup of the stabilizer G of a given M in MOD R. By
an R-action of H on M we mean a family

-1
p=(pg: M —9 M)gen

of R-homomorphisms such that p. = idys, where e = idg is the unit of H,
and 9f1u92 “lg, = [hgog, for all g1, g2 € H (see [15]). Observe that if H is a
free group then M admits an R-action of H (see [3, Lemma 4.1]).

For any subgroup H of G we denote by MOD” R (resp. Mod” R) the
category consisting of the pairs (M, ), where M is an R-module (resp. a
locally finite-dimensional R-module) and p an R-action of H on M. For
any M = (M,pu) and N = (N,v) in MOD” R (resp. Mod” R) the space
of morphisms from M to N in MOD” R (resp. Mod” R) consists of all
f € Hompg (M, N) such that 971f~,ug = v, f for every g € H, and is denoted
by Homg(]\/[, N). By Mod?R we denote the full subcategory of the category
Mod® R formed by all (M, i) such that supp M is contained in the union of
a finite number of H-orbits of H in R (see [15, 12, 3]). Then the functor F,,
associating with any X in mod(R/G) the R-module Fo X endowed with the
trivial R-action of G, yields an equivalence

mod(R/G) ~ Mod¥R.

An important role in understanding the nature of objects from ModfG R,
and consequently from mod(R/G), is played by the G-atoms. Recall from [3]
that an indecomposable R-module B in Mod R (with local endomorphism
ring) is called a G-atom (over R) provided supp B is contained in the union
of a finite number of Gg-orbits in R. The G-atom B is said to be finite
(resp. infinite) if Gp (equivalently supp B) is finite (resp. infinite).

Denote by A a fixed set of representatives of isoclasses of all G-atoms in
Mod R, by A, a fixed set of representatives of G-orbits of the induced action
of G on A and for any B € A, by Sp a fixed set of representatives of left
cosets of G in GG, containing the unit e = idg of the group G. One can show
that the category mod(R/G) is equivalent via Fy to the full subcategory of
Modf R formed by all possible pairs (M, ), where n = (ng)pea, is a
sequence of natural numbers such that almost all ng are zeros, M, the
R-module given by the formula

M, = P (@ 9(3”3))

Be A, g€ESB

and p an arbitrary R-action of G on M,,. Therefore to any X in mod(R/G)
one can attach the direct summand support dss(X) of X which is the finite
set consisting of all B € A, such that ng # 0, and the direct summand
coordinate vector dsc(X) = (dsc(X)p)pea, of X, given by the components
dsc(X)p =np, B € A,, where Fe X ~ M,,.
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For any U C A, one can study the full subcategory mody(R/G) of
mod(R/G) consisting of all X in mod(R/G) such that dss(X) C U.

1.3. A module X in mod(R/G) is called orbicular (cf. [15]) provided
dss(X) = {B} for some B € A,, i.e. in a decomposition of the R-module
FoX into a direct sum of idecomposables there occur only G-atoms con-
tained, up to isomorphism, in one orbit of G in A. The module X in
mod(R/QG) is called non-orbicular if X is not orbicular. The subcategory
of all orbicular R/G-modules can be represented as a splitting union

\/ modpy(R/G),
Be A,

and the additive closure of the subcategory of all non-orbicular indecompos-
able modules as its complement

mod(R/G) \ \/ modpy(R/G),
BeA,

in the sense explained below.

Let C be a Krull-Schmidt category and Cy, C1, C2 and C;, ¢ € I, full
subcategories of C which are closed under direct sums, direct summands
and isomorphisms. The notation Co = C; V Co (resp. C = \/;; C;) means
that the set of indecomposable objects in Cy splits into the disjoint union of
indecomposables in C; and in Cy (resp. in C;, i € I), and the notation Cy =
Co \ C; that the set of indecomposables in Cy consists of all indecomposables
in Cyp which are not in C;. We denote by [Cp] the ideal of all morphisms in C
which factor through an object from Cy. For any ideal Z in the category C
and a subcategory C’ of C, the restriction of Z to C’ is denoted by Z¢:.

The category of orbicular modules forms an essential part of the category
mod(R/G). Recall that if R/G is representation-finite then all R/G-modules
are orbicular, provided G acts freely on (ind R)/~. According to a general
conjecture all R/G-modules in the tame case are orbicular (in particular
those which belong to 1-parameter families). Roughly speaking all R/G-
modules which have occurred up to now in the Galois covering context
(in the representation-finite and tame cases) are orbicular. They have been
described by use of the following construction.

Suppose that a G-atom B admits an R-action v of Gp on itself (this is
always the case if the group Gp is free). Then F)\B carries the structure of
a kG'p-R/G-bimodule which is finitely generated free as a left kG g-module,
where kG is the group algebra of Gp over k (see [12, 3.6]). This bimodule
induces a functor

PP = — @pa, FB : modkGp — modp(R/G)

which is a representation embedding in the sense of [27] (see [4, Propo-
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sition 2.3]), provided the field Endgr(B)/J(Endgr(B)) is equal to k. Note
that if Gg is trivial then kGg ~ k and if G is an infinite cyclic group
then kGp is isomorphic to the algebra k[T, T~!] of Laurent polynomials.
If G acts freely on (ind R)/~ then F) can be interpreted in terms of the
representation embedding

¢4 . [ modk — mod(R/G)
BeAf

induced by the functors {&F} ¢ At , where Af consists of all finite G-atoms
in A,. It is well known that then the above embedding furnishes the classi-
fication of all indecomposables of the so-called first kind with respect to F
(i.e. those from the image Im F). If all infinite G-atoms have cyclic stabiliz-
ers then the functors {#7} gc 4>, where AZ° consists of all infinite G-atoms
in A,, induce the representation embedding functor

4" . [ modk[T,T7'] — mod(R/G)
BEAS®

(see [4, 2.2]), which in nice situations (see [3, 4, 6, 12]) yields a description
of all indecomposable R/G-modules of the second kind with respect to F’
(i.e. those “lying outside” Im F)).

Recall that, if G acts freely on (ind R)/~, then we denote by mod; (R/G)
the additive closure of the class of all (indecomposable) R/G-modules of
the form F\M for some M in ind R; mod; (R/G) is called the subcategory
of the first kind modules with respect to F. The additive closure of the
class of remaining indecomposables (lying outside mod; (R/G)) is denoted
by mods(R/G) and called the subcategory of the second kind modules with
respect to F.

In this paper we present a construction of a functor (a generalization
of #B) whose image contains a large subcategory consisting of non-orbicular
indecomposable R/G-modules. As one can expect it is mostly related to the
case when R and R/G are wild.

1.4. The following notation is used in the paper. Given a full subcate-
gory C of R and an R-module M we denote by M the C-module which
is the restriction of M to C. For any R-homomorphism f : M — N we
denote by fic : M|c — N)¢ the C-homomorphism which is the restriction
of f to C.

We say that a full subcategory C of R is non-trivial (resp. trivial) pro-
vided the set ob C of all objects of C' is non-empty (resp. empty).

Let C1 and Cs be full subcategories of a locally bounded k-category R.
We denote by Cy U Cy (resp. C1 N Cy and Cy \ C3) the full subcategory
of R formed by the union (resp. intersection and difference) of the sets
ob C; and ob (5. The notation C; C Cy means that ob ('} is contained in
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ob C5. The subcategories Cy and Cy are called disjoint (resp. orthogonal) if
obCiNobCy =10 (resp. R(x,y) =0 = R(y,x) for all x € obC, y € ob Cs).
The union C7 U Cj is said to be a disjoint union, and denoted by C7 V Cs,
provided C; and C5 are disjoint. If subcategories C; and C5 are orthogonal
then the union C7 UCy (= C V C2) is isomorphic to the coproduct of these
subcategories and is denoted by C7 U Cs.

For any full subcategory C' of R, we denote by C the full subcategory
formed by all x € ob R such that R(x,y) or R(y,x) is non-zero for some
y € ob S. Note that C is finite provided so is C' (R is locally bounded!).

Let A be a k-algebra. For any m,n € N we denote by M, «,,(A) the set of
all m x n-matrices with coefficients in A, by M,,(A) the algebra of all square
n X n-matrices with coefficients in A and by T, (A) the upper-triangular
matrix subalgebra of M,,(A).

Let H be a group. Then for any subgroup H’ of H the index of H' in H
is denoted by [H : H'].

For any set X we denote by |X| the cardinality of X.

1.5. We will frequently use the restriction and extension functors. For
any full subcategories C' and D of R such that C' C D we denote by ef’c :
MOD C—MOD D the left Kan extension functor for the embedding C'— D
(see [18]), i.e. the left adjoint to the restriction functor eX“ : MOD D —
MODC (e?’C(M) = M|c and e?’c(f) = f|c for any R-module M and
R-homomorphism f : M — N). For any N in MODC' the D-module
e’ (N) is defined by

ex'“(N)(z) = N ®c D(z, )¢

for x € obD (see [20]), and consequently, supp ef’C(N ) C supp N. Ob-
serve that eAD’C(modC) C mod D and ef’C(ModC) C Mod D) (clearly
¢2"(mod D) € mod C and e (Mod D) € Mod C).

Denote by ¢ the natural family

{on M HomD(ef\)’C(N),M) — Homp (N, el“(M))} Nemonp ¢, MemoD D

of standard isomorphisms, defining adjunction for the pair (ef’c, e.D’C) of

functors. Then the unit of the adjunction ¢, i.e. the natural family
o= {a(N) N — G.D’Ce)\D’C(N)}NeMODC

of C’—h'omomorphisms a(N) = ¢N,ef’C(N) (idef'C(N))7 yields a functor iso-
morphism
D,C _ :
e?’ce)\ ~ idmop ¢ -
D,C . . .. D,C
Consequently, the functor ey is a right quasi-inverse for e, ", moreover,
it is full and faithful.
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We will also frequently use the counit of the adjunction ¢, i.e. the natural
family

B ={B(M) : ey “ed (M) = M}renon b
of D-homomorphisms S(M) = (¢,p.c(y). A t(d, D.C(yp))- Since a is an
isomorphism of functors, the classmal formulas e2C (3(M))oa(elC (M) =
() M in MOD D, and B(ey"(N)) o e5” C(a(N)) idp.c(ny N in

MOD C, for the adjoint pair (e b C ,ed"), imply that all 2 C(ﬁ(M)) s and
B(e f ©(N))’s are isomorphisms. As a consequence, for any M, M’ in MOD D
the isomorphism ¢ e2:C (M), M has the factorization

1d D.C

Homp ey “ e (M), M') — Home (el Cey “el (M), e (M"))
— Home(e"“(M), e (M"))

where the first map is given by the functor eDC and the second is induced
by the isomorphism e (8(M)).

If D = R then for simplicity we denote the functors el
e$ and ef.

Throughout the paper we also use the right Kan extension e, : MOD C
— MOD R for the embedding C' — R, i.e. the right adjoint functor to the
restriction functor e : MOD R — MOD C'. The functor e, is given by

eo(N) = Hompg(R(—, )5, N)

for N in MOD C, = € ob R, and has properties analogous to ef. The unit
map

¢ and ef’c by

B ={B(M): M — efeS (M)} remon r
given by 8'(M) = ¢', eC(M)(ide<.7(1\4)), where

{hrw - Home (el (M), N) — Hompg (M, €C(N))}NEM0DC MEMOD D

C C

is the standard adjunction for the pair (eg’, €},

c_C :
€q €x ~idpmopc -

), yields a functor isomorphism

Consequently, for any M, M’ in MOD D the isomorphism (¢', .c a0 M,)—l
has the factorization
Hompg (M, ege?(M')) — Home (eS (M), eceCeC(M )
— Home (e (M), ed (M"))
where the first map is given by the functor e and the second is induced by
the isomorphism e$'(3'(M")).

1.6. Recall that a k-algebra (resp. locally bounded k-category) A is
called representation-wild (briefly wild) provided there exists a functor
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F : modk(z,y) — mod A, where k(z,y) is the free associative k-algebra
in two non-commuting variables, satisfying the following two conditions:

(a) F' = — ®p(z,y) Q, where Q is a k(x,y)-A-bimodule which is a finitely
generated free left k(z,y)-module,
(b) F induces an injection on the sets of isoclasses.

In this paper, each A which is not wild will be called tame (k is not assumed
to be algebraically closed!).

2. Generalized tensor product functors. We start by generalizing
the notion of the tensor product of group representations. This construction
gives a basis for a similar one for R-modules with an R-action of a group.

2.1. Let H be a group and kH be the group algebra of H. The category
MOD(kH)? is equivalent to the category of all k-representations of H.
Therefore each V' in MOD(KH )P can be viewed as a pair (V,u), where
V is a k-vector space and p : H — Autg(V) is a group homomorphism
(equivalently, a k-linear action of H on V).

Suppose we are given a sequence

Ve icW,Cc...CV,1CV,
of kH-submodules of the kH-module V,, = (V,,, ) and a sequence

B: B2B,—..—B,, 2B,

of kH-homomorphisms, where B; = (B;,v;) is in MOD(kH)°P for every
i =1,...,n. We shall construct a left kH-module V ®x B = (VQy B, u®y 3)
which we call a tensor product of V and B. B

Let V = (Vi)i=1,....n be a sequence of complementary direct summands for
V, i.e. a sequence of subspaces V; of V such that V1 =V, and V; = V,_1 @V}
fori =2,...,n. Then we have V; = @,_, V, for every i = 1,...,n. Moreover,
every automorphism p(h) € Auty(V,,), h € H, has the matrix representation

p(h) = [(h)ijli<ij<n,
where each p(h);; : V; — V; is the composition of p(h) with the canon-
ical jth embedding and ith projection. The matrix of u(h);;’s is upper-
triangular since p(h)(V;) C V;, hence pu(h);; = 0 for i > j. Note that we
have
(i) p(hh')i ;= Z p(h)ig - p(h')i
1<I<)

foralli <j, he H.

We denote by 3 a family of k-linear homomorphisms 3; j(h) = v;(h)-5; ;
B; — B;, 1 <4,j <n, h € H, where the maps 3; ; : B; — B; are defined
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as follows:
Bit1 ... B i<y,
(ii) Bij = {idBi ifi =3,
0 if i > j.
Note that
(iii) Bia - B = Bij,
(iv) Bii - Bri(h) = Bii(h) - Bij = Bij(h),
and
(v) Bia(h) - Bij (') = By ;(hA)
foralli <1< j; h,h € H.
We set

Ve, B =DV e B

i=1
For every h € H we denote by (1 ®3 8)(h) : V @ B — V ®j B the k-linear
homomorphism given by the matrix

(L @k B)(h) = [pu(h)ij @k Bij(h)]1<ij<n
with components p(h); ; ®x B ;(h) : V; ®, Bj — V; ®j B;, and we set
L@k B = ((p®kB)(h))nen-
LEMMA. V @ B = (V ®i B, p @ 8) is a kH-module.

Proof. Note that (p ®y, 8)(h) is a k-linear automorphism of the k-linear
space V ®, B since it is defined by an upper-triangular matrix with the
isomorphisms p(h);; ® vi(h), i =1,...,n, on the main diagonal. To show
that (p ®g B)(hh') = (p @k B)(h) - (L @k B)(R') for all h,h' € H, it suffices
to check that the (1, j)_th components of both maps are equal for all 1 <
1,7 < n. The case ¢ > j is clear, the case ¢ < j follows from the equalities

n

> (u(h)ig @k Bia(h)) - ((h)r; @k Brj(h)

=1

= Z p(h)ig p(h)iy @k Bia(h) Brji(h')

i<I<j
= Z p(h)ip pu(P)r; @k Bi g (RR') = p(hh'); 5 @k Bi 5 (D)
i<I<j
(see (i) and (v)). m
REMARK. (a) If n > 2, By =...= B, and 5 = ... = (3, = idp, then

V &k B ~V, @ B, in MOD(KH)® (V ®) B = V,, ®, By, for n = 1).
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(b) If V, V' are two different sequences of complementary direct sum-
mands for V then V @ B ~ V' ®; B in MOD(kH )°P.

2.2. Following [26] and [28], for any algebra A we denote by I,,-spr(A)
the category whose objects are sequences of the form

Ve Vlg‘éggvn—lgvn

where V;, i = 1,...,n — 1, are A-submodules of a left finite-dimensional
A-module V,,, and the set of morphisms from V to V'’ consists of all A-
homomorphisms f : V;, — V,! such that f(V;) C V/ foreveryi=1,...,n—1.
Note that I,-spr(A) is equivalent to the full subcategory of modT,,(A°P)
(see 1.4) formed by all modules whose structure maps are A-monomorphisms
(T,,(A°P) can also be identified with the incidence algebra of the linear poset
I, ={1<2<...<n} over A°P).
To any V in I,,-spr(A) we can assign the coordinate vector

cdn(V) = (dy, .. .,dy)

in N, given by d; = dimy V;/V;_1 (Vo = 0). Then we denote by I,,-spr’(A)
the additive closure of the full subcategory formed by all indecomposable V'
in I,,-spr(A) such that cdn(V') has at least two non-zero coordinates.

We extend the construction of the generalized tensor product to a functor

— ®y B : I,-spr(kH) — MOD(kH )P

for B as in 2.1.

Let f : V — V' be a morphism in I,-spr(kH). Suppose that V =
(Vi)i=1,...n and V' = (V/),_, , are fixed sequences of complementary di-

=1 /i=1,...,

rect summands for V' and V' respectively. Then the kH-homomorphism
[:@B Vi — @, V/ is given by the matrix representation
f=[fish<ij<n

of f with respect to V and V', with components f; ; : V; — V/ which are
the compositions of f with the standard embeddings and projection. The
matrix f is upper-triangular since f(V;) C V/ (V] = 7_, V!, consequently
fi,j =0 for all ¢ > j). Note that
(i) Yo )i frg= Y fur-u(h)y

i<I<j i<I<j
forall 1 <i,j<n,heH.

Denote by f @, B :V @ B — V' ®; B the k-linear map given by the
matrix

f @k B =[fi; @k Bijh<ij<n
with k-linear components f; ; @k 5;; : V; @ Bj — V! ® B;.

LEMMA. The map f @k B is a kH-homomorphism.
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Proof. 1t suffices to show that the (i, j)th components of the matrices
(n @k B)(h) - (f @k B) and (f @ B) - (1 @ B)(h), h € H, are equal for
all 1 < 4,7 < n. In fact we can assume that ¢ < j (all matrices are upper-
triangular). Then by 2.1(iv) and 2.2(i) we have

n

> (u(h)in @k Bia (D)) - (frg @k Brg) = D wlh)ig fuj @k Bia(h)Br

=1 i<I<j
= Z ( )zlfl]®k/613 Z leu l]®kﬁi,j(h)
i<I<j i<I<j

= > furn(h)i; @ Big i (h) = Z(fzz@m Bia) - (u(P)r; @k i (h))

i<I<j 1=1
and the proof is complete. m

2.3. Now we define the tensor product functor — ®j B : I,,-spr(kH) —
MOD(kH)°P. For every object V in I,-spr(kH) we fix a sequence of com-
plementary direct summands V = (V;);=1.... . Then we set

Ver,B=V®B
for any object V in I,,-spr(kH ), and
J@rB=f®&B

for any morphism f : V' — V', where f = [f; jli<i j<n is the matrix repre-
sentation of f with respect to V and V.

PROPOSITION. The mapping — &y, B : I,-spr(kH) — MOD(kH)°P is a
k-linear functor.

