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NON-ORBICULAR MODULES FOR

GALOIS COVERINGS
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PIOTR DOWBOR (Toruń)

Abstract. Given a group G of k-linear automorphisms of a locally bounded k-
category R, the problem of existence and construction of non-orbicular indecomposable
R/G-modules is studied. For a suitable finite sequence B of G-atoms with a common sta-
bilizer H, a representation embedding ΦB : In-spr(H) → mod(R/G), which yields large
families of non-orbicular indecomposable R/G-modules, is constructed (Theorem 3.1). It
is proved that if a G-atom B with infinite cyclic stabilizer admits a non-trivial left Kan
extension B̃ with the same stabilizer, then usually the subcategory of non-orbicular inde-
composables in mod

{B̃,B}
(R/G) is wild (Theorem 4.1, also 4.5). The analogous problem

for the case of different stabilizers is discussed in Theorem 5.5. It is also shown that if R
is tame then B̃ ≃ B for any infinite G-atom B with EndR(B)/J(EndR(B)) ≃ k (Theo-
rem 7.1). For this purpose the techniques of neighbourhoods (Theorem 7.2) and extension
embeddings for matrix rings (Theorem 6.3) are developed.

Introduction. For more than twenty years now, the Galois coverings
have remained one of the most efficient techniques in contemporary repre-
sentation theory of algebras over a field and matrix problems. They were
successfully used in solutions of various important classification and theo-
retical problems. The covering method often allowed a reduction of a given
problem for modules over an algebra to an analogous one for its cover cate-
gory, usually much simpler than the original one. Initially, the method was
invented for studying representation-finite algebras [22, 15, 2, 17], later de-
veloped for the representation-infinite case ([11, 10, 12], also [3, 4, 6]) and
effectively applied in [30, 31, 32, 16, 21, 19], in the meantime adopted for
matrix problems [23, 24, 25, 14, 9].
The main interest in covering techniques was always concentrated on ap-

plications. The results answering theoretical questions, only indirectly im-
portant for applications, played a minor role. For a long time the central
position in this area was occupied by the important, difficult and stimulating
problem of determining if Galois coverings preserve the tame representation
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type. An affirmative solution of this problem in full generality was announced
by Drozd and Ovsienko more than ten years ago, but the preprint [13] con-
taining a written version of the proof appeared only a few months ago (see
also [3, 10, 12, 3, 4, 6] for partial results).
In the same time other, more detailed questions, closely related to the

above one, were intensively studied. One of them is the so-called “stabilizer
conjecture”, which says that for a representation tame locally bounded cat-
egory R over an algebraically closed field, the stabilizers of infinite G-atoms
(see 1.3) with respect to a free action of a torsionfree group G on R are
infinite cyclic groups (proved in [6, 8]).
Another group of interesting problems which have been studied recently

concerns the notion of orbicular (resp. non-orbicular) module. A module X
in mod(R/G) is called orbicular (resp. non-orbicular) if the “pull-up” F•X
of X with respect to the Galois covering F : R → R/G decomposes into
a direct sum of indecomposable locally finite-dimensional modules which
belong (resp. do not belong) to one G-orbit (see 1.3). One should recall
that all indecomposable R/G-modules in the tame case (studied in terms of
Galois coverings) are orbicular (with respect to G), and are formed in fact,
according to a conjecture formulated long time ago, by use of one standard
construction (see 1.3). In this context, posing the general question when
all indecomposable R/G-modules are orbicular seems to be very natural.
In particular, it is interesting to know if R/G admits indecomposable non-
orbicular modules in the tame case (resp. in the case G ≃ Z). Generally,
it has been unknown how to construct non-orbicular indecomposables, and
how the “bonds” which fix G-atoms into such modules could look like.
In this paper we study the problems described above. We present a

construction of a representation embedding into the category mod(R/G)
of finite-dimensional R/G-modules whose image contains a large, usually
wild, subcategory consisting of non-orbicular indecomposable modules (see
Theorem 3.1). This construction is based on the generalized tensor prod-
uct functor, defined by a fixed finite sequence of non-isomorphic G-atoms
with a common stabilizer H in G (see 2.4). In some situations, when H
is an infinite cyclic group, we can describe the structure of this category,
in fact of the image of the embedding, in terms of the generalized sub-
space problem for linearly ordered finite posets over the group algebra kH.
The specialization of this result to the case of the canonical sequence of
length 2 consisting of a G-atom B and its left Kan extension B̃ (see Theo-

rem 4.1) supplies, in the case B̃ 6≃ B, a method of constructing “algebras”
R/G, G ≃ Z, which admit a large number of non-orbicular indecompos-
able modules (Corollary 4.4). It is proved that in this situation R/G is
representation-wild, in fact the full subcategory formed by non-orbicular
indecomposables in the category mod2(R/G) (see [12]) is wild. We also dis-
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cuss (on an example of the canonical sequence consisting of B and B̃) how
to construct non-orbicular indecomposable R/G-modules in case the mem-
bers of the sequence have different stabilizers (see Theorem 5.5). Finally, we
study the problem of how the properties of B and of the left Kan extension
of B influence the representation type of R (see Theorems 7.1 and 7.6). We
show that if the cover category R admits an infinite G-atom B such that
EndR(B)/J(EndR(B)) ≃ k and B 6≃ B̃ then R is representation-wild. To
prove this result we apply the extension embeddings technique for matrix
rings (see Theorem 6.3) and the neighbourhood approach to indecomposable
locally finite-dimensional modules (see Theorem 7.2 and Proposition 7.5).

The paper is organized as follows. In Section 1 we recall basic defini-
tions and fix notation used in the paper. There, a precise definition of a
non-orbicular module is given. Section 2 is devoted to the construction of a
generalized tensor product functor defined by a sequence of group represen-
tations, and R-modules with an R-action of a subgroup G ⊂ Autk(R), where
R is a locally bounded category over a field k. In Section 3 the main result
of the paper “on constructing indecomposable non-orbicular R/G-modules
by use of a sequence of G-atoms with a common stabilizer” (Theorems 3.1)
is formulated and proved. Section 4 is devoted to a specialization of Theo-
rem 3.1 to the case of length 2 (resp. 3) sequences formed from a G-atom
B by use of its Kan extensions (see Theorems 4.1 and 4.5, Corollary 4.4).
The behaviour of the above construction in the case of different stabilizers,
also in the context of the base field characteristic problem, is discussed in
Section 5 (see Theorem 5.5). In Section 6 extension embeddings for matrix
rings (a tool for the proof of Theorem 7.6) are studied and Theorem 6.3 is
proved. Section 7 is devoted to the proofs of Theorems 7.1 and 7.6. For this
purpose, we develop the technique of neighbourhoods, for the case where k
is not algebraically closed; in particular, we prove Theorem 7.2 and Propo-
sition 7.5.

Some of the results contained in this paper were presented in seminar
talks at Toruń University, in May 1998.

1. Basic definitions and notation. Now we briefly describe the sit-
uation we are dealing with. Throughout the paper we use in principle the
notation and definitions established in [4, 7]. For basic information concern-
ing representation theory of algebras (resp. rings and modules, and notions
of category theory) we refer to [26] (resp. [1], [18]).

1.1. Let k be a field (not necessarily algebraically closed) and R be a lo-
cally bounded k-category , i.e. all objects of R have local endomorphism rings,
different objects are non-isomorphic, and the sums

∑
y∈R dimk R(x, y) and∑

y∈R dimk R(y, x) are finite for each x ∈ R, where R(x, y) is the k-linear
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space of morphisms from x to y in R. By an R-module we mean a con-
travariant k-linear functor from R to the category of all k-vector spaces.
An R-module M is locally finite-dimensional (resp. finite-dimensional) if
dimkM(x) is finite for each x ∈ R (resp. the dimension dimkM =∑
x∈R dimkM(x) of M is finite). We denote by MODR the category of
all R-modules, by ModR (resp. modR) the full subcategory of all locally
finite-dimensional (resp. finite-dimensional) R-modules and by IndR (resp.
indR) the full subcategory of all indecomposable R-modules in ModR (resp.
modR). By the support of an object M in MODR we mean the full sub-
category suppM of R formed by the set {x ∈ R : M(x) 6= 0}. We denote
by JR the Jacobson radical of the category ModR.
For any k-algebra A we denote analogously by MODA (resp. modA) the

category of all (resp. all finite-dimensional) right A-modules and by J(A)
the Jacobson radical of A.
To any finite full subcategory C of R we can attach the finite-dimensional

algebra A(C) =
⊕

x,y∈obC R(x, y) endowed with the multiplication given by
composition in R. It is well known that the mapping M 7→

⊕
x∈obCM(x)

yields an equivalence
modC ≃ modA(C).