Proof. By Lemmas 2.1 and 2.2 the mapping — ®; B is well defined on
objects and morphisms. The equality idy g, B = idy ® B follows by an easy
check on definitions. To show (f'®y B)-(f'®@r B) = f'f ® B for morphisms
f:V—=V' and f': V! — V" in I,-spr(kH) note that the components of
the matrix representations f, f' and f'f (of f, f" and f’f with respect to
V, V' and V" respectively) satisfy the equalities

(i) (F'fig= D flifui
i<I<j

for all ¢ < j. Now applying (i) and 2.1(iii) we check, as in the proofs of
Lemmas 2.1 and 2.2, that the (i, j)th components of both maps from the
required equality coincide for all 1 < 4,7 <n. m

REMARK. Different choices of sequences of complementary direct sum-
mands V for all V' in I,-spr(kH) lead to isomorphic functors.
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2.4. From now on we assume that H is a subgroup of Auty(R). We
generalize the above construction and define the tensor product functor

— @i B : I,-spr(kH) — Mod” R

for a sequence B in Mod” R.

This functor is related to the previous one by a “forgetful functor” from
Mod® R to MOD(kH)°P, which is also an efficient tool used in our further
proofs.

We fix some notation. For an R-module M we set

M0~ @ M),

r€Ob R

and for an R-homomorphism f : M — M’ we denote by f*) the k-linear
map
@ fx): MF) — ppr ),
rcob R

Let pn= (pun : M — " 'M)pep be a family of R-homomorphisms. Then
we define a map u*) : H — Endy,(M(*®)) assigning to h € H the matrix

M(k)(h) = [M(k)(h)r,y]z,yEObR
with components p*) (h),,, : M(y) — M (z) given by

(k) _ Jun(y) ifa=hy,
(R 2y { 0 if © # hy.

Observe t_}llat for eNach h € H we have u®(h) = &,-1(M) - ,ugf), where
Ep1 (M) : (P M) 5 M®) is the canonical k-isomorphism.

LEMMA. (a) Let f: M — M', f' - M — M" and " : M — M" be
R-homomorphisms. Then " = f'f if and only if f"'*) = f/k) f(k)

(b) Let u be as above. Then p is an R-action of H on M if and only if
pw%) is a k-linear action of H on M),

(¢) Let (M,p), (M', i) be in MOD* R and f : M — M’ be an R-
homomorphism. Then f : (M, u) — (M', ') is a morphism in MODY R if
and only if f&) . M®) — M'*) is a morphism in MOD(kH)P.

Proof. An easy check on definitions. =

It is clear (by the implications “=-") that the mappings introduced above
yield k-linear functors

(—=)® :MODR — MODE and (—)® :MOD”R — MOD(kH)?

(we use the same notation).
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REMARK. The kH-module M) is free for any M = (M, u1) in MOD” R
(M®*) ~ (D.rcr, M(z)) ®% kH, where R, is a fixed set of representatives

of H-orbits in ob R). Moreover, the kH-module M *) is finitely generated if
and only if M belongs to ModeR.

2.5. Suppose we are given a sequence

B: B2B,—..<B,, 2B,

in Mod R, ie. all objects B, = (Bi,v;) are in Mod® R (B; is an R-
module and v; is an R-action of H on B;) and all R-homomorphisms (;
are morphisms in Mod” R (the §; are compatible with the actions). We de-

note by 8 the family (8 ;(h) = (vi)n - Bij : Bj = " Bi)i<ij<n nen of
R-homomorphisms, where the homomorphisms 3; ; : B; — B; are defined
by 2.1(ii).

Recall that for any k-vector space W and an R-module M we denote
by W ®i M the R-module which assigns to each x € ob R the k-vector
space W ®j M(x) and to each r € R(x,y) the k-linear homomorphism
idw @, M(r) : W@k M(y) @ W @ M(z).

Let V = (Vi)i=1,...n be a sequence of complementary direct summands
for V' in I,,-spr(kH). We set

V&@rB= @Y ®r B;
i=1
and define an R-action p ®x B of H on the R-module V ®j, B as follows.
Let (0@ B)p : V@ B — h_l(Y ®k B), h € H, be the R-homomorphism
given by the matrix

(1 @k B)n = [1(h)ij @x Bij (W) i< j<n @V@wB H@ (V; @k B)

LEMMA. The family p®k B = (4 @k B)n)nen is an R-action of H on
V ®¢ B.

Proof. We show that ((V &k B)®), (u®) B)*)) defines a left kH-module
(cf. 2 4) Note that for any h € H the (z,y)th component (u®; B)*)(h),,,, :
(V @, B)(y) — (V ® B)(x), z,y € obR, of the k-linear endomorphism
(1 ®k B)(k)(h) of the k-vector space (V @ B)® = @, ., n(BI,V; @4
B;(x)) is given by

(10 BB (W) = {g(h)i,j Rk B (h)(y) ii ; Zz’

We denote by B®*) the image of B under the functor (—)*) : MOD¥” R —
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MOD(kH)°P, i.e. the sequence

5()

B® . B® g7 B — .~ B® 2 pk

where ng) = (B(k), l(k)) and ﬂi(k) = @,cop g Bi(x) for every i, and by
B the collection (ﬂi(’j)( ))1<i,j<n, her of k-linear maps ﬁi(f;)(h) = I/l-(k)<h) :
55?. Then V @, B%) = (V @ B(k),ﬁ @ f*) is a left kH-module (see
Lemma 2.1). Denote by n(V) = n(V) : (V @, B)*) — V @, B® the
canonical k-isomorphism

D (@v 1 Bi(x) ) =~ @V o (@D Biw).
z€ob R i=1 z€ob R
Observe that n(V) - (u @y B)® (k) = (p ®x B®)(h) - n(V) for all h € H.
Indeed, fix 1 < i,j < n, i < j, and h € H. Then 5 (h)ny., = B;,;(h)(y)
for every y € ob R, where ﬂi(f;)(h)hy,y is the (hy,y)th component of ﬂi(,kj)(h)
(these are the only non-zero components). Consequently, (y ® B)*) is a

k-linear action of H on (V ®; B)*®) and, by Lemma 2.4(b), the proof is
complete. m

REMARK. If By = ... = B, = X and 8y = ... = 3, = idy, for
X in Mod” R, then the canonical isomorphism @,V ~ V induces an
isomorphism vy x : V@, B — V, ®; X in Mod? R (if n = 1, then vy x is
the identity map V ®x B — V,, ®p X).

2.6. Let V = (Vi)iz1,..n, V' = (V/)i=1,...n be sequences of complemen-
tary direct summands for V', V’ in I,,-spr(kH ) respectively, and f: V — V'
be a morphism in I,,-spr(kH) given by a matrix f = [f; jli<i j<n (see 2.2).
We denote by f @i B :V ®, B — V' @ B the R-homomorphism defined by

I @k B = fi; @k Bijli<ij<n
with R-linear components f; ; ® 8;; : V; @, B; — V! Qi B;.

LEMMA. The R-homomorphism [ &y B belongs to Homg(l/ Qr B,
V' ® B).

Proof. We prove that (f ®, B)®) : (V@ B)® — (V' @, B)*® is a
kH-homomorphism (cf. 2. 4)_ Keeping the notation from the proof of Lem-
ma 2.5 observe that n(V) : (V @, B)®) — V @, B is a kH-isomorphism
(for any V). Next note that (f @, B®)-n(V) =n(V') - (f @, B)*) where
f®r B® Ve, B® - V', B®, Since from Lemma 2.2, f @, B® is a
kH-homomorphism, the assertion follows by Lemma 2.4(c). m
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2.7. To define the functor
— @ B : I,-spr(kH) — Mod? R

we proceed analogously to 2.3. For every object V' in I,,-spr(kH) we fix a
sequence of complementary direct summands V = (V;);=1,... ». Then we set

VerB=V ®, B
for any object V' in I,,-spr(kH ), and

ferB=foyB
for any morphism f : V — V', where f = [f; jli<i j<n is the matrix repre-
sentation of f with respect to V and V'.

PROPOSITION. The mapping — Q@ B : I,-spr(kH) — Mod? R is a
k-linear functor.

Proof. The mapping — ®; B is well defined on objects and morphisms
by Lemmas 2.5 and 2.6. The equality idyg,p = idy ® B is again easy to
check. To show that

(f'©rB)-(f®xB)=f'f®r B

for morphisms f: V — V' and f': V! — V" in I,,-spr(kH ), we consider the
functor
— @) B® : I,-spr(kH) — MOD(kH)°?

based on the same fixed selection of sequences of complementary direct
summands (we keep the notation from the proof of Lemma 2.5). Since

(f @k BW) - (f & BY) = (f'f @ BY)
and (f @, B®)-n(V) = (V') - (f @k B)W, (f' @p BW) - (V') = n(V") -
(f @ B)W, (ff @r BW) - n(V) = a(V") - (f'f @ B)™ (see proof of
Lemma 2.6) we have

(f @ B)™ - (f&x BYY) = (f'f & B)
and by Lemma 2.4(a) the proof is complete. m

REMARK. (a) The family 1 = {n(V)}veon 1, (s vields an isomor-
phism of functors

(- @r B)®, — @, B® : I,-spr(kH) — MOD(kH)°P.

(b) Different choices of sequences of complementary direct summands V
V in I,,-spr(kH) lead to isomorphic functors.

(c) Ifall B;,i=1,...,n, are in Mode then the functor — ®; B leads
in fact to Mod{' R.
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2.8. Suppose we are given another sequence

B: B Zp .. B

n—1 & B?"L

in Mod” R and a map ¢ : B — B’ of sequences, i.e. a sequence ¢, : B; — B!,
i = 1,...,n, of morphisms in Mod” R such that Bipi = ¢i—10; for every
i > 2. For any V in I,-spr(kH) with a fixed sequence V = (V;);=1
complementary direct summands, we define the R-homomorphism

V®k¢2V®kB—>V®kB/

-----

by setting
V Qo= @idyi R G-
i=1

PROPOSITION. (a) V ®j, ¢ belongs to Hom% (V @, B,V @ B').
(b) The family — @ ¢ ={V @r ¢}veob 1,-spr(kk) Yields an isomorphism
of functors
— @ B,— ® B' : I-spr(KH) — Mod”R.

Proof. Proceeding as before, one proves first the corresponding result
when B, B’ are sequences in MOD(K H)°P, and then, by applying Lem-
ma 2.4, the assertions (a) and (b). m

Let X be in Mod” R and X[™ be the sequence
xn, oy ldx xldx o ldx oy ldx ¢
of length n in Mod” R. Then for any morphism f; : X — B, (resp. fo :
Bi — X) in Mod” R we denote by the £l : X"l — B (resp. /" : B —
X)) the map of sequences given by the morphisms Bim-f1: X — B; (resp.

fo P Bi — X),i=1,...,n. We denote by V,, ® fl[n} the composite
R-homomorphism

—1 [n]
V.oor X Ve, XM vy e B

and by V,, ® fz[n] the composite R-homomorphism

[n]
Vo f . ve, B2 v g, XM % v, g, X

where v = vy, x (see Remark 2.5).
COROLLARY. V, ® fl[n] and V, ® f2[n} are morphisms in Mod” R.

2.9. For any 1 <17 < j < n, we denote by Bl the restriction of the
sequence B to the interval [7, j], i.e. the sequence

. gl Pop

in Mod” R of length j — i + 1.
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Let V' be an object in I,-spr(kH). For any i = 1,...,n, we denote by
V(i) the object (Vi C ... CV;) in I;-spr(kH), and for any i = 0,...,n — 1,
by V/V; the object (Vi41/V; C ... CV,,/V;) in I,,_;-spr(kH), where Vj = 0.
If V = (Vj)j=1,....n is a sequence of complementary direct summands for V'
then (V;);j=1,...: is a sequence of complementary direct summands for V{;),
and (Vji)j=i+1,..n, where Vj; = (V; +V3)/Vi (= (V; & Vi)/Vi 2 Vj), is a
sequence of complementary direct summands for V/V;.

Forany 0 <i << j<n,let

l J
vigg: D Vii®k Bi — @D Vii @k B

t=it1 t=it1
be the canonical embeddlng of R-modules, and, for any 0<i<i<j<n,

T @ Vii®r B ® @ Vii®k Br — @ Viu ®k By
t=i+1 t=I+1 t=I+1

the R-epimorphism given by the components (0, @t 141 Kt @ Byt), where £y
denotes the composition V; ; ~ V; ~ V, ; of the canonical isomorphisms.

LEMMA. For any 1 <1 <1< j <n, the sequence
0 — Viy/Vier @, BB 2 Vi Vi @), B 5 V) Vi @y, BRI 0
is an exact sequence in Mod™ R, where v =v;_y j; and r =rj,;_1.

Proof. The exactness (in Mod R) and the fact that v, r are morphisms
in Mod®! R follow immediately from definitions. m

Let W be a sequence Wi 25 Wy 53 ... 2 W, of epimorphisms in

MOD(kH )°P. With W we can associate the object V(W) = (V4 C ... CV,)
in I,-spr(kH) given by V; = Ker(p; -...-py) fori =1,...,n (p, is the map
W, — 0). Then we define

W &, B=V(W)® B.

In particular, for any morphism f : B; — X in Mod R we have a morphism
Wi @ f" . W e B— Wy @, X in Mod” R, where W1 ® I =V, @ fI*]
(see Corollary 2.8).

Conversely, with any V = (V4 C ... C V,,) in I,-spr(kH) we can asso-
ciate the sequence W (V') of the canonical projections

ViBv, v B S Ve

in MOD(kH)°P, induced by the inclusions from V. Then W(V) ® B
=V ®y B, and consequently W ®; B = W(V(W)) ®y B for every W.

For a given W as above and any i = 1,...,n, we denote by W(; the

pn 1

sequence W; 2 Wit AZ TN W,. Then applymg the lemma to V =
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V(W), the canonical isomorphisms W; ~ V,,/V;_1, i = 1,...,n, yield the
following result.

COROLLARY. For any 1 < i < n, the sequence
0— Kerp;_1 ®r B;_1 N W(ifl) R B[ifl,n} N W(z) Rk B[i,n] ~0

is ezact in Mod™ R.

3. On some construction of non-orbicular modules. In this sec-
tion we apply a generalized tensor product to construct a functor from
I,,-spr(kH) to mod(R/G) whose image contains a large subcategory con-
sisting of non-orbicular modules.

3.1. Let H be a subgroup of the group G, where G C Autg(R) is a
group of k-linear automorphisms acting freely on R. Recall [3, 2.3] that we
have at our disposal the induction functor

0 = 0% : Mod R — Mod¥ R.
For any M = (M, ;) in Modf R, (M) is defined by setting (M) =
. . -1

(@glesH M, u%). The R-isomorphisms ,ug : @glestlMa ®92€SH9 92 M,
g € G, are given by the families 91y, : 9%M — 9 92M, g, € Sy, where
go € Sy and h € H are determined by the equality gg1 = g2h. Here Sy is
a fixed set of representatives of left cosets in G/H containing the unit e.

Let B be a sequence

B: B&By—. . B, 1B,
of morphisms in ModeR, where B; = (B;,v;) for alli =1,...,n. Then we
denote by P the composite functor

I-spr(kH) —2:8 Mod! R % Mod¢ R

(see Remark 2.7(c)). We also set
®P = F; 1o ®P . I,-spr(KH) — mod(R/G)

where F; ! is a fixed quasi-inverse functor of F, : mod(R/G) — Modf'R.
Set B, = {Bi1,...,B,} and B = {B;}i=1,....n: gesy- Observe that if all
B;’s are G-atoms (consequently H is a subgroup of G, of finite index for ev-
ery i) then Im @5 C modp, (R/G) since Im #5 C ModfoBO R. Here, MongOR
denotes the subcategory of Mod{' R corresponding via F, to modgs, (R/G).
Moreover, if G, = H for every i, then for any V in I,,-spr(kH)°P? we have

dsc(®2(V)) = cdn(V)

under the identification via the canonical embedding N «— N4¢ given by
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We also denote by B, (resp. B) the full subcategory of Mod R formed by

B, (resp. B). By B we denote the full subcategory of Mod R formed by all
R-modules M of the form

(i) M~ P P B,
geSy i=1
d; 4 € N. Recall [12, 6] that in Mod R we have the uniqueness of decompo-
sition into a direct sum of indecomposables.
Let N be an ideal in B. Then we denote by N, the restriction of N to B,.
If N is summably closed (see definition below) then we denote by A the
ideal extension of A" to B given by the formula

i NP é B, D é ngj;’g')

QGSH =1 g’ESH =1

= [I TII M, «a.,N(Bi,9By))

g7g,€SH Z,jil

(cf. [5]). Note that since N is summably closed, N is a well defined ideal
in B. In particular, the above formula uniquely (independently of the choice
of the isomorphisms (i)) determines the value N'(M, M’) for any M, M’ in B.

Following [5], N is said to be summably closed provided each subspace
N(B',B") C Homg(B',B"), B', B” € B, is summably closed. This by def-
inition means that for any summable family of R-homomorphisms f; €
N(B',B"), i€ I, (ie. for each zz € ob R, f;(xz) = 0 for almost all ) the sum
f =>;cr fi belongs to N(B', B").

Let Gp, = H for every i = 1,...,n. We say that an ideal N in B is
determined by the ideal N, in B, provided

' Hompg(9B;, YB;) if g # ¢
IB. 9IB.) = R ) 7 )
(111) N( 79 ]) {QM(B“BJ) lfg _ gl7

where 7,5 € {1,...,n}, 9,9 € Sq.

REMARK. Any family M of subspaces M(B’, B”) C Hompg(B,B"),
B',B" € B,, can be extended to the family N of subspaces N(B’, B"”) C
Hompg(B,B"), B',B"” € B, by applying formula (iii). Then A is an ideal
in B (and N, = M) if and only if M is an ideal in B, and for any
f € Hompg(B;,9B;), f' € Homg(%B;, B;) the composition f’f belongs to
M(BZ,BJ) for all Bi,Bj,Bl € B, such that M(BZ,B]) g I‘IOHIR(Bi,Bj)7
and g € Sy, g # e. In this situation the ideal N is summably closed if and
only if so is N, = M, and then N is a well defined ideal in B (also summably
closed).
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Recall (see [5]) that for any objects M’ = (M', '), M" = (M",u")
in Mod R the space Hompg(M’, M") carries the structure of a left kH-
module which is given by (h, f) — h* f = hyu) - "f . )1 for h € H and
f € Homp(M', M").

An ideal M in B, is called H-invariant provided M(B;, B;j) is a kH-
submodule of the kH-module Homp(B;, B;) for all i, j = 1,...,n. Note that
this definition does not depend on the choice of R-actions v; of H on B;,
1=1,...,n.

Following [5] we denote by Pu the pure-projective ideal which by defini-
tion is the two-sided ideal in MOD R given by the subspaces Pu(M, N) C
Hompg(M,N), M, N in MOD R, consisting of all R-homomorphisms f :
M — N having a factorization through a direct sum of finite-dimensional
R-modules. Note that the ideal Pup, is H-invariant, and by [5, Theorem
A(ii)], Pug, is summably closed provided H is an infinite cyclic group. One
can show (see Remark 3.5) that then Pug is also summably closed (Pug is
not necessarily so).

Now we are able to formulate our first main result of this paper.

THEOREM. Let H be a subgroup of a group G C Auti(R) acting freely
on R. Suppose we are given a sequence B in ModeR as above such that

all B;’s are G-atoms with Gp, = H, i = 1,...,n. Assume that 3; ; # 0
for all 1 <1 < j < n, and that B contains an ideal N determined by an
H -invariant summably closed ideal N, in B, satisfying the condition
(*) HOII]R(BJ',BZ') :NO(B]‘,BZ‘) @kﬁi,j
for all 1 <'i,j < n (see 2.1 for definition of f; ;). Then the functor
&8 . I,-spr(kH) — mod(R/G)

is a representation embedding (in the sense of [27]). Moreover,

(a) if H~7 and N = Pug then &8 : I,-spr(kH) — modp, (R/G) is
dense and induces an equivalence

I,,-spr(kGp) ~ modp, (R/G)/[modAg(R/G)]modBO(R/G),

(b) if G =H and N, =0, then ®B yields an equivalence I,-spr(kH) ~
modpg, (R/G),

(¢c) if n > 2 and H has a factor which is an infinite cyclic group
(resp. a cyclic p-group of order greater than 7, if char(k) = p > 0) then
the full subcategory formed by all indecomposable non-orbicular modules in

modg, (R/G) is wild.