1.2. Let G be a group of k-linear automorphisms of R acting freely on
the objects of R. Then G acts on the category MODR by translations g(−),
which assign to each M in MODR the R-module gM = M ◦ g−1 and to
each f : M → N in MODR the R-homomorphism gf : gM → gN given by
the family (f(g−1(x)))x∈R of k-linear maps.
Given M in MODR the subgroup

GM = {g ∈ G :
gM ≃M}

of G is called the stabilizer of M .
LetR/G be the orbit category of the action ofG on R. Then R/G is again

a locally bounded k-category (see [15]). We can study the module category
mod(R/G) in terms of the category ModR. The tool at our disposal is the
pair of functors

MODR
Fλ−→←−
F•
MOD(R/G)

where F• : MOD(R/G)→ MODR is the “pull-up” functor associated with
the canonical Galois covering functor F : R → R/G, assigning to each X
in MOD(R/G) the R-module X ◦ F , and the “push-down” functor Fλ :
MODR→ MOD(R/G) is the left adjoint to F•.
The classical results from [15] state that if G acts freely on (indR)/≃

(i.e. GM = {idR} for every M in indR) then Fλ induces an embedding of
the set ((indR)/≃)/G of the G-orbits of isoclasses of objects in indR into
(ind(R/G))/≃.
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Let H be a subgroup of the stabilizer GM of a given M in MODR. By
an R-action of H on M we mean a family

µ = (µg : M →
g−1M)g∈H

of R-homomorphisms such that µe = idM , where e = idR is the unit of H,

and g
−1
1 µg2 · µg1 = µg2g1 for all g1, g2 ∈ H (see [15]). Observe that if H is a

free group then M admits an R-action of H (see [3, Lemma 4.1]).

For any subgroup H of G we denote by MODHR (resp. ModHR) the
category consisting of the pairs (M,µ), where M is an R-module (resp. a
locally finite-dimensional R-module) and µ an R-action of H on M . For
any M = (M,µ) and N = (N, ν) in MODHR (resp. ModHR) the space
of morphisms from M to N in MODHR (resp. ModHR) consists of all

f ∈ HomR(M,N) such that g
−1

f ·µg = νg ·f for every g ∈ H, and is denoted

by HomHR (M,N). By ModGf R we denote the full subcategory of the category
ModHR formed by all (M,µ) such that suppM is contained in the union of
a finite number of H-orbits of H in R (see [15, 12, 3]). Then the functor F•,
associating with any X in mod(R/G) the R-module F•X endowed with the
trivial R-action of G, yields an equivalence

mod(R/G) ≃ ModGf R.

An important role in understanding the nature of objects from ModGf R,
and consequently from mod(R/G), is played by the G-atoms. Recall from [3]
that an indecomposable R-module B in ModR (with local endomorphism
ring) is called a G-atom (over R) provided suppB is contained in the union
of a finite number of GB-orbits in R. The G-atom B is said to be finite
(resp. infinite) if GB (equivalently suppB) is finite (resp. infinite).

Denote by A a fixed set of representatives of isoclasses of all G-atoms in
ModR, by Ao a fixed set of representatives of G-orbits of the induced action
of G on A and for any B ∈ Ao by SB a fixed set of representatives of left
cosets of GB in G, containing the unit e = idR of the group G. One can show
that the category mod(R/G) is equivalent via F• to the full subcategory of
ModGf R formed by all possible pairs (Mn, µ), where n = (nB)B∈Ao is a
sequence of natural numbers such that almost all nB are zeros, Mn the
R-module given by the formula

Mn =
⊕

B∈Ao

( ⊕

g∈SB

g(BnB )
)

and µ an arbitrary R-action of G on Mn. Therefore to any X in mod(R/G)
one can attach the direct summand support dss(X) of X which is the finite
set consisting of all B ∈ Ao such that nB 6= 0, and the direct summand
coordinate vector dsc(X) = (dsc(X)B)B∈Ao of X, given by the components
dsc(X)B = nB , B ∈ Ao, where F•X ≃Mn.
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For any U ⊂ Ao one can study the full subcategory modU (R/G) of
mod(R/G) consisting of all X in mod(R/G) such that dss(X) ⊂ U .