Note that the condition () implies that all B;’s, i = 1,...,n, are pairwise
non-isomorphic (N, (B;, B;) & Endg(B;) and N,(Bj, B;) = Homg(Bj, B;)
for i > j).
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The proof of the theorem consists of several facts stated in 3.2-3.7. Its
most important part is the construction of a functor ¥¥ (left quasi-inverse
to 53) which is done in a few steps. Therefore, we first formulate an imme-
diate important consequence of Theorem 3.1 and illustrate it by an example.

COROLLARY. Let R, G, and H be as in Theorem 3.1. Assume, in ad-
dition, that G acts freely on (ind R)/~ and H is an infinite group. Under
the assumptions in 3.1(c) the category moda(R/G) is wild.

Proof. Under the above assumption we have modp, (R/G) C modz(R/G)
(see [12, 2.3]). =

ExAMPLE. Let R be the locally bounded k-category opposite to the
category kQ/I, where @ is the quiver

-3 al, -2 b, -1 &) 0O b, U af 2 v, 3

and [ is the ideal of the path category kQ) generated by all elements of the
form ¢;_q1a;—ac; and ¢;11b;—blc;, i € 27. The category R is equipped with a
natural free action of the infinite cyclic subgroup G = (g) of Auty(R), where
g is defined by the equalities g(i) = i+2, g(i) = (i+2)’, for i € Z. Let By be
the “line” R-module given by By (i) = k, B1(i') = 0, B1(az2;) = B1(bs;) = idy,
for all i € Z, and By(y) = 0 for all other arrows « in ). We also define the
R-module Bs by setting By(i) = B3(i') = k and Ba(y) = idy, for all i € Z
and arrows v in ). Moreover, we consider the second “line” R-module Bj
given by Bs(i') = k, Bs(i) = 0, Bs(a);) = Bs(bh,;) = idy for all ¢ € Z, and
Bs(y) = 0 for all other arrows v in Q. Clearly By, Bs, B3 are G-atoms
with the common stabilizer H = G and they admit natural R-actions of
H. Denote by 2 : Bs — Bj (resp. 3 : B3 — Bsy) the R-homomorphisms
given by (35(i) = idx and [2(i') = 0 (resp. [2(i") = idy and [B2(i) = 0) for
1 € Z. The maps (1 and (2 can be regarded as morphisms in Mod® R, but
the sequence 54 85
B1 — Bg — B3
does not satisfy the assumptions of the theorem (3233 = 0), in contrast to
the sequence By
B : Bl — B2
(take for N, the zero ideal). Therefore the functor
dP : I-spr(kH) — mod(R/G)

is a representation embedding and modyp, p,}(R/G) (C modz(R/G)) con-
tains a wild subcategory of non-orbicular modules (the same holds for the
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sequence B : By i Bs). Note that this example can be easily generalized
(by adding “new layers” in the quiver @)) to obtain analogous embeddings
for sequences B of arbitrary length n > 2.

3.2. Denote by I = Ip the~full subcategory of ModfG R, contained in
ModfoBOR, formed by all objects @2 (V) with V in I,,-spr(K H). We construct

a functor N
o8B 1 — I,-spr(kH)

which is a left quasi-inverse of PB.
For any « = 1,...,n, we denote by

H; : Modf' R — MOD (kH)°P
the functor induced by the functor Homg(B;, —) : Mod R — MOD k which
assigns to each M = (M, ;1) in Mod{ R the left kH-module Hompg(B;, M)
with the kH-module structure given by the R-actions v* and pg of H on
B; and M, respectively.

LEMMA. Let M be an object in I. If an ideal N in B is determined
by N, and No is an H-invariant summably closed ideal in B, then the
k-subspace N (B;, M) C Hompg(B;, M) is a kH-submodule of H;(M) for
every it =1,...,n.

Proof. Let V in I,-spr(KH) be such that #5(V) = M. Then M =
(D,es,, 7 (V @k B), (u®1 B)), where 1 is a k-linear action defining the kH-

module structure on V,,. Take any h € H and f € N(B;, D, cs, /(V @, B))
with components f, € N(B;,9(V @ B)), g € Su. To show that h * f :

B; — @,cs, (V@i B) belongs to N we have to verify that so do all
components (h* f)y, g € Sg. In fact, we only need to show that (h * f). €

N(B;,9(V ®y B)) since Hompg (B, 9B;) = N(B,9Bj) for all j = 1,...,n and
e # g € Sy. Note that M decomposes as (V@i B)& (D, ges, /(V @k B)) in
Mod R (see definition of #%). Therefore (hx f)e =" (1t @ B)p-"fo- (vi)p-1.
The map f. (resp. (h* f).) is given by components f; (resp. (h * f);) in
./V(Bi,l/j ®k Bj), j=1,...,n, where V = (Vj)=1,... » is a fixed sequence of
complementary direct summands for V. Then by definition we have

(i) (o f); =3 "(u(h)ja @k Bia(h)) - "y - (Vi)

)
L

((h) 0 @k "Bia(h) - "fi - (Vi)

I
NE

i
I

(1(h) g0 @k (Bj1 - h(”l)h)) : hfl - (Vi)p-1.

I
NE

N
Il
i
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We fix bases of the spaces V;, [ = 1,...,n, and the induced isomorphisms
V, ®, B ~ Bld’, where d; = dimy V]. Passing to components we con-
clude by (i) that each component of (h * f); belongs to N,(B;, Bj), since
fi € No(Bi,By) for all I = 1,...,n (N,(B;,B;) is an H-invariant sub-
space of Hompg(B;, B;)). Consequently, (hx* f); € ./\~/(Bi,l/j ® Bj) for all
j=1,...,n, (hxf)e € N(Bi,V @ B;) and h* f € N(B;, M). u

3.3. Suppose we are given an ideal N in B which satisfies the assump-
tions of Theorem 3.1. For any i = 1,...,n, we denote by H; the functor

H;: I — MOD(kH)?

which associates with M in I the kH-module H;(M)/N (B;, M) (see Lem-
ma 3.2) and with any morphism f : M — M’ in I the k-linear map H;(f) :
Hi;(M) — H;(M') induced by H;(f) = Hompg(B;, f). Note that H;(f) is
well defined since N is an ideal, and that H;(f) is a kH-homomorphism,
since so is H;(f). Observe also that by analogous reasons the morphism
Bi; : Bj — B; in Mod{’ R induces a kH-homomorphism ¢, ;(M) : H;(M) —
H;(M) for all i < j. We set t;; = {t;i(M)}reobr- It is clear that each ¢,
defines a natural transformation ¢;; : H; — ﬁj of functors, and that by
2.1(iii) we have ¢ - ¢;; = ¢j,; for all ¢ <1 <.

LEMMA. (a) Im(H;) C mod(kH)°P for every i =1,...,n.
(b) Each vj; is a natural embedding of functors, for i < j.

Proof. Fix M = #B(V) in Im &5, where V is in I,,-spr(kH). Then we
have an R-isomorphism M = @, g, @;=; /(V; @k Bi), where (V}) 1=1,..n is

a fixed sequence of complementary direct summands for V' and d; = dimy, V].
Then 3.1(ii), 3.1(*) together with the isomorphisms

(i), V, @, B ~ B",
l=1,...,n, given by fixing bases of the spaces V}, yield k-isomorphisms
(ii), Hi(M)~ ] []Homr(B;,9B)* /N (B;,°B;)"

geSy =1

~ @(kﬁl7i)dl o~ @Yl @k kB,
=1 =1

i = 1,...,n. Consequently, H;(M) is a finite-dimensional kH-module and
(a) is proved.

To prove (b) note that the k-linear map ¢;;(M) becomes, under the
identifications (ii); and (i), the canonical embedding given by @;Zl idy, ®
-Bijforalli<j. m
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3.4. For every i = 1,...,n, we denote by H} the subfunctor ¢, ;(H;)

of H,,. We define the functor
W8 . I — I,-spr(kH)
by setting
B (M) = {H\ (M) C ... CH (M) ="H,(M))}
for any object M in I, and
vE(f) = Ha(f)

for any morphism f : M — M’ in I. Note that WB(M) is an object of

L,-spr(kH), since ¢;;’s satisfy the commutativity condition, and H,(f) is a
morphism in I,-spr(kH), because ¢; ;’s are natural transformations.

REMARK. The functors H; and consequently @B can be extended, by
the same formula, to the whole category Modfcf 5, 2. In this way we obtain

the functor ¥B : modg, (R/G) — I,-spr(kH), WB = ¥B o F,, satisfying
cdn(¥B (X)) = dsc(X) for X in modp, (R/G) (cf. 3.1).

To prove that @7 is a representation embedding it suffices to show the
following.

PROPOSITION. (a) The functors UBPB qnd idy, spe(kpr) are isomorphic.

(b) Ker W8 contains no non-zero idempotents.

Proof. (a) Fix V in I,,-spr(kH) together with a sequence V = (V})i=1,...
of complementary direct summands for V' (d; = dimy, V;). The identifications

3.3(ii);, i = 1,...,n, yield Fi(PB(V)) = @®)_, Vi @k kByp.n-
We show that the induced action of H on the k-vector space @;_, V, ®x
kB ; is given by the family

(i) {[(h)m1 @k Bt Imiieqn,....iy bher
of k-linear automorphisms (cf. 2.1). B B
For any f € Hompg(B;, @V, ® B;) we denote by f = (fi)i=1,..i

€ Pi_,(kB)™ (fi = ar - Bui for some a; € k%) and f = (f))i=1,..n €
@, N(Bi, B))% the components of f under the isomorphism

Hompg (B“@Yl Rk Bl) =~ @(kﬁl 7 dl S @N Bz’Bl) )
=1

=1
induced by the identifications 3.3(i); (cf. 3.1(x)).
Recall that ¥7(V) = (D, Vi @k B) @ (D.rges, izt !V @k By))
is a decomposition in Mod"” R, therefore the kH-module Homg (B;, #2(V))
decomposes as
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Hom g (B,;,éy, @ Bi) @ Homp (Bi, €D ég(yl @ BI)),

=1 e#£geSy =1
and that
Homp (Bi, P P e Bz)) = N<Bz', P P e Bl))
e#geSy =1 e#£geSy =1

(cf. 3.1(ii) and 3.1(iii)).
Observe that to prove (i); it suffices to show the formula

(i1); b =3 (W)
=1

for all h € H, f € Homg(B;,V, @ B;) and m = 1,...,i, where (h* f), =
b, - Brmis b € k9 and p(h)m, € Ma,, x4, (k) is the matrix of the k-linear
map f(h)m, : V; — V, in the fixed bases.

Note that p(h)m, @k Bmi(h) : V, @ By — hil(l/m ®g By,) corresponds
via 3.3(1); and 3.3(i),, to the map p(h)m,i - Bm,i(h) : Bld’ — hilBglm. There-
fore, by definition, the mth component (h * f),, € Hompg(B;, By, )%™ of h* f
is given by

(B Fm =Y ()t - "B () - "1 - ()1

= ) Bt () - )3 43 (BBt ()" Br)- (i)
=1 =1

for every m = 1,...,n. It is easily seen that the first summand of the
above sum belongs to N(B;, B,,)%". The second summand is equal to

Z;:1(Mm,l ~ar) By (= (h % f)m), since
hﬁm,l( ) - 5l i (Vi)p—1 = (( m)h - Bmi) © (Vi)n—1
( ﬁmz “(Win) - Vi) = Bm,i

(see 2.1). Consequently, (ii), . holds for every m =1,...,4, and the action
we search for is just given by the family (i) ;-

To complete the proof of (a) observe that the composition of 3.3(ii),
with the canonical isomorphism EBLIYZ ®k kB n >~ EBLIYI =V yields a
k H-isomorphism a (V) : WBSB(V) — V (see the proof of Lemma 3.3(b)). It
is easy to check that the family (a(V))ver, spr(k i) is natural with respect
to V and therefore defines the required isomorphism of functors.

(b) Observe first that since Endg(B;) is local, we have N,(B;, B;) C
J(Endg(B;)) for every i = 1,...,n. Then Ker W5 is nilpotent, by the lemma
below, and (b) holds. =
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LEMMA. Let N be an ideal in B determined by an ideal N, in B,, where
B, and B are as in Theorem 3.1. Then the following conditions are equiva-
lent:

(a) No(B;, B;) C J(Endg(B;)) for every i =1,...,n,
(b) N, is nilpotent,
(¢) N is nilpotent,

(d) N is nilpotent.
Moreover, for a morphism f : M — M’ in ModfoBDR defined by the compo-
nents f(g’g) € HomR(gBdl 9B ), where M = (B cs,, G B, 1) and
M = (DByes, * (@j:l Bj ), 1), the following conditions are equivalent:

(e) f belongs to N,
(f) ¥B(f) = 0 (see Remark 3.4),
(g) f( ) belongs to My, xa, (N (Bi, By)) for all i > j.

In particular, Ker UB N

SUBLEMMA. Let H be a subgroup of G C Autg(R) acting freely on R,
and L be a full subcategory of R. Suppose that H stabilizes L (i.e. hL = L
forall h € H), and that m = |ob L/H| is a natural number. Then ﬂ?:{l gL
1s a trivial subcategory for any pairwise different gi,...,gm+1 n Sg.

Proof. Let obL = Hxq U ...U Hz,, be a splitting of ob L into a dis-
joint union of H-orbits. Suppose that x € ﬂ?:{l gL, where g1,...,gm+1
are as above. Then there exist hi,...,hy,41 € H and i(1),...,i(m+ 1) €
{1,...,m} such that 2 = gi1hiz;1) = ... = Gmt1Pm+1Tim+1). Conse-
quently, i(l) = i(s) for some 1 <[ < s < m+ 1, and gh; = gshs. This
contradicts g;H # gsH, therefore ﬂ?:lrl gL is trivial. m

Proof of Lemma. We start by observing that by [7, Theorem 2.9], each
algebra Endr(B;) is semiprimary (see [1]), so (a) is equivalent to N, (B;, B;)
being a nilpotent ideal in Endg(B;) for every i = 1,...,n.

(a)=(b). The nilpotency degree of N, is bounded by nn’', where n’
is a common bound of the nilpotency degrees of the ideals N,(B;, B;)
C Endg(B;), i = 1,...,n. This follows from the fact that for any
sequence (i(j));j=o0,1,....nn’ Of elements of {1,...,n} there exists ¢ such that
{je€{0,...,nn"} :i(j) =i} >n' + 1.

(b)=(c). Denote by L the union |J;_, supp B;. Note that L satisfies
the assumption of the Sublemma since all B;’s are G-atoms. We set m =
lobL/H| and denote by m’ the nilpotency degree of N,. We show that
fmm - ...~ f1 = 0 for any collection {f; € N(9~'B;_1)," Biu)) }i=1,...,
of R—homomorphlsms where B;y € B, and g; € Sy for | =0,1,...,mm’.
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Observe that if [{g;}1=0.1,....mm’| > m then the claim follows immediately by
the Sublemma. Consider the case [{g;}1=0.1,... mm’| < m. Then there exists
g € Sy such that [{l € {0,...,mm'} g = g}l > m’ + 1. Consequently,
the claim follows from the equality N™ = 0 by definition of A/. Hence N/
is nilpotent.

The implication (¢)=-(d) follows easily from the definitions, (¢)=-(a) from
the introductory remark.

To prove the second part of the lemma we fix f as above.

(e)=(f). Note that Im Homp(By, f) C N(B,, M’) for f € N(M, M),
and consequently wB (f)=0.

(f)=(g). We start by observing that 3.1(x) induces the k-isomorphism

Homp, (é B, é Bj;')
i=1 j=1

~ JI Maoxa®8i) @ [ Mawa,N(Bi, By)).

1<j<i<n 1<i,j<n

Then the R-homomorphism f(¢¢) : @7 | B¥ — D;_, B;ij, defined by the

components f(’elfe), 1<, i<n, is given by the two collections {f;;’e)}lggign
and {(f; (e e) )'}1<j,i<n, Where f(e R = aj,iBji, aji € Majxa; (k) for all
1<j<i<mn,and (f}z’e))’ € Mdg_xdi(N(Bi,Bj)) for all 1 <4, 7 < n. Then
the morphism WB(f) : ¥B(M) — wB(M’) in I,,-spr(kH), under the iden-
ifications W3 (M) ~ @7, (kfBin)% GB(M') ~ @7, (kBjn)%
glfli(éislc;iscl il((i\f),) CE 36.31(1:13,(Ll;,ﬁzig)givezn%yw‘chgﬂi—gingaré?)ﬁélgkfl]z;‘gr)ix ISSS
a: @ (kBin)% — @ (kB;n)", where a = [a;; - Bj.l1<i, j<n (We set
aj; = 0 for i < j). Hence, if WB(f) = 0, then a;,; = 0 for all 1 <4, j <n,
and consequently, f(e’e) € Ma; x4, (N(B;, Bj)) for all i > j.

(g)=(e). Note that, by definition of A" and A, we only have to show
that f;5 (9.9) belongs to N for all g € Sp and 1<4i,57<n (in fact

1 < j <i<n;see3.1(x)). Since f is a morphism in Mod® R, we have Ry

pn = py, - f for every h € G. Then for any g,¢] € Su, looking at the

g1, g)-components ot the above equa 1ty7 we obtain the following equalities
1 f th b li b he foll li

in Homp(“(@D}, BY)," @], By)):
(iti) (1, g1, 0) Z (g1, 91) _Nl(lgl,g) _ Z V}(Lgbg’) L fd9)

91€SH 9'€ESH

where Iuggl,g) (P, B;ii)_>h*191(®?:1 Bgi) (resp. i}, (91,9 19/(69?:1 B;lj)
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— b @I Bj/j)) is the (g1, g)-component (resp. (g}, g’)-component) of
the R-isomorphism s, : @ e, IPBr, Bfi) — h_l(@glengl(@?zl Bzd))
(resp. 1+ Dyesy /@ B = 7 (@, @] BY))) defining
the R-action p (resp. y/) of H, and f9"9) : 9(@r_ BH) — 9/(@?:1 Bj;)
(vesp. fr91) 9@ BH) — 93(@?:1 B;-i*/") is the R-homomorphism with
components f;ygi/’g) (resp. f;zi,g1))
and h = 2*1. Note that ,uglgl’g),p;l(e’g/) € N for g1 # e and ¢’ # g; also
gf(e€) ¢ N (f(&€) € N!). Then (iii) (4-1,e, g) implies that ,u’h(e*g)-f(g’g) eN.
But by [7, Lemma 2.4], ,u%(& 9) is an R-isomorphism and therefore flo9) e N
for every g € Spy; consequently, f € N. =

, 1 <i,7 < n. Assume now that g; = e

COROLLARY. The functor &8 induces a representation embedding of the
subcategory of all indecomposable objects in I,-spr’ (kH) into the full subcat-
egory formed by all indecomposable non-orbicular modules in modp, (R/G).

3.5. In this subsection we assume that H ~ Z and N = Pug.

. n dj

REMARK. (a) For any ¢t =1,...,n, and M = (B cg, /(D;-1 B;’ ). 1)
in MongoR, M and B; satisfy the assumptions of [5, Theorem A(iii)]
(H C Gy = G and supp B; Nsupp M C supp B;), therefore we have the
equalities N'(B;, M) = Pu(B;, M) and N (M, B;) = Pu(M, B;).

(b) Analogously, we obtain N(V ®; B,M) = Pu(V ®; B,M) and
N(M,V @ B) = Pu(M,V ® B) for V in I,-spr(kH). However generally,
only the inclusion Pugz C N (= Pug) holds; it is not clear if Puyz = N.