1.3. A module X in mod(R/G) is called orbicular (cf. [15]) provided
dss(X) = {B} for some B ∈ Ao, i.e. in a decomposition of the R-module
F•X into a direct sum of idecomposables there occur only G-atoms con-
tained, up to isomorphism, in one orbit of G in A. The module X in
mod(R/G) is called non-orbicular if X is not orbicular. The subcategory
of all orbicular R/G-modules can be represented as a splitting union

∨

B∈Ao

mod{B}(R/G),

and the additive closure of the subcategory of all non-orbicular indecompos-
able modules as its complement

mod(R/G) \
∨

B∈Ao

mod{B}(R/G),

in the sense explained below.

Let C be a Krull–Schmidt category and C0, C1, C2 and Ci, i ∈ I, full
subcategories of C which are closed under direct sums, direct summands
and isomorphisms. The notation C0 = C1 ∨ C2 (resp. C =

∨
i∈I Ci) means

that the set of indecomposable objects in C0 splits into the disjoint union of
indecomposables in C1 and in C2 (resp. in Ci, i ∈ I), and the notation C2 =
C0 \ C1 that the set of indecomposables in C2 consists of all indecomposables
in C0 which are not in C1. We denote by [C0] the ideal of all morphisms in C
which factor through an object from C0. For any ideal I in the category C
and a subcategory C′ of C, the restriction of I to C′ is denoted by IC′ .
The category of orbicular modules forms an essential part of the category

mod(R/G). Recall that if R/G is representation-finite then all R/G-modules
are orbicular, provided G acts freely on (indR)/≃. According to a general
conjecture all R/G-modules in the tame case are orbicular (in particular
those which belong to 1-parameter families). Roughly speaking all R/G-
modules which have occurred up to now in the Galois covering context
(in the representation-finite and tame cases) are orbicular. They have been
described by use of the following construction.

Suppose that a G-atom B admits an R-action ν of GB on itself (this is
always the case if the group GB is free). Then FλB carries the structure of
a kGB-R/G-bimodule which is finitely generated free as a left kGB-module,
where kGB is the group algebra of GB over k (see [12, 3.6]). This bimodule
induces a functor

ΦB = −⊗kGB FλB : mod kGB → modB(R/G)

which is a representation embedding in the sense of [27] (see [4, Propo-
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sition 2.3]), provided the field EndR(B)/J(EndR(B)) is equal to k. Note
that if GB is trivial then kGB ≃ k and if GB is an infinite cyclic group
then kGB is isomorphic to the algebra k[T, T

−1] of Laurent polynomials.
If G acts freely on (indR)/≃ then Fλ can be interpreted in terms of the
representation embedding

ΦA
f
o :
∐

B∈Afo

mod k → mod(R/G)

induced by the functors {ΦB}B∈Afo , where A
f
o consists of all finite G-atoms

in Ao. It is well known that then the above embedding furnishes the classi-
fication of all indecomposables of the so-called first kind with respect to F
(i.e. those from the image ImFλ). If all infinite G-atoms have cyclic stabiliz-
ers then the functors {ΦB}B∈A∞o , where A

∞
o consists of all infinite G-atoms

in Ao, induce the representation embedding functor

ΦA
∞
o :
∐

B∈A∞o

mod k[T, T−1]→ mod(R/G)

(see [4, 2.2]), which in nice situations (see [3, 4, 6, 12]) yields a description
of all indecomposable R/G-modules of the second kind with respect to F
(i.e. those “lying outside” ImFλ).
Recall that, if G acts freely on (indR)/≃, then we denote by mod1(R/G)

the additive closure of the class of all (indecomposable) R/G-modules of
the form FλM for some M in indR; mod1(R/G) is called the subcategory
of the first kind modules with respect to F . The additive closure of the
class of remaining indecomposables (lying outside mod1(R/G)) is denoted
by mod2(R/G) and called the subcategory of the second kind modules with
respect to F .
In this paper we present a construction of a functor (a generalization

of ΦB) whose image contains a large subcategory consisting of non-orbicular
indecomposable R/G-modules. As one can expect it is mostly related to the
case when R and R/G are wild.

1.4. The following notation is used in the paper. Given a full subcate-
gory C of R and an R-module M we denote by M|C the C-module which
is the restriction of M to C. For any R-homomorphism f : M → N we
denote by f|C : M|C → N|C the C-homomorphism which is the restriction
of f to C.
We say that a full subcategory C of R is non-trivial (resp. trivial) pro-

vided the set obC of all objects of C is non-empty (resp. empty).
Let C1 and C2 be full subcategories of a locally bounded k-category R.

We denote by C1 ∪ C2 (resp. C1 ∩ C2 and C1 \ C2) the full subcategory
of R formed by the union (resp. intersection and difference) of the sets
obC1 and obC2. The notation C1 ⊂ C2 means that obC1 is contained in
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obC2. The subcategories C1 and C2 are called disjoint (resp. orthogonal) if
obC1 ∩ obC2 = ∅ (resp. R(x, y) = 0 = R(y, x) for all x ∈ obC1, y ∈ obC2).
The union C1 ∪ C2 is said to be a disjoint union, and denoted by C1 ∨ C2,
provided C1 and C2 are disjoint. If subcategories C1 and C2 are orthogonal
then the union C1 ∪C2 (= C1 ∨C2) is isomorphic to the coproduct of these
subcategories and is denoted by C1 ⊔ C2.
For any full subcategory C of R, we denote by Ĉ the full subcategory

formed by all x ∈ obR such that R(x, y) or R(y, x) is non-zero for some

y ∈ obS. Note that Ĉ is finite provided so is C (R is locally bounded!).
Let A be a k-algebra. For anym,n ∈ N we denote by Mm×n(A) the set of

all m×n-matrices with coefficients in A, by Mn(A) the algebra of all square
n × n-matrices with coefficients in A and by Tn(A) the upper-triangular
matrix subalgebra of Mn(A).

Let H be a group. Then for any subgroup H ′ of H the index of H ′ in H
is denoted by [H : H ′].

For any set X we denote by |X| the cardinality of X.

1.5. We will frequently use the restriction and extension functors. For
any full subcategories C and D of R such that C ⊂ D we denote by eD,Cλ :
MODC→MODD the left Kan extension functor for the embedding C →֒D
(see [18]), i.e. the left adjoint to the restriction functor eD,C• : MODD →

MODC (eD,C• (M) = M|C and e
D,C
• (f) = f|C for any R-module M and

R-homomorphism f : M → N). For any N in MODC the D-module

eD,Cλ (N) is defined by

eD,Cλ (N)(x) = N ⊗C D(x,−)|C

for x ∈ obD (see [20]), and consequently, supp eD,Cλ (N) ⊂ ̂suppN . Ob-
serve that eD,Cλ (modC) ⊂ modD and eD,Cλ (ModC) ⊂ ModD) (clearly

eD,C• (modD) ⊂ modC and e
D,C
• (ModD) ⊂ ModC).

Denote by φ the natural family

{φN,M : HomD(e
D,C
λ (N),M)→ HomD(N, e

D,C
• (M))}N∈MODC, M∈MODD

of standard isomorphisms, defining adjunction for the pair (eD,Cλ , eD,C• ) of
functors. Then the unit of the adjunction φ, i.e. the natural family

α = {α(N) : N → eD,C• eD,Cλ (N)}N∈MODC

of C-homomorphisms α(N) = φN,eD,Cλ (N)(ideD,Cλ (N)), yields a functor iso-

morphism

eD,C• eD,Cλ ≃ idMODC .

Consequently, the functor eD,Cλ is a right quasi-inverse for eD,C• , moreover,
it is full and faithful.
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We will also frequently use the counit of the adjunction φ, i.e. the natural
family

β = {β(M) : eD,Cλ eD,C• (M)→M}M∈MODD

of D-homomorphisms β(M) = (φeD,C• (M),M )
−1(ideD,C• (M)). Since α is an

isomorphism of functors, the classical formulas eD,C• (β(M))◦α(e
D,C
• (M)) =

ideD,C• (M), M in MODD, and β(e
D,C
λ (N)) ◦ eD,Cλ (α(N)) = ideD,Cλ (N), N in

MODC, for the adjoint pair (eD,Cλ , eD,C• ), imply that all e
D,C
• (β(M))’s and

β(eD,Cλ (N))’s are isomorphisms. As a consequence, for anyM ,M ′ in MODD
the isomorphism φeD,C• (M),M ′ has the factorization

HomD(e
D,C
λ eD,C• (M),M

′)→ HomC(e
D,C
• eD,Cλ eD,C• (M), e

D,C
• (M

′))

→ HomC(e
D,C
• (M), e

D,C
• (M

′))

where the first map is given by the functor eD,C• and the second is induced
by the isomorphism eD,C• (β(M)).