To prove the first statement of Theorem 3.1(a) it suffices to show the
following (see first Remark 3.4).

LEMMA. 5B§B(M) is a direct summand of M for all M in MongoR.

SUBLEMMA. Let

0 Oy —=Cy >0y 0
l/fl lf2 lfs

be a commutative diagram (in an abelian category C) whose rows are split-
table exact sequences. Suppose that fs is a monomorphism and D1 is an
injective A-module. Then for any splitting s1 : C3 — Ca of p1 there exists
a splitting so : D3 — Do of po such that fos; = ssfs.

Proof. Let s; be as above. Fix s} : D3 — Dy such that pesh = idp,.
Since pa(fas1 — shf3) = 0, we have fas1 — sh f3 = wau for some u : C5 — Dj.



NON-ORBICULAR MODULES 271

Then by our assumptions there exists v’ : D3 — D; such that u = v f3.
Now it is easily seen that sy = s, + wou' satisfies the assertion. m

Proof of Lemma. To prove that, for a given M in ModfoBOR, 5B@B(M)
= O(WB(M) @) B) is a direct summand of M, we construct a splittable
monomorphism ¢ : WB(M) @ B — M in Mod” R. We may as-
sume that M = @ . (D, B%) = @7, B¥ @ M', where M’ =
D. 1ges, * (D1 BY).

For any ¢ = 1,...,n — 1 consider the commutative diagram

Uy

0— N(B;, M) —— Hompg(B;, M)

'Fll(M) —0
lﬁ(ﬂin) lHomR(ﬁmM) lbiﬂ,i(M)
0 —=N(Biy1, M) —=Homp(B;11, M) ~=H,; 1 (M) —=0

in MOD(kH)°P. By [5, Theorem A(iv)] all kH-modules N'(B;, M), i =
L,...,n, are injective since N(B;, M) = Pu(B;, M) (see Remark). Then
by the Sublemma one can inductively construct a family s; : H;(M) —
Hompg(B;, M), i = 1,...,n, such that ms; = idg, vy for every 4, and
HomR(ﬁH_l, M) ©8; = Sj41 - Li+1,i(M) for i < n.

Let 3; : H;(M)® B; — M be the morphism in Mod® R which is adjoint
to 84, i =1,...,n (see [3, Lemma 2.4]). Then by the last equality we have
(i) 8i- (Hi(M) @ ;) = 5i1  (ti41,:(M) ® By)
for i < n.

Forany [ =1,...,cand t = 1,...,d;, we denote by 3 ;; the composite
map B; B, B — @?:1 B;lj , where the second map is the standard embed-
ding into the tth component of Bld’ . Then the equality m;s; = idﬂi( M) implies
that under the identifications H;(M) ~ @i_, (kB..)" = @i, B, kB
and Hompg(B;, M) ~ Homg(B;, @j_, B;-lj) ® Homp(B;, M') of k-linear
spaces, we have

8i(Brie) = (Bt + Pries li)
foralli=1,...,n,l=1,...,i,t=1,...,d;, where ¢ ; ¢ GJ\N/(Bi,@?:lBjj)
and ‘P;,i,t € Homp(B;, M'). Note that, via the R-isomorphism H;(M) ®; B;
~ @le Bf ', the R-homomorphism s; regarded as a map @§:1 B;il —

n d;
@jzl B, & M’ has components (5,;+ + ©1,it, (P;,z‘ﬂt)le{l,...,i},te{l,...,dl}‘

Set for simplicity V' = @B (M). From now on we will identify the k-spaces
Vi=H,(M) and H;(M) (via t,, ;(M)),i=1,...,n.
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To define ¢ we construct inductively a family {p; : Vi;) @y Bl

M}i—1,... n of kH-homomorphisms such that

—

(ii) PV, @BlLi-1 = Pi-1
for i > 1, and

(iif) 5= i (Vi®idy)

for every i (see 2.8 for definition of V; ® id ][311)
We set p; = 51. To construct ¢; 1 from ¢;, for 1 < i < n, we consider
the commutative diagram

0—V; ® Bij1 —=—= Vi1 @ Biy1 — (Vit1/Vi) ®k Bix1 —=0

lmﬁ;ﬂl lvm@dzg l

00— V() @k BM 25 Vi gy @ BB 2 (Vi /V;) @) Biyr —>0

in Mod R with exact rows where w; = tit1,:(M) ® Biy1 (see Lemma 2.9
for definition of the lower row). Observe that $;1w; = ¢; - (V; ® ﬂi[ﬂl) since
Sit1* (tit1,i(M) ® Bit1) = ¢ - (Vi @ idgl) (Vi ® Biy1) by (i) and (iii).
Consequently, there exists a unique morphism f : Vi; 1) ®x B+ pfp
satisfying fv; = @i, [+ (Vig1 ® idg:ﬂ) = Sit1, and we set ;1 = f.

Now we define o : WB(M) @5, B — M by setting ¢ = @,

To give a direct description of ¢ recall that, under the identification V,, =
Ho(M) ~ @), (kBin)%, each V; corresponds to @;,_,(kBin)% (see 3.3),
and we can assume that the sequence (V;)i=1,.. , of complementary direct
summands for V is given by V; = (kB;.,)%, i = 1,...,n. Consequently, we
have R-isomorphisms V(;)®; Bl ~ @5:1 B and in particular B (M) @y,
B~ @], B. Now it is casily seen that by (ii) and (iii), ¢ regarded as an
R-homomorphism €9, Bld’ — @?:1 B;-ij @ M’ is given by the components
(Bt + @t Prisie(t,...n},teft,..dy (B =idg!).

To show that ¢ is a splittable monomorphism in Mod® R we construct
a morphism ¢ : M — @BWB(M) in Mod™ R such that 1 is an invertible
R-homomorphism. In the construction we apply, in contrast to the previous
case, the functors

H' : Modf' s R — MOD(KH)°?,
1 =1,...,n, which are defined by setting
H'(N) = Homp(N, B;)/N (N, B;)

for N in ModEBOR. By similar arguments to those for H;, we have the
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canonical k-isomorphism
n
(iv) H (M) ~ P (kBi)"
I=i
We also have at our disposal the natural compatible monomorphisms
L HE
of functors induced by ; ;, ¢ < j, which evaluated at M correspond to the

canonical k-linear monomorphisms

n

(v) P st — GB kBi1)"

l=j =1
given by 3; ;-.

Now applying analogous arguments as before one can inductively con-
struct kH-homomorphisms st HY(M) — HomR(M B;),i=mn,...,1, such
that s* splits the canonical projection 7' : Hompg(M, B;) — H{(M) for
every i, and Hompg(M, 3;) - s* = s*=1 . /=1 ’(M) for i > 1.

For any ¢ = 1,...,n, consider the composite map

. M @p BF < Homp(M, B;)* “% Fi (M)

of left kH —modules, where ¢ is the embedding from [3, Corollary 2.4] (see
[7, 5.1] for the definitions). Denote by u; the composition

M — Homy (B}, H'(M)*) — H"(M)* @y, B;
where the first map is adjoint to u; and the second is given by the functor

isomorphism from [3, Lemma 2.2]. It is easily seen that by the commutativity
condition for the s"’s we have

(vi) (HY(M)* @ B;) - i = ("1 (M))* ® Bi_1) - Uiy
for every i > 1. For any | = 4,...,n and t = 1,...,d;, we denote by £,
the composite map @?:1 BY B . B;, where the first map is the stan-

dard projection onto the tth component of Bld’._Then the equality it =
idgi(pr) implies that, under the identifications HY(M) ~ @, (kBiy)% ~
@, D", kpL, and Homp (M, B;) ~ Homp (@], BY’, B;)oHomp(M', B;)
of k-linear spaces, we have

s'( t)_( l*’%u%l)

for allz’: 1,....nl=i,...,n,t=1,....dy, where v}, € N(®]_, B, B;)
and ¢} € Hompg(M', B;). Tt is easily seen that under the R-isomorphism
HI(M)* @), B; ~ @), B" induced by the k-linear isomorphism H?(M)* =~
D (k5] )% (dual to (iv)), the R-homomorphism #; regarded as a map
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D, B oM — @l ZBdl is given by the components (8}, + ¢y, ;)
le{i,....,n}te{l,....d;}.

Denote by W = (W1 LA W,,) the sequence of epimorphisms
in mod (kH)°P given by W; = H!(M)* and p; = (//*1{(M))*. To define
1 we proceed analogously as in the case of ¢, and construct inductively
kH-homomorphisms t¢; : M — W;) ®j Blinl i =, ... 1, such that

(vii) Titi = Yit1
for i < n, and
(viii) Wi @idly Ty g =

for every i (see 2.9 for definitions of Wi®idﬁ_—i+1] : W) @k Blbnl 5 W@k B;
and r; : W) ®p Blinl Wiit1) @k B[”l’”]). We set ¢,, = u,,. To construct
¥;—1 from ;, for 1 < i < n, consider the commutative diagram

T

0—=Kerp;_1 ®r B;—1 _>W(i71) Qk Bli—1,n] ;>W(i) R Blin] >0

l lwi%@idﬁ_iﬁ] lwi@ﬁz[n_i*—l]

Pi—1®B;_1
- >

0—Kerp;_1 @ Bi-1 ——W;_1 Q1 Bi—1 W; ®, Bi_1 —=0

in Mod R with exact rows (see Corollary 2.9).

Note that (pi—1 ® Bi_1) -t = (Wi ® 8" ") .y, as (pioy @ Bi_y) -1
= Wi p) - (W; @ 1d5§i ZH]) ¥; by (vi) and (viii). Consequently, there
exists a unique map f': M — W;_q) @4 Bli=1n] gatisfying r;_1 f = vy,
(Wi @idly ) ' =@,y and we set ¢,y = f".

Now we deﬁne v: M — @B(M) by setting 1 = ;.

To give a direct description of ¥ note that, under the k-linear isomor-
phisms H!(M)* ~ @l”:i(k:ﬂzl)dl (dual to (iv)), p; corresponds to the stan-
dard k-linear epimorphism @7:i(kﬁzl)dl - @ (K ;'k+1,z)dl' (dual to (v))
with kernel (kg;;)%. In this way we obtain the induced R-isomorphisms
W(,) @k B ~ @7 . B, and in particular B (M) @) B ~ @, B 1t
is easily seen that by (vii) and (viii), ¥ regarded as an R-homomorphism
D_. B;.ij O M — @), B" is given by the components B+t Y1),
I=1,....,n,t=1,...,d (B =idg)).

In conclusion, (1) is an isomorphism in ModHR, since by [7, Lemma 2.4]
it is an invertible R-homomorphism (/\7 C Jr)- In this way we constructed

a splittable monomorphism ¢ : W5 (M) ®) B — M in Mod® R and now the
assertion follows immediately from [7, Lemma 6.2]. m

The result below completes the proof of Theorem 3.1(a).
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PROPOSITION. (a) Ker¥® = [mod 4 (R/G)|mods, (r/G)-
(b) The functors ®% and WP induce an equivalence

Ip-spr(kH) ~ modp, (R/G)/ [mod 4 (R/G)|mods, (r/c)-

Proof. We start by observing that, by Proposition 3.4(a) and Lemma 3.5,
(a) immediately implies (b). Moreover, by Lemma 3.4, we have the inclusion
[mod 41 (R/G))mods, (r/a) C Ker vE (Pug C N1). To prove the inverse
inclusion we show first that any morphism ¢ : 9§(V ® B) — kH ®y, B, in
MOD® R, m € {1,...,n}, V in I,-spr(kH), factors through 8 (Z), for some
Z in mod R (here e denotes the trivial subgroup of GG). Observe that for this
purpose, it suffices to show that the map ¢ : V @, B — 0% (kH ® B,,)
which corresponds to ¢ under the natural isomorphisms

HomJj (05 (V @y B), kH ®k Byn) ~ Hom{ (05 (V @ B), 05 (kH ®k Byn))
~ Homf (V ®y, B, 05 (kH @y, B)),

(see [3, Lemma 2.3]; (supp kH ®y B,,)/H is finite!) factors through 67 (2)
for some Z in mod R.

Fix a map 9 as above. Note that kH ®j B, ~ 6% (B,,) in MOD”R;
an isomorphism is given by @, cy(Vm)n-1 @ @pey Bm — Ppen "B,
under the identification kH ® By ~ @pcyh @ By ~ @y Bm. Con-
sequently, 0% (kH ®j By,) ~ 05(B,,), since 0 = 6% o 6. The module
0% (B,,) = ®D,cc Bm, as an object in MOD R, decomposes into a di-

rect sum P o7, 05 (9B,,) = D, v, (Dren haB, ), where Uy is a fixed
set of representatives of right cosets H/G containing e. Then the map
Y :V @, B — 0%(B,,), under the k-isomorphism

Hom! (V @ B,0%(B,,)) ~ Hom (V o1 B, P eg(g’Bm)),
9'€Un

is given by the components ¢y = (¢Yp ¢ )ner, ¢ € Un. Since (V ®y B)*)
is a finitely generated kH-module (see Remarks 2.7(a) and 2.4), there exist
g1s---,9t, € Ug such that ¢y =0 for all ¢' € Uy \ {91, .., 9 }- Note that
¥y, factors through @,y Im ¢y, g, = 07 (Imtpe g,) (Im1py, C P cpy Im Y g,
and Tm 1y, 5, = "(Im 1,4, )). Hence, ¢ factors through @, 67 (Im ¢, ,, ).
To complete the proof of our claim, it suffices to show that dimy, (Im e 4 )
is finite for every ¢’ € Ug. Set L = suppB; U ... U supp B,, (clearly,
supp(V ® By,) C L and L/H is finite). Note that if G, N H = e then, by
[3, Lemma 3.6], LNsupp 9'B,, is finite, and consequently dimy, (Im e o) is fi-
nite. Consider the case H' = G,z NH # e. Then L is contained in the union
of a finite number of H'-orbits, since [H : H'| is finite (H ~ Z!). Suppose
that dimy (Im ). ¢) is infinite, equivalently, supp(Im . ¢/) is infinite. Then
there exist x € ob L and pairwise different elements hy; € H', s € N, such
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that e g (hsz) # 0 for all s. This implies that ¢, -1 ,(z) # 0 for all s € N,

a contradiction ((Imty)(z) C (Bpey " Bm) (@) = Bpey ?Bm(h12))).
Consequently, all modules Im . 4,,t = 1,..., %0, are finite-dimensional, and
1 factors through 62 (Z), where Z = @’;021 Im ). 4,; the claim is proved.

Next we prove that any morphism ¢ : M — N in Mod’ R, between M in
ModfoBOR and N =V ®; B, V in I,,-spr(K H), factors through ;- , P; ®
B;, where all P;’s are finitely generated free kH-modules, provided the
R-homomorphism ¢ belongs to N.

Consider first the case N = W ®y By, m € {1,...,n}, where W is in
mod(kH)P. Recall that B, stands for the object in Mod” R°P which con-
sists of the k-dual to B,,, the R°°-module B}, (B}, (z) = Homy (B, (x), k)
for every z € ob R), and the standard R°P-action of H on B}, (see [7, 5.1],
also [3, 2.1], where the notation BE is used). Then the image ¢’ of the map
¢ via the natural isomorphisms

Hom® (M, W®yB,,) ~ Hom% (M, Homy (B},,W)) ~ Homyz (M®rB;,, W)

(see [3, 2.2 and 2.4]) admits a factorization ¢’ = (idy)’ - (¢ ®gr B}:,), where
(idy)’ corresponds to idy via Hom® (N, W&y, By,) ~ Homg g (N®gBX,, W).
We prove that p®g B, factors through a free finitely generated kH-module.
Since M ®p B}, is a finitely generated kH-module ((supp B,,)/H is fi-
nite), M ®p B}, decomposes into a direct sum M ®j B}, = P & F of kH-
submodules, where P is free finitely generated and F' is finite-dimensional
(kH ~ k[T, T~'] is a principal ideal domain). Consequently, ¢ ®p B}, can
be regarded as a matrix map [s1,$2] : P® F — N ®j, B;,. We show that
so = 0. For this purpose consider the dual map (p®@rB})* : (N®rB},)* —
(M ®pr B,)*, which can now be viewed in the form [2%] : (N @ B)*
— P* @ F*. Observe that, under the natural kH-isomorphisms 7y

Hompg(N, B,,) — (N ®g B})* and ny; : Homg(M, B,,) — (M ®gr B})*
(see [3, 2.4]), the map (¢ ®pr B,)* corresponds to Hompg(p, By,). Since by
Remark 3.5, N'(M, B,,) = Pu(M, B,,), the kH-submodule U = N (M, B,,,)
of Homp (M, B,,,) is injective (see [5, Theorem A(iv]), and Hompg (M, B,,)
has a decomposition Homg (M, B,,) = U & Uy, where Uy is a finite-dimen-
sional kH-module (Uy ~ @, (kBm.i)% as k-vector spaces, where d; =
dsc(F,; Y (M))B,, i = 1,...,n). Then Homg(p, B,,) is given by the matrix
map [ ] : Homg(N, B,,) — U®Uj (¢ belongs to N and Im Hom g (¢, By,) C
N (M, B,,)). Moreover, the isomorphism 7, is given by the matrix map
(a2l U@ Uy — P* @ F* (Homyy (U, F*) = 0, because there is no

0 w
non-trivial divisible finite-dimensional kH -module). Consequently,

STl ., _|wn wie| |u
S; "IN 0 W22 01’

and sy = 0.
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Now we consider the general case. For any non-zero morphism ¢ : M — N,
where N = V®y B for V in I,,-spr(kH ), we denote by m = m(p) the smallest
i € {1,...,n} such that Imp C Vj;) @5 B (we set m(p) = 0 if ¢ = 0).
We show by induction on m that ¢ factors through @:il P; ® B;, where
all P;’s are finitely generated free kH-modules, provided ¢ belongs to N.

By the previous considerations (the case N = W ®j, B,,,) we can assume
that m > 2. Moreover, by the same reason, the map ry has a factorization

where
(*) 0— Vim—1) ®% pttm=1 2, Vim) @k Bbm LV, @ By — 0

is an exact sequence in Mod” R defined in 2.9 (here V,, = Vim)/Vim-1)
and P, is a finitely generated free kH-module. Observe that the map

Homy g (P, Hompg (B, 7)) : Homy g (P, Homp (B, Vi) @k B[1,m]))
— Homy g (Ppn, Hompg (B, Vi @& Bim)),

which corresponds under the standard adjunction isomorphisms to

Hompg (P, ®k Bm,r) :
HOng(Pm ®k Bm7 Vv(m) ®k B[l,m]) - Homg(Pm ®k: Bm’ Vm ®k: Bm)7

is surjective (P, is kH-projective, and Hompg(B,,,r) is a kH-epimorphism
since (*) is R-splittable). Therefore, there exists ¥ : P, ®x By — Vo) @k
BItml such that ryp” = 4', and consequently ¢’ : M — Vi, 1y ®; Bl
such that vg' = ¢ —1""1, because r(¢—1""1) = 0. Note that m(¢’) < m—1,
and that by Remark 3.5, ¢’ belongs to N, since 11 € Pu by the first part
of the proof; therefore all components of ¢ — 1’1 belong to N. Hence, by
the inductive assumption, ¢’ factors through @:’;1 P; ® B;, where all P;
are finitely generated free kH-modules, and ¢ = vy’ + 1”4 factors through
@;11 P; ®y, B;.

Now we can prove the inclusion Ker%? C [mod s (R/G)lmods, (r/G)-
Let f : M — N be a morphism in ModfoBOR such that WB(f) = 0. Then,
by Lemma 3.5, M ~ 0% (V ® B) and N ~ 0% (V' ®;, B) for some V, V' in
I,-spr(kH). By Lemma 3.4, all components of f belong to N; therefore, the
morphism ¢ € Hom% (05 (V @ B), V' @, B) which corresponds to f via the
isomorphism from [3, 2.3] belongs to N. Consequently, by the second part
of the proof, ¢ factors through @:il P; ®, B;, where P;’s are as above, and
by the first, through 0 (Z), for some Z in mod R. Hence, f factors through
09(Z) = 0505 (Z)) (apply [3, 2.3]), and the proof is complete. =
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3.6. The next result proves Theorem 3.1(b).

LEMMA. The functors wBHB, idModg, R ModfoBOR — ModfoBOR are
isomorphic provided G = H and N, =0 (see Remark 3.4).

Proof. By Proposition 3.4(a), it suffices to show that the functors
UB(=) @y Bjpr and idjps are isomorphic, where M is the full (dense) sub-
category of ModfoBOR formed by all M = (M, p) such that M = @, Bfi,
d; €N, i=1,....,n.

Fix any M in M. Then for any h € H the composite R-homomorphism

n n n n
) -1 ) -1 . .
Dot (o) ~ DB > DB
=1 =1 =1 =1

v=@;  ((v;); )%, is given by the components A; j(h)- 3 ; : @?:1 B;lj —
@, BY, where A, j(h) € Mg, xa,(k), i,j = 1,...,n, are uniquely deter-
mined by the equalities Homp(Bj, B;) = kf; ; for i < j, and A; j(h) =0 for
j < i. Consequently, we have (up)i; = ((vi)n)% (Aij(h) - Bij) = Aij(h) -
Bi,j(h), where (up)i; : B;lj — hile”i is the (4, j)th component of py, i,7 =
1,...,n. Applying the k-isomorphisms H;(M) ~ @;_,(kB.)%, H)(M) ~
@li:l(kﬁlm)dl and passing to components, we obtain @B(M) ~V, where V
in I,,-spr(K H) is the object given by the spaces V; = @5:1 k4 i=1,...,n,
and the linear maps v(h) : V;, — V,,, h € H, with components A; ;(h)- :
k% — k% Tt is easily seen that if we set V; = k%, i = 1,...,n, then the

standard R-isomorphism
n n
DVi o B~ P B
i=1 i=1

is an isomorphism in Modg 5, B
We denote by (M) the composite isomorphism

UE(M)®, B~V @, B~ M

in Modg 5, R and show that § = {{(M)}rreobns yields the required isomor-
phism of functors.

Fix any morphism f: M — M’ in M, where M = @]_, B% and M’ =
d: Bf ‘. Then the R-homomorphism f is given by the R-components F; ;-
Bij - Bfi — B:-i;, i,j = 1,...,n, where F;; € My yq,(k) are uniquely
determined by the equalities Hompg(B;, B;) = k@B; j for i < j, and F; ; = 0
for i < j. Consequently, the kH-homomorphism wB (f), regarded as a map
V — V' under the isomorphisms W5(M) ~ V, WB(M') ~ V' as above, is
given by the components F; ;- : k% — k:dé, 1,7 =1,...,n. Now the equality
f-E&(M) = (M) - (FB(f) @, B) follows by an easy check on definitions. m
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3.7. To prove 3.1(c), recall that any surjective k-algebra homomorphism
A — Ag induces a full and faithful embedding of categories

mod(Ap)°? < mod(A)°P,

and consequently
I,-spr(Ag) < I,-spr(A).

Therefore, a surjective homomorphism H — Hj of groups induces a full and
faithful embedding
I,-spr(kHy) — I,-spr(kH)

which preserves the coordinate vectors.
It is also well known that, for a k-algebra A and m < n, any s =
(8i)i=1,...m € N"such that 1 <s; <... < s, < nyields the full embedding
6774

2 Iy-spr(A) — I,-spr(A)

given by (V1 C ... C Vi) = (V] C ... C V), where V] = 0 for j < s,
Vj/ =V, fors; <j < 811,08 =1,...,n—1, and Vj’ =V, for j > s,.
Note that €7 preserves the coordinate vectors, i.e. cdn(el(V)); = cdn(V);
if j = s; for some ¢ and cdn(e} (V)); = 0 otherwise, for V in I,,,-spr(A).

In consequence, the result below completes the proof of Theorem 3.1.

LEMMA. Let H be an infinite cyclic group (resp. a cyclic p-group of
order |H| > 8 if char(k) =p > 0). Then the category Is-spr’(kH) is wild.

Proof. 1t is enough to show that the category Ip-spr’(A) is wild, where
A = K[T]/(T®) (k[T] is the polynomial algebra in one variable T). The
algebra A can be regarded as a factor algebra of kH ~ k[T, T~] (resp. of
kH ~ E[T]/(TP" — 1) for m € N large enough if char(k) = p > 0) and then
the category Iz-spr’(kH) is also wild.

To prove our claim we apply the arguments suggested by D. Simson and
consider the universal covering F’ : R — R’ = R’ /G’ of the algebra Ty(A°P)
(A(R') ~ T2(A°P), G’ ~ Z). The cover category R’ can be regarded as the
locally bounded k-category opposite to kQ /I, where @ is the quiver

and [ is the ideal in the path category k@) generated by all elements of the
form c;11a; — bici, a7 ... -a; and bip7 - ... by, 1 € Z. Denote by C the full
subcategory of mod R’ formed by all representations V' such that V(cg) is
injective and V'(0), V(—1') # 0, satisfying the following conditions: V(i) = 0
fori >5andi < —4, V(i) =0fori>5and i < —1, V(i) = V(i’) and
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V(ei) = idy, for 1 < i < 4, V(a;) = V(b;) for 1 < i < 3 and V(ag) =
V(bo) V(cp). Tt is easily seen that C is equivalent to the wild subcategory D
of mod(kQ")°P formed by all representations W of @' such that W(cg) is
injective and W (0), W(—1') # 0, where @’ is the quiver

_3/ b_s _of b _1 b, o’ bo 1/ by 2/ bo LY by 4’
o (0] (@] o (@] (0] o o

TCO

o
0

Observe that F}(C) C I-spr’(A), where F} : mod R" — modTs(AP) is
the “push-down” functor associated with F’. Moreover, FY preserves the
indecomposability (G’ is torsionfree) and (F})|c sends non-isomorphic in-
decomposables into non-isomorphic ones, since 9V 2 V' for all V, V' in C
and e # g € G’ (see [15]). Consequently, the category Is-spr’(kH) is wild
(see [11]). m

COROLLARY. If H is as is 3.1(c) then, for any 1 < i < j < n, the
full subcategory of all indecomposable non-orbicular modules in the category
modyp, p,;}(R/G) is wild.

REMARK. (a) One can show that if H is as above then for any sequence
1 <1 < o0 < iy <y, 2 < m < n, the full subcategory formed by
all indecomposable non-orbicular modules X in modg, .. B, }(1}/G) such
that dss(X) = {B,,,..., B, } is wild.

(b) The minimal value of n € N such that Ir-spr(k[T]/(T")) is wild is
not known to the author (clearly n > 5, by [29]).

4. Non-orbicular modules in mod, J§}(R/G) and mod{ﬁ 5 é}(R/G).
We apply Theorem 3.1 to the sequence of length 2 (resp. 3) induced by a
G-atom B, which consists of B and its Kan extensions.

4.1. Let B be a G-atom. For simplicity we set S = supp B and denote
by B the R-module e3(Bs), where e§ : MODS — MODR is the left

adjoint to the restriction functor ef : MOD R — MOD S. The module B
belongs to Ind R, Endg(B) ~ Ends(B|s) ~ Endg(B) (ef is a full and
faithful embedding of Mod S into Mod R), and the support S = suppé is
contained in S (see 1.5). Observe that G5 contains G'p; consequently, B is

a G-atom, since S is the union of a finite number of Gz-orbits in R (R is
locally bounded and S/Gp is finite).

Note that iterating this construction we always get e§ (E‘ 3) E, where
ey MOD S — MODR is the left adjoint to the restriction functor e :
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MOD R — MOD S (for any € ob S, we have e (S(—,2)) ~ R(—,x) ~
65(5(—,1’)) and e,g(R(—,m)) is equal to the projective module S(—,z)).

Suppose that B admits an R-action v of Gp. Then v induces an R-action
UV = (Un)hec, On E, where each 7y, is a family

{Vh(z): B®s R(x,—) » B®g R(hz,—)}zcobRr
of k-linear maps given by 7, (2)(b® o) = v, (b) ® ha for y € ob S, b € B(y),

a € R(z,y). Note that the counit map 3(B) : B — B (see 1.5) is a morphism

from B = (B,7) to B = (B,v) in Mod{” R.
Fix v as above and denote by B the sequence

B: B, 2B,

of length 2, where By = B, By = B and B = B(B). Then according
to the notation introduced in 3.1 we have B, = { B, B} and B= {gB,gg}gesB,
where Sp = Sg;-

Now we are able to formulate our second main result of the paper.

THEOREM. Let G C Autg(R) be a group of k-linear automorphisms
acting freely on R. Suppose that B is a G-atom which admits an R-action
v of Gg, and B satisfies the following conditions:

(a) Endr(B)/J(Endg(B)) ~ k,

(b) B % B (equivalently, S G S),

(c) Bys is not a direct summand of any 9§|5, for g € Sp\ {e}.

Then the functor ®P : Ir-spr(kGp) — mod(R/G) is a representation em-
bedding. In particular 3.1(c) holds. If, in addition, G is torsionfree then

the non-orbicular indecomposable modules in mod{Bﬁ}(R/G) form a wild
subcategory of moda(R/G).

REMARK. The condition (c) immediately implies
(d) Gz =Gp,

since otherwise B|g is a direct summand of QE‘S (~ §|S) for any g€ (G5\GB)
NSp (# 0). (For better understanding of (c) we also refer to Corollary 4.2.)

The proof (see 4.3) needs some preparation. We first illustrate the above
result, and also the meaning of the conditions (c¢) and (d), by presenting
several examples.

ExAMPLE (i). Let R be the locally bounded k-category from Ex-
ample 3.1. Keeping the notation from 3.1, we set B = Bj. It is easily seen
that this example fits exactly into the context of Theorem 4.1. Note that
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all assumptions are trivially satisfied (E ~ By and [(B) = 2, under this
identification).

ExAaAMPLE (ii). Let R be the opposite (locally bounded) k-category to
the path category kQ of the following quiver Q:

-8 aly, 20 b, -1 &) 0 by 1V ay 2 b, 3
(o) o o (o) o] o
TCQ TCO TCQ
a b b b
o 2 o 2 o) a0 o 0 o a2 o 2 o
3 -2 -1 0 1 2 3

The category R is equipped with a natural free action of the infinite cyclic
subgroup G = (g) of Auty(R), where g is defined by ¢(i) = i + 2, g(i') =
(i +2) for i € Z. Let B be the indecomposable R-module given by B(i) =
B((4i)) = k for all i € Z, B(i') = 0 for all i ¢ 4Z, and B(ax;) = B(ba;) =
B(ca;) = idg, B(ah;) = B(bh;) = B(cair2) = 0 for all ¢ € Z. The module
B is a G-atom with stabilizer Gz = (g2). Then B can be viewed as an
R-module given by setting B‘suppB o~ B‘suppB, B((4i+2)) =k, B((2i+1)")
= k2, and B(cyits) = idy, B(an) = wy, B(bQZ) = wy for all i € Z, where
wy, = [(1]] (resp. wy = [[1]]) are the canonical embeddings. Consequently,

Gz =G (2 Gp) and Bisypp 5 ~ Bjsupp 5 (S8 = {€,g}).

ExXAMPLE (iii). Let R be the locally bounded k-category opposite to the
category kQ/I, where @ is the quiver

-3 -2 -1
and [ the ideal of the path category k(@) generated by the elements b; _1¢;_1a;
— ai+1¢i4+1b;, cibi—1ci—1a4, © € Z. The category R is equipped with a free
action of the infinite cyclic subgroup G = (g) of Auty(R), where g is defined
by g(i) = (i+1)’, g(i') = i+1 for i € Z. Let B be the “line” R-module given
by B(i) = k, B(i') = 0, B(agi) = B(by;) = idy, for all ¢ € Z, and B(y) =0
for all other arrows 7 in Q. Then B can be viewed as an R-module given by
B(i) = B(i') = k, B(a;) = B(b;) = B(czi41) = idg and B(cy;) = 0 for all
i € Z. Both modules B and B are G-atoms with stabilizers Gz = (g2) = G,
but IB|supp B =~ Blsupp B (SB = {e,g}).

4.2. LEMMA. Let G be as above, H be a subgroup of G, and L a non-
trivial full subcategory of R. Suppose that H stabilizes L and that L is
contained in the union of a finite number of H-orbits in R. Then gL C L
if and only if gL = L, for any g € G.
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Proof. Fix x1,...,2, € obL such that L = Hx; U...U Hx,, an object
x in L, and an element g € GG such that gL C L. Then for every | € N we
have a descending sequence of inclusions

L>gL>g¢*L>...04¢'L
of subcategories of R. Note that, for every m € N, g™z = hp;y) for
some h,, € H and 1 < i(m) < n. Then i(p) = i(m) for some m > p and
h;lgpzn = hlg™z. Since G, = {e}, we have g™ P € H and ¢g'L = L, where
[ =m —p > 0. Consequently, gL = L and the proof is complete. m

COROLLARY. Let B be a G-atom, B = e5(Bis) and g € G. If 9B ~ B
or B|g isomorphic to a direct summand of 9B|g then g € Gp.

Proof. In the case 9B ~ B, we have ¢S C gg C S. Then by the lemma
gs = gg = S. This implies B ~ B since S = S, and so g € Gp.

In the second case we have ¢S D S and then by the lemma ¢S = S. This
implies 9B ~ B and consequently g € Gg. =

4.3. Proof of Theorem 4.1. We construct an ideal N in B which satisfies
the assumptions of Theorem 3.1. For simplicity we set £ = Endgs(B|s)
(~ Endg(B)) and J = J(E). We denote by I the inverse image of J under
the canonical isomorphism

Hompg (B, B) ~ E
which can also be viewed as the composition
Homp(B, B) — Homs(§|s,B‘S) — E,

where the first map is given by the restriction functor e5 and the second is
induced by an isomorphism 3(B)|s : Bjs — B|s (see 1.5).

We first define a family NO = {NO(B,,B”) g HOHIR(BI,BH)}B/,B//E Bo
of k-subspaces by setting

Homp(B',B") if B'=B, B" = B,
No(B',B") =<1 if B =B, B" = B,
J(Endgr(B")) it B'=DB".
We denote by N the family {N(B’,B"”) C Homg(B',B")}p precn of k-
subspaces given by 3.1(iii). To prove that N is an ideal in B we show first
that N, is an ideal in B,, equivalently, that

N — (NO(B,B) NO(E,B))

N.(B,B) N.(B,B)
is an ideal in the endomorphism algebra

E = Endp(B o B) = ( Homr(B, B) Homp(B, B)
a & N Hompg(B,B) Homg(B,B))’
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Consider the algebra homomorphism
r:E— My(F)

which is the composition of the restriction map End(B& B) — Endg(B 15D
é‘s) given by ef and the isomorphism Ends(B|s ® é‘s) — My (E) induced
by B(B)|s. Observe that the first map, and then also r, is an embedding
since €5 induces the isomorphism Endp(B) ~ Endg(§| s) and S = supp B.
Moreover, we have

=5 2) e wo= (] )

where U is the image of Hompg (B, B) under the (2,1)th component of r.
The space U forms a two-sided ideal in F, since multiplication in E is
well defined. Note that U is contained in J, since otherwise there exists
[ € Homg(B, B) such that 3(B)|sf|s € Ends(B|s) is an isomorphism, and
consequently 3(B)f € Endg(B) is an isomorphism and B ~ B, a contra-
diction.

Now it is easy to check that N’ is an ideal in E’. Consequently, the same
holds for N in E and N, in B,.

Next we show that the ideal N, is H-invariant, where H = Gp = G
(see Remark 4.1). Note that since Jg is a G-invariant ideal in Mod R and
N, (B, B) = Homp(B, B) we only need to check that N, (B, B) = I is an
H-invariant subspace of HomR(B , B). In order to show that hx f € I for all
f €I and h € H, it suffices to show that (h* f)g = (huh|s)(hf‘5)(ﬁh‘s)*l
is a non-isomorphism. Observe that ("f )| (hs) is a non-isomorphism since by
definition of I so is fig. Consequently, (* f)|s is a non-isomorphism since
hS = S, and therefore so is (h * f)|s (va, Vn are isomorphisms).

Recall that Jr and Homp are summably closed ideals in Mod R
(see [5, 7]). Therefore to show that the ideal N, is summably closed we
have to check only that ./\/O(é,B) = [ is a summably closed subspace of
Hompg(B, B). Fix a summable family f; € Homg(B, B), i € T, such that
fi € I for every i. Then {f;|s}ier is a summable family in Homs(éw, Bis)
and ), cp fils = fis, where f =37, . fi. Since all f;|g are in J o 3(B)g
and J is a summably closed subspace of E, fs also belongs to J o 3(B)|s.
Consequently, f € I and the claim is proved.

Finally, we show that A is an ideal in B. Since N, is an ideal in B, we
have to check that for any f € Hompg(B;, 9B;) and f’ € Homg (B, B;),
the composition f’f belongs to NV, for all e # g € Sy and B;, B}, Bj € B,
as in Remark 3.1. We first consider the case B; = B;. Suppose that f'f ¢
N (B, B;). Then 9B; ~ B; (B; is indecomposable). Since g # e, we have
B; # B; and then either IB~Bor9 B B, hence, by Corollary 4.2, g is
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in H, a contradiction. Consequently, f'f € N. It remains to consider the
case B; = B, B; = B, since N,(B, B) = Homp(B, B). Suppose again that
I'f € N(B;, Bj) = I. This means that the composition
1 ,

(i) Bis N5 B D5 ap 108
does not belong to J and B|g is isomorphic to a direct summand of 9By s.
Then Corollary 4.2 (the case B; = B) and the assumption (¢) (the case
B, = B) imply g = e, a contradiction. In consequence, f'f € N, and N is
an ideal in B.

Note that by construction the ideal N satisfies the remaining assump-
tions of Theorem 3.1, in particular (x), and the proof is complete. m

REMARK. If G = Gp, the situation discussed in Theorem 4.1 is fully
controlled by the subalgebra E' C My(E) and the ideal N” (see 4.3).

4.4. COROLLARY. Let G C Auti(R) be an infinite cyclic group act-
ing freely on R. Suppose that there exists a G-atom such that Gp = G,
Endgr(B)/J(Endr(B)) ~ k and B #B. Then mods(R/G) contains a wild
subcategory consisting of non-orbicular indecomposable modules which s
contained in mod,p 5 (R/G). Moreover, if J(Endgr(B)) = Pu(B, B) and

Homp(B, B) = Pu(B, B), then the faithful embedding &7 : Ir-spr(kG) —

mod, ; 7, (R/QG) is dense and induces an equivalence

Iy-spr(kG) ~ mod  ; 5,(R/G)/ [modl(R/G)]mod{Bﬁé}(R/G).

Proof. The first assertion is an immediate consequence of Theorem 4.1.
The second can be derived from Theorems 3.1(b) and 4.1, once we show
that I = Pu(B,B) and J(Endg(B)) = Pu(B,B). But these equalities
follow easily from the definition of I and the isomorphism EndR(E) o~
Homg(Bsg, Es) ~ Endg(Bg), by the lemma below. m

We denote by Pu’ the pure-projective ideal in the category MOD S.

LEMMA. (a) For any M in MODR and N in MOD S, the canonical
adjunction isomorphism Homp(eS(N), M) ~ Homg (N, e5 (M)) induces an
isomorphism Pu(ef (N), M) ~ Pu/(N,e5 (M)).

(b) For any M in Mod R and N in Mod S, the canonical adjunction iso-
morphism Hompg (M, eg(N)) ~ Homg(ed (M), N) induces an isomorphism
Pu(M,e3(N)) ~ Pu'(e5 (M), N) (see 1.5 for definition of 7).