If D = R then for simplicity we denote the functors eD,C• and eD,Cλ by
eC• and e

C
• .

Throughout the paper we also use the right Kan extension e̺ : MODC
→ MODR for the embedding C →֒ R, i.e. the right adjoint functor to the
restriction functor eC• : MODR→ MODC. The functor e̺ is given by

e̺(N) = HomR(R(−, x)|S , N)

for N in MODC, x ∈ obR, and has properties analogous to eCλ . The unit
map

β′ = {β′(M) :M → eC• e
C
̺ (M)}M∈MODR

given by β′(M) = φ′M,eC• (M)
(ideC• (M)), where

{φ′M,N : HomC(e
C
• (M), N)→ HomR(M, eC̺ (N))}N∈MODC,M∈MODD

is the standard adjunction for the pair (eC• , e
C
̺ ), yields a functor isomorphism

eC• e
C
λ ≃ idMODC .

Consequently, for any M , M ′ in MODD the isomorphism (φ′M,eC• (M),M
′)
−1

has the factorization

HomR(M, eC̺ e
C
• (M

′))→ HomC(e
C
• (M), e

C
• e

C
̺ e

C
• (M

′))

→ HomC(e
C
• (M), e

C
• (M

′))

where the first map is given by the functor eC• and the second is induced by
the isomorphism eC• (β

′(M ′)).

1.6. Recall that a k-algebra (resp. locally bounded k-category) Λ is
called representation-wild (briefly wild) provided there exists a functor
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F : mod k〈x, y〉 → modΛ, where k〈x, y〉 is the free associative k-algebra
in two non-commuting variables, satisfying the following two conditions:

(a) F = −⊗k〈x,y〉 Q, where Q is a k〈x, y〉-Λ-bimodule which is a finitely
generated free left k〈x, y〉-module,
(b) F induces an injection on the sets of isoclasses.

In this paper, each Λ which is not wild will be called tame (k is not assumed
to be algebraically closed!).

2. Generalized tensor product functors. We start by generalizing
the notion of the tensor product of group representations. This construction
gives a basis for a similar one for R-modules with an R-action of a group.

2.1. Let H be a group and kH be the group algebra of H. The category
MOD(kH)op is equivalent to the category of all k-representations of H.
Therefore each V in MOD(kH)op can be viewed as a pair (V, µ), where
V is a k-vector space and µ : H → Autk(V ) is a group homomorphism
(equivalently, a k-linear action of H on V ).

Suppose we are given a sequence

V : V1 ⊆ V2 ⊆ . . . ⊆ Vn−1 ⊆ Vn

of kH-submodules of the kH-module Vn = (Vn, µ) and a sequence

B : B1
β2
← B2 ← . . .← Bn−1

βn
← Bn

of kH-homomorphisms, where Bi = (Bi, νi) is in MOD(kH)
op for every

i = 1, . . . , n. We shall construct a left kH-module V ⊗kB = (V ⊗kB,µ⊗kβ)
which we call a tensor product of V and B.

Let V = (Vi)i=1,...,n be a sequence of complementary direct summands for
V , i.e. a sequence of subspaces Vi of V such that V1 = V1 and Vi = Vi−1⊕Vi
for i = 2, . . . , n. Then we have Vi =

⊕i
l=1 Vl for every i = 1, . . . , n. Moreover,

every automorphism µ(h) ∈ Autk(Vn), h ∈ H, has the matrix representation

µ(h) = [µ(h)i,j ]1≤i,j≤n,

where each µ(h)i,j : Vj → Vi is the composition of µ(h) with the canon-
ical jth embedding and ith projection. The matrix of µ(h)i,j ’s is upper-
triangular since µ(h)(Vj) ⊆ Vj , hence µ(h)i,j = 0 for i > j. Note that we
have

(i) µ(hh′)i,j =
∑

i≤l≤j

µ(h)i,l · µ(h
′)l,j

for all i ≤ j, h ∈ H.
We denote by β a family of k-linear homomorphisms βi,j(h) = νi(h)·βi,j :

Bj → Bi, 1 ≤ i, j ≤ n, h ∈ H, where the maps βi,j : Bj → Bi are defined
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as follows:

(ii) βi,j =

{
βi+1 · . . . · βj if i < j,
idBi if i = j,
0 if i > j.