(¢c) For any M,M’' in MOD R such that supp M, supp M’ C S, the
restriction functor e induces an isomorphism Pu(M,M') ~ Pu’ (e (M),
e5 (M),

Proof. The statements (a) and (b) follow easily from the basic properties
of the functors e, and e, (to prove (b) apply the fact that each morphism
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in Puy,.q ¢ factorizes through a locally finite-dimensional module which de-
composes into a direct sum of finite-dimensional modules).

(c) It is clear that the restriction map Pu(M,M’) — Pu'(Ms, M/q)
is well defined and injective. To show that it is surjective we fix an
S-homomorphism [ € Pu(M|s,M"S). It admits a factorization Mg % Z

v

— M"S, where Z = @,cr Zt, u = (Ut)ter, v = (vi)ier and all Z;’s
are in mod S. Therefore f factors through the S-module Z' = @, ., Zi,
where Z] = Imu; for every t € T (f = v'v/, v/ = (u})ier, V' = (v))ter).
Since supp M’ C S, each Z] as an S-factor of M can be extended by ze-
ros to a module Z; in mod R. Then all S-homomorphisms uy,v;, t € T,
and f,u'v’ can be regarded as R-homomorphisms and f factors through

7" =@Per Zi' m

We prove that, under the above assumptions (generally if G acts freely
on ind(R/G)/~ , G is infinite and B % B), also the category mod; (R/G)
is wild since so is mod R (see Theorems 7.1 and 7.6).

4.5. For a given G-atom B we can also consider the functor ¥ relating
to the dual construction, namely the sequence

p: pt¥%p

where B = €5 (B) (see 1.5 for definition of €5 : Mod S — Mod R and 3'(B)).

Observe that B , analogously to B , is a G-atom and ('(B) can be regarded
as a morphism in Mod®® R provided B is equipped with a fixed R-action v

of G (if it admits any) and B with the R-action 7 of G which is induced
by v.

It is rather easily seen that for the sequence B as above we can prove
results analogous to Theorem 4.1 and Corollary 4.4.

One can also study properties of the functor ## for the “full” sequence
induced by the G-atom B, i.e. the sequence

5. BI® ARG
of length 3 in MOD®ZR. Tt is clear that now Im®5 C modé
(B, = {B, B, B}).
The following result extends Theorem 4.1 in a natural way.

(R/G)

B,B

THEOREM. Let G C Autg(R) be a group of k-linear automorphisms
acting freely on R. Suppose that B is a G-atom which admits an R-action
v of Gp and B satisfies the following conditions:

(a) Endgr(B)/J(Endg(B)) =~ k,
(b) B# B # B,
(C) GEZGBZGEZG.
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Then the functor ®P : I3-spr(kG) — mod(R/G) is a representation em-
bedding. In particular 3.1(c) holds and, if additionally G is torsionfree,

then the non-orbicular indecomposable modules in mod{é 5 é}(R/G) form a

wild subcategory of mody(R/G). Moreover, if G is an infinite cyclic group
and J(Endp(B) = Pu(B, B), Homp(B, B) = Pu(B, B), Homp(B, B) =

Pu(B, B), Homg(B, B) = Pu(B, B), then the functor &8 : Is-spr(kG) —

mod{éB’é}(R/G) is dense and induces an equivalence

Is-spr(kG) ~ mOd{§,B,1§} (R/G)/ [mOdl(R/G)]mod{éyByé}(R/G)'

Proof. Keeping all notation from 4.3 we construct, as in the proof of
Theorem 4.1, the ideal A/ in B satisfying the assumptions of Theorem 3.1.
We denote by I’ the inverse image of J under the standard adjunction
isomorphism _
Hompg (B, B) ~ E
(see 1.5 for the factorization), and by I the inverse image of J under the
composite map

HomR(é, E) — Homs(é‘s, §|S) — F,
where the first map is given by the restriction functor e and the second
is induced by the isomorphisms 3(B)|s and '(B)|s (see 1.5). Then we let
N, ={N,(B',B") C Homp(B’', B")} ' e B, be the family of k-subspaces

given by
J(Endgr(B')) if B=DB",

I if B'= B, B" = B,
N, (B, B"Y=!T if B'= B, B" = B,
I’ if B =B, B" = B,

Hompg(B’, B"”) otherwise.

To show that N, is an ideal we consider the subspace N of the endomorphism
algebra

_ HomR(BE, E) Hompg(B, B) Hompg(
E=Endg(B® B® B) = Homp(B,B) Homp(B,B) Homp(
Homp(B,B) Hompg(B,B) Hompg(

defined by N,, and the algebra homomorphism

T:E—)M:;(E)

3 o
o & W

which is the composition of the restriction map EndR(E © B E) —
Ends(g‘s ® Bjs @ é‘s) defined by e and the isomorphism End5(§|5 o
Bs @ Bjs) — M3(E) induced by 3(B)|s and §'(B)|s.
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Observe that all components r; ; (i,7 = 1,2,3) of r but 731 are injective

(the map r; 3 has a factorization Homp(B, B) ~ Homg (Bs, §|S) ~ F, for
the remaining ones apply arguments from 4.3). Then

E FEF FE J J J
rEy=| U E E|, r(N)=(U J JJ|,
v’ U E v’ v oJ

where U = Imry 1, U’ = Imrsgo, U” = Imrs;. The spaces U, U’ form
two-sided ideals in E which are contained in J (see 4.3).

Finally observe that Hompg(B, B) = Jr(B, B) since by (b), B and B
are not isomorphic.

By the above remarks it is easily seen that A, forms an ideal in B,. As
in 4.3, the ideal N' = N, satisfies the remaining assumptions of Theorem 3.1.

To complete the proof one shows that N, = Pup, (this follows by
Lemma 4.4 and definitions of I, I’ and I"). =

5. The case of different stabilizers. In this section we briefly discuss
the problem of how to construct indecomposable non-orbicular modules in
modp, (R/G), by use of generalized tensor product, in the case when the
stabilizers G g, of G-atoms B;, i = 1,...,n, are not all equal to H (see 3.1).
We study more carefully the very special situation when B, = {B, B } for a
G-atom B (as in the previous section), but in contrast (to 3.1 and 4.1) we
now assume G'p & G5 (see Example 4.1(ii)).

5.1. Keeping the notation from 4.1 and assumptions (a) and (b) from
Theorem 4.1 (we drop assumption (c)), we assume that there exists an R-
action v of H = G'p on B such that the R-action v = vy of H on B can be
extended to an R-action Vg, of Gz on B (i.e. (Vg,)|m = VH)-

We fix v and Vg, as above and assume for simplicity that Gz = G.
Then the morphism 8 = 3(B) : (B,y) — (B,v) in Mod? R induces the
morphism _

5G : (B’DG) - (BG7VG) (: 983 (Bv V))
in ModfGR given by components 3, = 93 - v -1 : B — 9B, where BE =
D, cs,, /B (see [3, Lemma 2.3]).
From now on we use the notation 7 also for ﬁgé.
Denote by B the sequence

B: B < B,
of length 2, where B; = B¢, By = B and Bs = BC. According to 3.1, the
sequence B induces the functors @7 : I-spr(kG) — Mod{ R, &8 = — @y, B,
and ®F : L-spr(kG) — mod(R/G), ®¥ = F;! o #B. It is easily seen

that similarly to 4.1 we have Im &7 C mod{Bvé}(R/G) and dsc(®P(V)) =
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cdn(V) for V in I-spr(kG) (cf. 3.1). Moreover, #2(V) is in modg(R/G)
if and only if V' is in Is-spry(kG), where Is-sprq(kG) is the full subcate-
gory of I-spr(kG) formed by all objects V' = (V4 C V3) such that V4 =V,
(I3-spry(kG) = Im 5(21), cf. 3.7). Nevertheless, we cannot expect such nice
behaviour of the functor #¥ as in Theorem 4.1 and Corollary 4.4 (see The-
orem 5.5). To study it we will proceed analogously and define a functor
B . mod, ; 7, (R/G) — Ix-spr(kG) (see 5.2).

Denote by B the full subcategory of Mod R formed by {B} U {9B}scs,,
and by N the family N'(B’, B”) C Homg(B, B"), B', B" € B, of k-subspaces
defined by

jR(B/,BN) if B’ = B,
(i) N(B',B") = 9 v, if B =B, B" =9B,

Homp(B’, B"”) otherwise,
where I is as in 4.3. Note that the definition of A/ does not depend on the
choice of the isomorphisms v,-1, g € Sy (@I = I for any ¢ € Autgr(B)),
and that the restriction of V' to the full subcategory B, of B formed by the
set {B, B} is equal to the ideal N, from 4.3. We also have the formulas

(ii) HOmR(B/, BN) = kjﬂB//’B/ @N(B/, B//)
where
idg: if B' = B",
(iii) Bprp = { 8, ifB'=B,B"=9B,
0 otherwise.

LEMMA. N is an ideal in B.

Proof. Since N, is an ideal in B, the restriction of N to the full subcate-
gory formed by {9B, B} is an ideal for every g € Sp. Therefore to show that
N is an ideal in B, it suffices to know that f’f belongs to HomR(E, B) for
all f e HomR(E,gB), f' € Hompg (9B, B), e # g € Sg. But this has already
been proved (see 4.3(i)). m

5.2. Let B denote the additive closure of B (i.e. the full subcategory of
Mod R formed by all R-modules M of the form M ~ GageSH 9B% @ B,
where dg,d € N), and N the ideal in B which is the unique extension of N
to B (|Su| = [G 5 : GB] is finite!).

LEMMA. The k-subspace N'(M,M’) C Hompg (M, M') is a kG-submod-
ule of Hompg(M,M') for any M, M' in Mod{ R.

Proof. First we show that oy ' - 9f - ¢ € J\N/(ngl,ngg) for any g € G,
B1,By in B, f € N(By,Bs) and R-isomorphisms ¢; : 9B; — 9B;, i = 1,2,

where g; represents gg’ in Sy in case B; = 9B, g € Sy, or g; = e in case
B; = B. Since Jg is an ideal in Mod R and N is an ideal in B, it suffices
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to check the case B; = B By = gB and @1 = Vg1, o2 = (gglvhz)_l,
where gahs = gg', g € Sy, h € H. Fix f = 9f, - Vg | € N(B,9B), where
fo € N(B, B). Then

/ ’ e —~ / ~ ~ ~
99 Uny-9(5fo-Dyr ) Vg1 = 92M2p, 9o Uggn -1 = 92 (Mun, -92"2f0 -1y, 1)1, 1.

Note that "2vy, - 922 . U1 € N(B, B) since N, is a kH-invariant ideal
in B, (see 4.3). Consequently, 92("2v;,, - 9202, . Ups1) Vg1 € N (B, 9B).

Now we prove the main assertion. Fix g € G and a morphism f :
(M, ) — (M’, ') in Mod¥ R which belongs to N (M, M’). To check that
g* f = uy - 9f - pg—1 belongs to N (M, M’), we show that each compo-
nent (g x f)’ : By — Ba, B1,Bs in B, of the R-homomorphism g * f,
under the fixed R-module identifications M ~ P ., B" & B, M' ~
@geSH IB" @ B", n,n',7,7 € N, belongs to N (By, Bs). Observe that,
for each component f’: By — Bs, By, By in B, of f, the R-homomorphism
9(f") : 9By — 9B2 (under the above identifications) can be represented in the
form o -3051 If - - @51, where @1, 2 are as in the first part of the proof.
Now passing to components of the R-isomorphisms f,-1, gu’g, and applying
the fact that all o, - 9(f’) - ¢1’s belong to the ideal N, we immediately
obtain our claim. m

To define ¥ we denote by

Ho, Ha - ModC , 5 R — MOD(kG)°
the functors H; = Homp(BY, —)/N(B®, ), Hy = Homg(B,—)/N (B, -)
and by

L:’Hl—VHg

the natural transformation of functors induced by the morphism BY
B — B%in Modf R (Hi,H> and ¢ are well defined by Lemmas 5.1 and 5.2).
Note that H; (ModfG{B B}R) C mod(kG)°P for i = 1,2 (see 5.1(ii)).

Now we define the functor

WP Mod{ 5 R — L-spr(kG).

We set
BB (M) = (Imu(M) € Hy(M))
for M in ModfG{B By

Let f : M — M’ be a morphism in Modf (BB} Since ¢ is a natural

transformation, we have Ho(f)(Im¢(M)) C Im ¢(M'). We set



NON-ORBICULAR MODULES 291

vP(f) = Ha(f)-
It is easily seen that @B is a k-linear functor.
We denote by &5 : mod{Bjé}(R/G) — Ir-spr(kG) the functor

uhB :Ll:/BoF..

REMARK. (a) Let M bein ModfG{B By Then Hy (M) ~ @gesH (kidep)™,

Ho(M) ~ @, s, (kB3g)" & (kidg)", where M ~ @yes, B"® B, n, €N
(we have Homp (B¢, M) ~ €Bg€~SH~(k idep)" ® N (BY, M) and Hompg (B, M)
~ @), s, (k8,)" @ (kidg)™ © N (B, M), by 5.1(ii)).

(b) The map ¢(M) is a kG-monomorphism for any M in ModfG{B E;}R
(by the identifications from (a), ¢«(M) maps a-idsp onto a- 3, for any g € Sy
and a € k™).

(c) For any X in mod{Bﬁ}(R/G), we have

cdn(¥P(X))2 = dimy, Ha(Fo(X)) — dimg Im o(Fo (X)) = dse(X) 5,
cdn(¥P (X)), = dimg Im o(Fo (X)) = [G : H] - dsc(X) g.

In particular, W5 (X) is in I-spr; (kG) if and only if X is in modyp (R/G),
and WB(X) is in I-spr’(kG) if and only if X is non-orbicular.

5.3. Now we compute the composition ¥Z o 5.

For any W = (W, i) in mod(kG)°P we denote by W/ # the kG-module
defined by the k-space k(G/H) @ W = @, cq/p 7 © W together with the
linear action pG/H = (NG/H(g))geg of G given by (g,7 ® w) — g7 ® gw,
g€ G, veG/H, we W (G acts on the set G/H of left cosets by left
shifts). Note that we have a kG-isomorphism KG Qg W ~ WE/H given
by g®@w— gH ® gw, g € G, w € W, which is natural with respect to W.

We denote by V. = Vy : WEH — W and A = Ay : W — WE/H
([G : H] = [G5 : Gp] is finite) the standard (natural with respect to W)
kG-homomorphisms given by v ® w — w and w +— Z%G/H v ® w. Note
that VA =[G : H] - idw .

We define the functor

I': Ir-spr(kG) — Ir-spr(kG)
setting
r(v)=@mi € V" Ly, )

for V = (Vi C Va) in Lh-spr(kG), where i = i(V) : V" — v&/H 1, v,
is the first canonical embedding into an amalgamated sum (defined by the
maps V7 — Vo and Ay, : V; — VlG/H). Note that we have I'(I>-spr; (kG)) C
Ir-spry (kG).
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REMARK. (a) le/ " Uy, Vo can be identified with the kG-module defined
by the space VlG/ "o V5 with the G-action given by the matrices

LCTH (g) = (11,0)9 " (g)  n " (g)12

) € G7
= 0 1(g)2,2 g

where V5 is a fixed complementary direct summand for V; in V (V5 =
Vi@ Va), pia = ((9)11) gec and p"H(g)1a 0 Vo — @ ey @ Vi is
given by v = 3 /7 ® 1(g)1,2(v), v € V. The identification is induced
by the canonical embeddings w; : VlG/H — VlG/H ® Vo and Ay, @idy, :
Vo — VIG/ H @ V5. Under this identification, ¢ corresponds to w; and the
second embedding i/ =4'(V) : V5 — VIG/H Uy, V2 to Ay, @idy,.

(b) The family (V) : Vo — V" Uy, Vo, V in Le-spr(kG), of kG-
homomorphisms defines the natural transformation i’ : idz, spe(ka)y — I of
functors.

PROPOSITION. UEB o B ~ T

Proof. Fix V = (Vi C V3) in Iy-spr(kG) together with a complementary
direct summand Vo C V5 for V4 in Vo (Vo = Vo @ Va). We construct an
isomorphism 7(V) : WBSB(V) — I'(V) in I-spr(kG).

Fix bases of the spaces Vi, Vo and denote by ¢, : Vi ®; 9B — 9,
g € Sg, and by 19 : Vo ®y B — B% the isomorphisms induced by the
selection of bases, where d; = dimy, V1 and dy = dimyg V5. For any g € G we
denote by ,u(g)i ; the matrices of the k-linear maps 1(g); ;, ¢,7 = 1,2, in the

fixed bases above (cf. 2.1).

For any f € Hompg(B,d3(V)) we denote by f; € Homp(B,V; @5 BE)
(resp. fo € Homp(B,V,® B)) the components of f under the identification
induced by the equality #3(V) = V4 @, BY ® V, @) B, and by fig €
HomR(E, Vi ® 9B), g € Sy, the components of f; under the identification
given by the canonical isomorphism V; @5 B ~ @g csy V1 @k B.

For any f € Homp(B,V, ®) B) we denote by J € D,cs, (kidz)?® and
e N(E,E)dz the components of f under the identification HomR(E,
V, ®1, B) =~ (kid5)® @ N'(B, B)* induced by 1y (cf. 5.1(ii)).

For any f € HomR(E, Vi®k9B), g € Su, (resp. f € HomR(E,Vl ®r BY)
with components f, € HomR(E,Vl ®r 9B), g € Sg) we denote by f €
(kB,)™ and f' € N(B,B)*" (resp. [ = (f,) € Byes, (kB,)™ and ' =
(fy) € D,esy N(B,9B)¥) the components of f under the identification

Hompg(B, Vi @ 9B) ~ (kB,)™ & N(B,9B)%, induced by 1, (cf. 5.1(ii)).
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To construct the isomorphism 7(V) we first compute (g * f);, g € G,
i=1,2, for any f € Hompg(B,V; ®, BY) and f € Homg(B,V, ®) B).

Fix f € Homg(B, Vi ®; BY). Since u(g)21 = 0, we have (g * f)2 = 0,
and consequently

(i) (9% f)2=0.
To compute (g * f); observe that

(g% f)1=""(p(g)11 @k Vf) If Vg

and
((g * f)1)92 = (:U’(g)l,l Rk ggth) 9f ,1;971

for any fixed go € Sy, where gg1 = g2h, g1 € Sy, h € H (see 2.5 and 5.1).
Then

Ui (9% )0 = (0la), -2 00) OFps + £3) -7 )
(1lg), , a0 (v - 78, -7, )
+ (“_9)1,1 99 wn) (fg, - Vg)

where f,, = ag, - By, ag, € k%. The second summand belongs to N (see
the proof of Lemma 5.2), the first is equal to (u(g)1 1agl) - B4, since

991 .9 ]
vy 9By, -V,

— 991 991 97 U
g—1 = Vp - ,8 VvV -1V

91 9"

-1
— 9g91h L9917, .7 — 9273 .97
= ﬁ 143 l/(ggl)—l ﬁ 1/92—1

(3 is a morphism in Mod{’R). Consequently,
(i) (@ D)o = (1la), | 5,) - B
Fix f € Homg(B,V, @ B). Then by definition we have
(g% f)2=9(u(g)2,2 @k Vg) - If - Vg1
and
Ua (g% P2 = (ple), , - T (Ta+ 5) - 7yr)
= (ula), @) (9B - ¥ gy~ 7y) + (2g), , - P)(OF5 - Pyo),

where f =4 -id 5y Q€ k% . The second summand belongs to N, the first is
equal to (p(g), ,a) - idg, and hence

(iii) (g* f2 = (plg), ,a) - 1dj.
Analogously we have

(g% f)1="9(u(g)12 @k (l/gG - B9Y) - 9f - Vg1



294 P. DOWBOR

and
(g f1)ge = (91,2 @k (Wwp - 993 - Iv 1) - If - vy

for any fixed g € Sy, where gg1 = g2h, g1 € Sq, h € H (see 2.5 and 3.1),
and then

V1,65 (9% F)1)ge = (ulg) , - (“Dvn - 296-90,20)) - (F+ ) -7
= (ug), ,@) (" vy - 95 91/ 1d~-1/71)

(e, - (515, 0) 0Ty

Again the second summand belongs to NV, the first is equal to (u(g)1 ) a)- By,
since 7

—1
991 991 935 > — gg1h 99175, .3 __921.7; _
v 9BV g = B9 Uh - Viggy—1 = 2B - Un(gg))—1 = Pga-

Consequently,

(iv) ((g* F)r)g = (p9), , @) - Boo-
Note that we have the k-linear isomorphisms
(v) Ho(@P(V)) ~ €D (kBy,)" @ (kidg)*
g1€ESH

induced by f — (((f_l)gl),fg), fe HomR(E,dEB(V)) (cf. Remark 5.2(a)),
and

(vi) VT eV, ~ @ (kB,)" @ (kidg)®

g1€ESH

given by ¢1H ® v1 — a1 - B4, g1 € SH, v1i € Vi, where a1 € k% is the
coordinate vector of vy (resp. vy — asg - idg, va € V5, where ay € k42
is the coordinate vector of vy). Then by (i)—(iv) the composition of the
k-isomorphisms (v) and (vi) yields the kG-module isomorphism

(vi) Ho (BB (V) =~ VEH v,

(see Remark 5.3 for the kG-module structure on VIG/ e V,). It is easily
seen that, under the above isomorphism, ¢(®”(V)) corresponds to VIG/ a

(see Remark 5.2(b)). Hence, defining
(V) : 0Pe5(V) — I(V)
as the composition of the isomorphism from Remark 5.3 and the isomor-
phism (vii) we obtain an isomorphism in Is-spr(kG).
One can show that the family n = (7(V))ver,-spr(kc) is natural with

respect to V. Consequently,  defines an isomorphism UBPB ~ I', and the
proof is complete, since WEPE ~ UBHE o
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Let
&8 . Ir-spr(kG) /[Io-spr, (kG)] — mod{B’E}(R/G)/[mod{B}(R/G)],
B . mod{B’g}(R/G)/[mod{B} (R/Q)] — Iy-spr(kG)/[I2-spry (EG)],
I : Ir-spr(kG)/[Iz-spry (kG)] — Ir-spr(kG)/[I2-spr, (kG)]
be the functors induced by ¢8, WP and I', respectively (see 5.1-5.3).
COROLLARY. ¥B o @B ~ T

5.4. From now on we assume that char(k) does not divide the index
G : H].

LEMMA. For any V in Iy-spr(kG) there exists a kG-isomorphism
V)~V a& VL where V1 is in I-spry(kG) (V! = 5(21)(/@(1/1)) = (k(V) C
K(Vl)) f07’ R = idvlc/H —ﬁ . Avlv‘/l).

Proof. Consider the following commutative diagram with exact rows in
the category mod(kG)°P:

0 Vi € Vo = Vo/Vi —=0

b e

O S ‘/;I-G/H 7 ‘/le/H I_lvl ‘/2 P V2/V1 0

o e

0 Vi < Vs = Va/Vi—=0

Here the middle exact sequence is the standard exact sequence induced by
Ay, from the upper one, the lower one is the standard exact sequence in-
duced by Vy, from the middle one. The composition Vy, - Ay, =
[G : H]-idy, is an isomorphism, hence by the Five Lemma so is o/ (V') -i' (V).
Now the assertion follows easily. m

We denote by Iz-spr} (kG) the additive closure of the subcategory formed
by all indecomposables in Is-spr(kG) off Is-spry(kG) (Iz-spri(kG) =
Ir-spr(kG) \ I>-spr; (kG)).

COROLLARY. (a) UBo@B ~ idlz-spr(kG)/[Iz—sprl(kG)} .
(b) The functor ®B yields an injection between the set of isoclasses in
Ir-spr} (kG) and the set of all isoclasses in mod, 5 é}(R/G).

Proof. (a) By the above lemma, ¢’ (see Remark 5.3(b)) induces an iso-
morphism id 7, e (kG) /[Io-spr, (kG)] = I and (a) follows directly from Corol-
lary 5.3.

(b) If 8B(V) ~ @B (V") for V, V' in I-spr’(kG), then by Proposition 5.3
and Lemma 5.4 we have Vo V! ~ V/@V'! where V1, V! are in I-spry (kG).
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Consequently, by the uniqueness of decomposition into a direct sum of in-
decomposables we have V ~ V', n

5.5. Finally we analyse decompositions of modules in Im @52_Spr/l (kG)op -

LEMMA. Let V = (V4 C Va) be an indecomposable object in Io-spr) (kG).
Then there exists an indecomposable direct summand X of ®B(V) with the
following properties:

(a) dsc(X) 5 = dsc(%(V)) 5 (= dimg(V2/V1)),
(b) UB(X) =~V @V for some V in Iz-spry(kG).

In particular, X = Xy as above is uniquely determined by V up to isomor-
phism, and @5 (V) ~ X @Y for some Y in mod;p(R/G).

Proof. Since V is in Is-spr} (kG), there exists an indecomposable direct
summand X of (V) such that B € dss(X). We show that X satisfies (a)
and (b). By Proposition 5.3 and Lemma 5.4, ¥B(X) is a direct summand
of V& V1 where V! is in I-spr;(kG). Moreover, 5 (X) does not belong
to Iy-spry (kG) since B € dss(X) (see Remark 5.2(c)). This immediately im-
plies (b). Consequently, by Remark 5.2(c), we have dsc(X) 5 = dimg (V2/V1),
and (a) holds since dsc(@5(V)) 5 = dimy(V2/V4) (see 5.1). The last assertion
follows immediately from (a). m

THEOREM. Let G C Autg(R) be a group of k-linear automorphisms
acting freely on R. Suppose that B is a G-atom which admits an R-action
v of Gpg, and satisfies the following conditions:

(a) Endr(B)/J(Endg(B)) ~ k,

(
(c) U can be extended to an R-action of Gg on B,
(d) char(k) does not divide [G 5 : Gpl,

Then the functor @B is a representation embedding and the mapping V
Xy (see Lemma 5.5) yields an injection between the set of isoclasses of in-
decomposables in I-spry (kG) (resp. Io-spr’(kG)) and the set of isoclasses of
indecomposables in mod{B’E}(R/G) \ modyp}(R/G) (resp. indecomposable
non-orbicular modules in mod, g E}(R/G)) (cf. Lemma 3.7).

Proof. The first assertion follows from Corollary 5.4 since Lemma 5.5
shows that @%(V) (~ Xy) is an indecomposable object in the category
mod, p 7, (R/G)/ [modpy(R/G)] for any V in I-spry(kG).

If now Xy ~ Xy for indecomposable V, V' in I5-spr}(kG), then by
Lemma 5.5(b) we have V@V ~ V' @ V/, where V, V' are in I-spr, (kG).
Consequently, V' ~ V’. Finally, note that if an indecomposable object V'
belongs to Iz-sprj(kG) then by Lemma 5.5(a) the indecomposable module
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Xy does not belong to mod(p}(R/G), and if V' is in Ir-spr’(kG) then Xy
is non-orbicular by Remark 5.2(c) and Lemma 5.5(b). m

5.6. We end this section by showing that as far as constructing inde-
composable non-orbicular R/G-modules is concerned, one should expect dif-
ferent behaviour of 7 in the case char(k) is positive and divides [G : H].

From now on we assume that G'= G5 is an infinite cyclic group with a
fixed generator g.

Let V = (V4 C V) be an indecomposable object in I5-spr’(kG) which
is given by Vo = k2, V; = k[ (1)] where the kG-module structure on V5 is
defined by the action u(g) = [(1] 1
take Vo = k[].

LEMMA. If char(k) =2 =[G : H]| then

P(VY~B®B in Mod{’ , 5,(R/G)

]' of the generator g on k2. Clearly, we can

(cf. Example 4.3(ii)).
Proof. We show that the exact sequence
0— VioxBE 2 VerBLVa@rB —0

splits in Mod{ R. For simplicity we set B, = B and B, = 9B (Sg = {e, g}).
Then under the standard identifications Vi @4 B¢ ~ B, @ By, Vo @y B~DB
and V @, B ~ (B. ® By) @ B, the R-actions of the generator g on these
R-modules are given respectively by the R-homomorphisms
g €]
=l o 18]

e

where
Y2 - 9IB - Vg

(V1,2)g - [ B } :B - gilBe D gilBg'
To prove our claim we show that the R-homomorphism

[.S } :EH(BE@BQ)@E, where s = [ﬁ] ,

idg 0

splits p in ModfG R. It suffices to check that [i Cf \,] is a morphism in ModGR,
B

or equivalently to verify the formula

. -1
(i) (), =7 S-I/g—l/gG-s

(G = (g)!). It is easily seen that

—1 ~

-1 9 B-v

9 . G s — g
S I/g I/g S—|: :|

—p
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We also have 912 - 93 - V41 = 9(9726 Vg2) Vg1 = 97'g3. vg. Now (i) follows
from the assumption char(k) = 2. m

6. Extension embeddings for matrix rings. In this section we de-
velop the extension embedding technique (see Theorem 6.3), used later in
the proof of Theorem 7.1.

6.1. Let Ag, A’ be k-algebras, 4,Mas be an Ap-A’-bimodule and 4Ny,
be an A’-Ap-bimodule. Assume that the field k& acts centrally on both bi-
modules M and N. Suppose we are given two bimodule homomorphisms
Yo : AOM X A’ NAO — AoAOAo and ’yl AN X A4, My — A’AZA’ such that
Yo(m®@mn)-my =m-+(n®mq) and ny - y(m ®@n) = +'(ny ® m) - n for
all m,m; € M, n,n; € N. These data define a k-algebra structure on the

k-vector space
_(Ay M
A= < A A,).

The space A equipped with this structure is called a matriz algebra.

A right module over the matrix algebra A can be viewed as a quad-
ruple X = (Xg, X', ¢, ), which consists of Xy in MOD Ay, X’ in MOD A,
an A’-homomorphism ¢ : Xo ® 4,Ma — X/,, and an Ap-homomorphism
Y 1 X' ®a Na, — Xoa,, satisfying the equalities (p(zg @ m) ® n) =
zo - Yo(m @ n) and p(Y(z' @ n) @ m) = 2’ - 4'(n @ m) for all zy € X,
2 € X', m e M, n € N. Under the above interpretation of A-modules,
an A-homomorphism from X = (Xo, X', ox,%x) to Y = (Yo, Y, oy, ¢y)
is a pair ¢ = (¢g,c) where ¢y : Xo — Yp is an Ap-homomorphism and
¢ : X' =Y’ is an A’-homomorphism such that ¢y o (co ® idpr) = ¢ 0 px
and Yy o (¢ ® idy) = ¢ o Yx.

Denote by
- (Ay M
= (v )

the upper triangular matrix algebra associated with A. Then A-modules can
be regarded as triples X = (X, X', ), where X is in MOD Ap, X’ is in
MOD A" and ¢ : Xo ® a,Ma — X4, is an A’-homomorphism. Morphisms
from X to Y are pairs ¢ = (cp, ') of homomorphisms (as above) satisfying
the equality ¢y o (co ® idp) = ¢ 0 px.

Observe that the mapping X = (Xo, X', p,9) — X = (X0, X', ¢) defines
a faithful k-linear functor ¢ : MOD A — MOD A.

Denote by MOD? A (resp. mod® A) the full subcategory of MOD A (resp.
mod A) formed by all X = (Xo, X', ¢x,1%x) such that ¥» = 0, and by
MOD? A (resp. mod® A) the full subcategory of MOD A (resp. mod A)
formed by all Y = (Y5,Y”, py) such that Im~y C ann(Yp,,) and Im~" C
ann(Y}, ).
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LEMMA. The functor ¢ yields an equivalence
MOD® A ~ MOD* A4 (resp. mod® A ~ mod* A).

Proof. Note that an A-module Y = (Yp,Y”, py) belongs to MODA A4 if
and only if Y = (Y, Y, vy, 0) defines an A-module. m

6.2. Denote by ey : MOD Ay — MOD A the left adjoint functor to
the restriction functor e, : MOD A — MOD A, where e(X) = X, for
X = (Xo,X',0,¢) in MOD A. Recall that for Z in MOD Ay, ex(Z) =
(Z,Z @ a,M,idzg 4 0, idz y0), where (idz -y0)(z @ m®@n) = 2 - yo(m @ n)
forall z € Z, m € M and n € N. It is clear that if dimy A is finite then
ex(mod Ap) C mod A.

REMARK. We say that Z in MOD Aq is a module over A provided
(Z,0,0,0) is in MOD A, or equivalently Im~yy C ann(Z4,) (see Lemma 6.1).
If Z is as above then the A-module ey (Z) belongs to MOD A.

Suppose that A’ = A; x ... x A,, r € N, is a product of rings. Conse-
quently, the Ag-A’-bimodule M decomposes into a direct sum of bimodules
M = @::1 M;, where each M; is an Ay-A’-bimodule. Then an A-module
X is given by a tuple (Xo, (X;)i=1,....r, (¥i)i=1,....r), Where each X, is in
MOD A; and each ¢; : Xog ® a,M; — X, is an A;-homomorphism. Accord-
ingly, an A-homomorphism from X to X' = (X{, (XD)iz1....r (#})iz1...)
is a family ¢ = (co, (¢i)i=1,...») of A;-homomorphisms ¢; : X; — X/ such
that ¢ o (co ® idas,) = ¢; 0 p; for every ¢ =1,...,r. From now on we as-
sume that dimj A is finite and that A’ = A; x ... x A4,. We fix a mod-
ule Z in mod Ay which is also an A-module, i.e. Imvy C ann(Z4,). Then
the A-module Z = ex(Z) regarded as an object of mod” 4 is defined by
the collection (Z, (Z ® ayM;)i=1,....r, (idZ®AOMi)i:1,...,r) (see Lemma 6.1 and
Remark 6.2).

Let X, = kQPP be the path k-category of the quiver Q9P opposite to the
following one:

and by mod®X,. the full cofinite subcategory of mod X, formed by all repre-
sentations V' = (f; : Vo — Vi)i=1,...» of Q, such that all f;’s are surjective.
We define a functor

€ :mod®Y, — mod A
as follows. Given an object V = (f; : Vo — V;)i=1,..,» in mod“Y, we set

EV)=(Vo® ayZ, (Vi ®k Z @ asM)i=1,..r, (fi ® idZ®AOMi)i:1,...,r)7
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where f; @idze, v, : Vo®k Z @ aMi = Vi®@k Z@ aM; It a1 V — V'isa
morphism in mod®X, given by the family (o, : V; — V/)i=01,... » of k-linear

maps, where V = (f; : Vo = Vi)iz1,..r, V' = (f] : Vg — V!)iz1,...r, We set

Ela) = (y®idg, (a; ® idz®A0Mi)i:1 ..... r)-
LEMMA. The mapping £ as above defines a k-linear functor £ : mod®X,
— mod” A.
Proof. 1t is clear that £ defines a k-linear functor & : mod®Y, — mod A.
To prove that Im & C mod® A observe that ann(Vy ® Za,) = ann(Z4,) and
ann((Dj_; Vi @k ®Z ® 4, Mi) ar) = [[;—; ann(Z @ 4,M;) = ann(Z @ 4,Mar)
for V' in mod®XY,. Consequently, £(V') belongs to mod® 4 since Z does. m

-----

6.3. Our main result of this section is the following.

THEOREM. Let Z be an indecomposable Ag-module such that Tm~yy C
ann(Za,). Assume that Enda,(Z)/J(Enda,(Z)) ~ k and that all modules
Z ® aM;, i=1,...,r, are non-zero. Then the functor £ : mod®X, —
mod? A4 is a faithful embedding (in the sense of [27]). In particular the
algebras A and A are wild provided r > 5.

To prove the above theorem we show that the restriction & of £ to the
dense full subcategory modg X, consisting of all matrix representations of
Q. is a representation embedding. Recall that by a matrix representation
of @, we mean a X,.-module (= representation of @,) of the form V = (f; :
k™ — k™ )i—1 . » (fi = F;-, where F; € M, xn,(k), for every i). For this
purpose we construct a left inverse functor 7 : E — modg X, for &, where
E is the full subcategory of mod X, formed by all £ (V'), V' in modgX, (see
Proposition 6.6).

6.4. LEMMA. Let V = (fz : ‘/d — Vvi)iil,...ﬂ‘a V! = (fz/ : Vb’ — ‘/;/)7;:17.”77~
be objects in mod°X,, and ¢ = (co,(¢i)i=1,..r) : EV) — EWV') be a
X.-homomorphism. Then each ¢; : V; Qx Z @ a)M; — V! @) Z @ a,M;
has the form ¢, @ idy, where ¢, € Homa,(V; @k Z,V/ @1 Z), i =1,...,r.

Proof. Fix i € {1,...,r}. The k-epimorphism f; : V, — V; admits a
section. Fix a k-linear map s; : V; — V such that f;os; = idy,, consequently
(fz X idZ®AOMi) o (Si X idZ@AOMi) = ide‘@kZ®AOMi' Then multiplying the
equality

(fz/ ® idZ@AOMi) © (CO ® ldML) =G o (fl ® idZ@AOMi)

by s; ® idzg,,m, on the right, we obtain ¢; = ¢; ® idy;, where ¢ = (f] ®
idz)ocpo(s; ®idz). m

For any m,n € N and a module X over an algebra A we have at our
disposal the standard isomorphisms

(1) k™ R XA >~ (XA)m
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(ii) Hom 4 (X", X™) =~ M, xn(End s (X)).

We set Ey = Endy,(Z) for simplicity. For any i = 1,...,r, we denote
by E; the image Im p;, where p; : By — Enda,(Z ® a,M;) is the k-algebra
homomorphism given by h — h ® idyy, for h € Ejy.

Applying now the identifications (i) and (ii), we can rephrase the lemma
as follows.

COROLLARY. Let ¢ = (co, (¢i)i=1,...r) : Eo(V) — E(V') be a morphism
in E, where V.= (fi = Ai- + Vo — Vi)i=1,..» and V' = (f] = Al :
Vo — V/)i=1,..r are in modgX,. Then each ¢; € Homy,(V; @k Z @ a,M;,
Vi ®r Z @ a,M;) belongs to My: s, (E;) for i=1,...,7.

6.5. From now on we assume that all modules Z® 4, M;, 7 =1,...,r, are
non-zero and the Ap-module Z is indecomposable with Ey/Jy ~ k, where
Jo = J(FEp). Observe that then each E; is a local k-algebra with Jacobson
radical J; = p;(Jy), and E;/J; ~ k.

Let E be a local k-algebra such that E/J ~ k, where J = J(FE). For
any m,n € N and ¢ € M,,x,(E), we denote by ¢ and ¢’ the matrices
¢ € My,xn(k) and ¢ € M, xn(J) corresponding to ¢ under the canonical
identification

(i) Mynscn(E) = Mpscn(k) - 1g & Mimxn(J)
induced by the equality F =k - 15 & J. It is easily seen that
(i) cd=7¢cd

for all ¢ € My, xn(E), d € My »p(E), m,n,p € N.

Let V = (fi : k"™ — k™);y, ., and V' = (f/ : k™ — k™);_1 ., be
objects in mod{X,., where f; = F;-, f! = F/- for some F; € My,, xn,(k), F] €
M,y (k), and let ¢ = (co, (¢i)i=1,...r) : E0(V) — E(V') be a morphism
in E. We denote by ¢ the collection ¢ = (¢;- : k™ — k”g)i:()’_”w of k-linear
maps, where each ¢; is now regarded as an element of M,/ ., (E;) (cf. 6.4(i),
6.4(ii) and Corollary 6.4).

LEMMA. (a) The collection € is a morphism from V to V' in modgX,.

(b) V.=V provided (V) = E (V).

Proof. (a) Fix i € {1,...,7}. To show that F/¢y = ¢;F; we treat the
map f; @idzg, m; (resp. f] ®idze 4 ;) as an element of My, s, (E;) (resp.
My sy (Ei)), co @ idpy, as an element of My, (E:) (cf. 6.4(i), 6.4(ii)),
and ¢; as an element of M,/ ., (E;) (cf. Corollary 6.4). Note that we have
fi®@idzg, . = Fiy, fi®idzga M, = F] (in fact, f; ®@idzg,m, = Fi -
idze My [i ®1dze v = F -idzg 4 M) and ¢o ® idy, = € (see definition
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of p; and 6.5(i)). Now the equality
cio(fi®@idzgam,) = (fi ®idze ) 0 (co @ idar,)
immediately implies the required assertion by 6.5(ii).

(b) Suppose that & (V) = & (V’). Clearly, n, = n} for every i =0, ...,r.
Since f; ® idZ@AOMi =F;- idZ@AOMi and fll ® idZ@AOMi :Fi/ . idZ@AOMi7 the
equality f; ® idzg , M, = fl® idzg 4, m, implies F; = F!/foralli=1,...,r. m

6.6. We now define a functor 7 : E — modgX, (cf. 6.3). For any object
X =&(V) in E we set

m(X)=V.
For any morphism ¢ = (co, (¢;)i=1,...r) : X — X' in E, where X = &(V),
X"=&y(V') and V, V' are in modjX,., we set

m(c) =¢.
The following fact immediately implies Theorem 6.3.

PROPOSITION. The mapping 7 as above defines a k-linear functor w :
E — mod§X, which has the following properties:

(a) 7-‘-50 = idmodg Py

(b) Ker 7 contains no non-zero idempotent.

Proof. By Lemma 6.5 the mapping 7 yields well defined functions from
obE to obmodgX, and from Hom4 (X, X’) to Homy, (7(X),7(X")) for any
X, X’ in E. The functoriality of 7 follows immediately from 6.5(ii). The
property (a) is satisfied by construction. To show (b), it suffices to observe
that Kerm is a nilpotent ideal, since each ideal J;, ¢ =0, ..., r, is nilpotent
with nilpotency degree bounded by dimy Fjy. =

7. Embedding induced by the left Kan extension of
an infinite G-atom

7.1. The main aim of this section is to prove the following result.

THEOREM. Let R be a tame locally bounded k-category and G be a group
of k-linear automorphisms acting freely on R. Then for any infinite G-
atom B with Endgr(B)/J(Endg(B)) ~ k the counit map B(B) yields an
R-isomorphism B ~ B (see 4.1 and 1.5 for definition of B and 3(B)).

7.2. We recall from [7] and [8] a notion which is essential for our study
of the indecomposable objects of the category Mod R.

DEFINITION. Let M be in Ind R and C a full subcategory of R. The full
subcategory U of R containing C' is called an M-neighbourhood of C provided
there exists an indecomposable U-module MY satisfying the following two
conditions:
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(N1) MY is isomorphic to a direct summand of My,
(N2) MU‘C = M.

An M-neighbourhood U of C is called finite (resp. connected) if the category
U is finite (resp. connected). An M-neighbourhood U of C is called sincere
provided there exists MY as above which is sincere. A subcategory U is said
to be an M-neighbourhood provided U is an M-neighbourhood of some
subcategory C which intersects supp M non-trivially.

REMARK. (a)If U is an M-neighbourhood then My # 0. If M| = 0 then
any subcategory U containing C such that M|y # 0 is an M-neighbourhood
of C.

(b) If C is contained in supp M and U is an M-neighbourhood of C,
then U N supp M (resp. supp MY) is an M-neighbourhood (resp. a sincere
M-neighbourhood, hence connected) of C, contained in supp M.

(¢) If U is an M-neighbourhood and V is a full subcategory of R contain-
ing U then V is also an M-neighbourhood (by the uniqueness of decompo-
sition into a direct sum of indecomposables in Mod S for any S). Moreover,
U is then an MV -neighbourhood, where MV is as in the definition.

The following fact is crucial for the remaining part of the paper.

THEOREM. Let R be a connected locally bounded k-category and M be an
R-module in Ind R. Then any finite full subcategory of R (resp. which in ad-
dition is contained in supp M) admits a finite, connected M -neighbourhood
(resp. which in addition is sincere).

7.3. We present the proof of the above result (see [12] for k algebraically
closed). The basic role is played by the following fact.

PROPOSITION (cf. [12, Proposition 4.2]). Let {C,}nen be a family of
finite full subcategories of R such that |J,.yCn = R and Cp, C Cpy1 for
every n € N. Then for any M, N in Mod R, N is isomorphic to a direct
summand of M if and only if Nc, is isomorphic to a direct summand of
Mc, for all n € N.

Proof. We can repeat all the arguments from the proof of [12, Proposi-
tion 4.2] which use only the fact that dim, Homc, (V|c,, We, ) is finite for
V,W in Mod R and does not use the general assumption of [12] (that & is
algebraically closed). The only part of that proof which need to be proved
in the more general setting is the lemma below (cf. also [7, Proof of Propo-
sition 2.6]); in fact the full proof of the original version of the lemma for
k algebraically closed was not presented in [12] and differed from the one
given here).

LEMMA. Let o : A — A’ be a surjective homomorphism of artinian
rings, and e and f two (orthogonal) idempotents of A. Suppose that there
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exist elements x € fAe and y € eAf such that yx = e. Then for all o’ €
o(f)A'o(e) and b € o(e)A’o(f) such that b'a’ = o(e) there exist elements
a € fAe and b € eAf such that o(a) =d’, o(b) =b" and ba = e.

Proof. Fix a’,b" as above. We start by observing that if the element z =
e—bia; (€ Ker p) is nilpotent for a; € fAeNo~1(a') and by € eAfNo~ 1 (V)
(it is the case for all a1,b; as above provided Kerp C J(A)), then a,b
satisfying the assertion exist. Indeed, setting a = > a12" and b = by
(2° =€), we have p(a) = d/, o(b) = b and e —ba = e — bia1 Y 10y 2" =
e—(e—2)> i,z =0.

Next we show the existence of ¢ and b under the extra assumption that
A is a semisimple ring. In this case A” = Ker g is a direct factor of A (as a
ring), therefore we may assume that A = A’ x A” and that g is the canonical
projection on the first component. It is easy to check that now the elements
a=(a,x2")and b= (b,y"), where x = (2/,2"”) and y = (v/,y"), satisfy the
required condition.

Consider the general case. Since o(J) C J', o induces a (surjective) ho-
momorphism g : A/J — A’/J’ such that 7’'¢ = o, where J = J(A), J =
JA) and # : A — A/J, n' : A’ — A’/J' are the canonical projec-
tions. Note that o(J) = J’ since Imp = A’ and A'/p(J) as a factor of
A/J is a semisimple ring. The semisimple ring A/J and p, 7(e) and 7(f)
satisfy the assumption of the lemma. Therefore by the previous observa-
tion there exist @ € w(f)(A’/J)w(e) and b € 7(e)(A’/J")n(f) such that
o(a) = 7'(a’), 8(b) = ©'(V') and ba = 7(e). Then by the first remark there
exist ag € fAe N7~ 1(@) and by € eAf N7~ 1(b) such that byag = e. Since
o(ag) —a’, o(bg) — b € J" and o(J) = J', there exist ¢ € fJe and d € eJ f
such that a; = ag+c € o~ %(a’) and by = by +d € o~ 1(V'). Then e — bya; be-
longs to J and hence is a nilpotent element. Consequently, the first remark
implies the existence of a, b satisfying the required conditions. m

7.4. For the benefit of the reader, we complete the proof of Theorem 7.2,
slightly reordering and simplifying arguments from [12].

Proof of Theorem 7.2. Fix a full finite subcategory C' of R. We can
assume that C' N supp M is non-trivial (see Remark 7.2(a)). Denote by
{Ch}nen the family of finite full subcategories of R defined inductively
by setting Cy = C and C,, 41 = én for n € N. Since R is connected, we
have R = UneN C,, and (), is connected for almost all n. Fix a sequence
of indecomposable direct summands M" of Mg, , n € N, such that M™ is
isomorphic to a direct summand of M "H‘Cn. Fix also a sequence of split-

table C,,-monomorphisms u,, : M™ — M "+1|Cn, n € N. For simplicity set

Cn41,Crn n
ey = e and e} = eg for n € N. The functors ¢} and E?Hei\l are

isomorphic (both are left adjoint to the restriction functor e{n). Fix iso-
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morphisms 0,, : €y — Ei\”le’;, n € N. For every n we denote by w, the

composite R-homomorphism
en M—n, n+1 "
(M) mED eten (agm) S n (),

where v, : e’;(M”) — M"™1 s the Ch+1-homomorphism adjoint to u, :
M"™ — M"th o . We set

M =1lim (% (M"), wp,)nen-

Note that for each n € N there exists p = p(n) > n such that M’'|o, ~
M™ ¢, for all m > p. Indeed, {Un|cn }m>n is a sequence of monomorphisms
between finite-dimensional C,-modules whose dimensions are bounded by
dimg M|c, so it stabilizes at some p, and then

M,\Cn ~ lim (Mn\Cn7un|Cn)m2n o~ Mp|cn for m > p.

Consequently, M’|¢, is isomorphic to a direct summand of Mc, for all
n €N (Mp(”)|cn is a direct summand of M|¢, ) and then by Proposition
7.3, M’ ~ M (M is indecomposable). It is now clear that C,, is a finite
(resp. finite connected) M-neighbourhood of C for all (resp. almost all)
m > p(0). =

REMARK. If C'is a finite full subcategory of R then for any finite full sub-
category V' containing C' there exists a finite connected M-neighbourhood
U of C such that V C U. Moreover, if additionally C' and V' are contained
in supp M then one can find U as above which is also sincere and contained
in supp M.

7.5. PROPOSITION. Let M be in Mod R. Then Endg(M)/J(Endg(M))
is isomorphic to k if and only if so is Endy (MY)/J(Endy (MY)) for some
finite M -neighbourhood U, where MY is as in Definition 5.2.

Proof. Fix any M in Ind R. Suppose that we are given a full subcategory
U of R (finite for simplicity) and an indecomposable direct summand MY
of M|y such that M U is not isomorphic to a direct summand of M’, where
M’ is a (fixed) direct summand of M)y such that M, = MY @& M’. Denote
by o0 : Endr(M) — Endy (M) the homomorphism given by the restriction
functor e! and by h;; the component of any h € Endy (M) in Endy (MY),
under the canonical identification

Homy (MY, MY) Homy (M, MY
EndU(M\U) = ( HomU((M/, MU)) HOII]U((M/, M/)))

Then the mapping f — (o(f))11 induces a k-algebra homomorphism
o=0c(M,MY):Endp(M) — Endy(MY)/J(Endy (MY))
(in fact o does not depend on M’). Note that this holds in particular if U
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is an M-neighbourhood and MU satisfies the conditions of Definition 7.2.
Then o induces a division k-algebra homomorphism (= embedding)

7 =7(M,MY) : Endgr(M)/J(Endg(M)) — Endy(MY)/J(Endy (MY)),

since there exists x in U such that f(x) = fi1(z) for all f € Endr(M)
(cf. [6, Lemma 2.2]). Hence, one implication: Endg(M)/J(Endg(M)) ~ k
provided Endy (MY)/J(Endy (MY)) ~ k.

Assume now that Endg(M)/J(Endr(M)) ~ k. Fix a family {C,, }nen
of finite full connected subcategories of R such that Cy = {z} for some
fixed z in supp M and C, 41 is an M-neighbourhood of C,, containing C,
for every n € N. Note that by Theorem 7.2 and Remark 7.4 one can in-
ductively construct such a family. For simplicity set £ = Endgr(M) and
E, = Endc, (M,), where M, = Mc, , for every n € N.

For all m,n € N, m > n, denote by ¢ : E,,, — E,, the k-algebra homo-
morphism given by the restriction functor eS™ % . MOD Cn, — MOD C,,
and by g, : E — FE, the k-algebra homomorphism given by the restric-
tion functor e : MOD R — MOD C,,. Clearly, we have 0,0, = 0, and
on o —gmforallmZan

We show (cf. [12, 4.2]) that, for each n€N, there exists m = m(n) >
n such that f, € E, can be extended to an R-endomorphism of M (i.e.
fn € Imp,) if and only if f,, can be extended to an Cj-endomorphism of
M, (i.e. f, € Imp,,), briefly that Ir_n on = Im o". Recall that, for every
i € N, the decreasing sequence {Im g} };>; of k-subalgebras of E; stabilizes
at some m = m(i), since dimy, E; is finite. Consequently, for f; € E;, fi =
07" (fm) for some f,, € E,, if and only if for every j > i, f; = 0l(f;)
for some f; € E;. Suppose now that we are given f, € Im o™ Then
there exists fy,(n,) € Em(n,) such that Qm(nl)(fm(m)) = fn, where ny =

m(ny)

max(m(n),n + 1). Consequently, we have f,, = on, = (fm(n,)) € Imon 1( m)
and f, = o) (fn,). Repeating this procedure we can inductively construct
f € E such that o, (f) = fn.

For every n > 1, we fix a module M" = M®» in ind C,, satisfying
the conditions of Definition 7.2 and a C),-submodule M, of M,, such that
M,, = M"™ @ M,. For simplicity set E = E/J(E) and E" = E/J(E), where
E"™ = End¢, (M™), for n > 1. Note that each C), (regarded as a subcategory
of Cy,) is an M™-neighbourhood (of C),_1) for m > n, and that each E™ can
be identified, under the canonical embedding h +— (3 8), with a k-subspace
of F,,.

For simplicity we denote by 7/ the homomorphism 7(M%m MCn) :
E™ — E" for all m > n, and by 7, the homomorphism (M, M%) :
E — E™. Note that
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T (fm + J(E™)) = op' (fm)11 + J(E™)
for f,, € E™ C E,,, and

Tn(f + J(E)) = on(f)1n + J(E")
for f € E. Just as for g¢’s we have

n__m __ m
T Thn =Tp

and 7' Ty = Ty

for all m > n > p. The first formula follows from o' (fm)11 = oy (o) (fm)1
for fu € E™ C By (M, = 0 and g2 (e (fn)) = k(o2 (Fr)11)
n > p), the second from g, (f)11 = 0} (om(f)11)11 for f € E (Mqln‘cn =
and 0" (0m(f)11) = o (om(f)) if m > n). Consequently, we can assume
that all 777*’s and 7,,’s are now inclusions in the following infinite decreasing
sequence of finite-dimensional division k-algebras:

EFi>2..0E,2FE,;12...20E=k.

Then there exists p € N such that E* = EP for all i > p. We show that
EP = E. For every f, € EP, we have f,+J(E?) = 7" (fm+J(E™)) for some
fm € E™ C Ey,, where m = m(p). Consequently, f, — 0 (fm)11 € J(EP)
and o' (fm) € Im g,; therefore f, — 0,(f)11 € J(EP) for some f € E. In
this way we have shown that 7, is surjective, EP ~ E ~ k, and Cp is an
M-neighbourhood with the required property. m

1)
if
0

REMARK. (a) If U is an M-neighbourhood (not necessarily finite) such
that Endy(MY)/J(Endy (MY)) ~ k, then each V containing U is an M-
neighbourhood (see Remark 7.2(c)) such that for any MV satisfying the
conditions of Definition 7.2, Endy (M")/J(Endy (MV)) ~ k.

(b) Endg(M)/J(Endgr(M)) ~ k if and only if there exists a (finite)
M-neighbourhood U such that Endy (MY)/J(Endy (MY)) ~ k for any V
containing U, where MV satisfies the conditions of Definition 7.2.

As a consequence of the above considerations we obtain the following
result which is essential for the proof of Theorem 7.1.

COROLLARY. If Endg(M)/J(Endg(M)) ~ k, then for any finite full
subcategory C of supp M, there exists a sincere M -neighbourhood U of C,
contained in supp M, such that Endy (MY)/J(Endy (MY)) ~ k, where MY
is as in Definition 7.2.

Proof. Note that Endy (X) ~ Endsupp x (X|supp x) for any X inmod V. =

7.6. It is clear that in order to prove Theorem 7.1 it suffices to show the
following result.

THEOREM. Let R be a locally bounded k-category and G be a group
of k-linear automorphisms acting freely on R. Suppose that R admits an
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infinite G-atom B such that Endg(B)/J(Endg(B)) ~ k and B % B. Then
R is wild.

Before the proof, fix B in Mod R (not necessarily a G-atom). Then the
R-module B = ef(B‘s) (S =supp B and S = supp B as in 4.1) is given by

B(z) = Bjs® R(z,—);s = €D Bly) @ R(z,y)/I, forz €obR,
yEob S

where I, = I,(B)s, R(z, —)|s) is the k-subspace of D, ., s B(v) @ R(z,y)
generated by the set N, of all non-zero elements of the form ng, =
B(s)(b)®@r—b®sr,se S(y,z), r € R(z,y), be B(z),y,z € obS (cf. 1.5).
&w it is clear that S C S. Note that for any subcategory S’ containing
{z}NS, I, can be regarded as a k-subspace of P, .}, 5» B(y) @k R(z,y). To
understand I, properly we consider the subcategory

p——

S, ={z}nS) NS

of S, which is usually strictly larger than {/i\} N.S. Observe that y,z € ob S,
provided n, ., # 0.

LEMMA. Let x be a fized object in R\ S. Then
ex 7 (Bisr)(x) = e3"* (Bys)(x)

for any full subcategories R', S’ of R such that x € obR' and S, C S’ C
SNR.

Proof. We can identify @, 1, g/ Bs' (y)@x R (z,y) and @, c 1, s B(y) @,
R(z,y), since {x} NS C S’. Moreover, by the assumptions, the sets N,
and N, of k-generators of I, = I,(B|g, R(x,—)) and I}, = I,(Bjs, R'(z,—))
respectively, coincide (under the above identification). Consequently, I,, = I,
and ey (Bjs/)(z) = ey (Bs)(x). m

7.7. Proof of Theorem 7.6. Suppose that B is an infinite G-atom such
that B % B, equivalently S ¢ S (we keep the notation from 7.6). Fix an
object z in S \ S and a finite connected subcategory R, containing S, U{z}
(S, is finite since R is locally bounded). Since G is an infinite group acting
freely on R, we can inductively construct g1 = e, go,..., g5 € Gp such that
the subcategories {g; Ry }i=1,... 5 are pairwise orthogonal. Fix a finite sincere
B-neighbourhood Uy of C = Ule g; R, NS contained in S, for which the
module By = BY in ind Uy satisfying the conditions of Definition 7.2 has
the property Endy(B)/J(Endy(B)) ~ k (it exists by Corollary 7.5). For
simplicity set U = Uy U Ule giR, and U; = g;R, \ Uy, i =1,...,5; then
U=UyV (U U...uUs). Moreover, eg’UO(BO)(gi:U) # 0 foreveryi=1,...,5.
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Indeed, by Lemma 7.6 and Definition 7.2,

B(z) = " (Bje)(2) = e (Boje) (z) = ey (Boyu, ) ()
(the cases g; # e follow analogously since Gp C G 3).

Observe that in this situation the finite-dimensional k-algebra A = A(U)
can be viewed as a matrix algebra with Ay = A(Up), A’=A(U; U...UUs)
~ A(Up) x ... x A(Us), and that the Ap-module Z corresponding to the
U-module By under the standard equivalence mod Ag ~ mod Uy satisfies
the assumptions of Theorem 6.3 (the A-module Z = e)(Z) corresponds to

el UO(BO) via mod A ~ mod U). Consequently, A and R are wild. m
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