Note that

(iii) βi,l · βl,j = βi,j ,

(iv) βi,l · βl,j(h) = βi,l(h) · βl,j = βi,j(h),

and

(v) βi,l(h) · βl,j(h
′) = βi,j(hh

′)

for all i ≤ l ≤ j; h, h′ ∈ H.
We set

V ⊗k B =
n⊕

i=1

Vi ⊗k Bi.

For every h ∈ H we denote by (µ⊗k β)(h) : V ⊗k B → V ⊗k B the k-linear
homomorphism given by the matrix

(µ⊗k β)(h) = [µ(h)i,j ⊗k βi,j(h)]1≤i,j≤n

with components µ(h)i,j ⊗k βi,j(h) : Vj ⊗k Bj → Vi ⊗k Bi, and we set

µ⊗k β = ((µ⊗k β)(h))h∈H .

Lemma. V ⊗k B = (V ⊗k B,µ⊗k β) is a kH-module.

Proof. Note that (µ⊗k β)(h) is a k-linear automorphism of the k-linear
space V ⊗k B since it is defined by an upper-triangular matrix with the
isomorphisms µ(h)i,i ⊗k νi(h), i = 1, . . . , n, on the main diagonal. To show
that (µ⊗k β)(hh′) = (µ⊗k β)(h) · (µ⊗k β)(h′) for all h, h′ ∈ H, it suffices
to check that the (i, j)th components of both maps are equal for all 1 ≤
i, j ≤ n. The case i > j is clear, the case i ≤ j follows from the equalities

n∑

l=1

(µ(h)i,l ⊗k βi,l(h)) · (µ(h)l,j ⊗k βl,j(h
′)

=
∑

i≤l≤j

µ(h)i,l µ(h)l,j ⊗k βi,l(h)βl,j(h
′)

=
∑

i≤l≤j

µ(h)i,l µ(h)l,j ⊗k βi,j(hh
′) = µ(hh′)i,j ⊗k βi,j(hh

′)

(see (i) and (v)).

Remark. (a) If n ≥ 2, B1 = . . . = Bn and β2 = . . . = βn = idBn then
V ⊗k B ≃ Vn ⊗k Bn in MOD(kH)op (V ⊗k B = Vn ⊗k Bn for n = 1).
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(b) If V , V ′ are two different sequences of complementary direct sum-
mands for V then V ⊗k B ≃ V ′ ⊗k B in MOD(kH)op.

2.2. Following [26] and [28], for any algebra A we denote by In-spr(A)
the category whose objects are sequences of the form

V : V1 ⊆ V2 ⊆ . . . ⊆ Vn−1 ⊆ Vn

where Vi, i = 1, . . . , n − 1, are A-submodules of a left finite-dimensional
A-module Vn, and the set of morphisms from V to V ′ consists of all A-
homomorphisms f : Vn → V ′n such that f(Vi) ⊆ V

′
i for every i = 1, . . . , n−1.

Note that In-spr(A) is equivalent to the full subcategory of modTn(A
op)

(see 1.4) formed by all modules whose structure maps are A-monomorphisms
(Tn(A

op) can also be identified with the incidence algebra of the linear poset
In = {1 < 2 < . . . < n} over Aop).
To any V in In-spr(A) we can assign the coordinate vector

cdn(V ) = (d1, . . . , dn)

in Nn, given by di = dimk Vi/Vi−1 (V0 = 0). Then we denote by In-spr
′(A)

the additive closure of the full subcategory formed by all indecomposable V
in In-spr(A) such that cdn(V ) has at least two non-zero coordinates.
We extend the construction of the generalized tensor product to a functor

−⊗k B : In-spr(kH)→ MOD(kH)
op

for B as in 2.1.
Let f : V → V ′ be a morphism in In-spr(kH). Suppose that V =

(Vi)i=1,...,n and V
′ = (V ′i )i=1,...,n are fixed sequences of complementary di-

rect summands for V and V ′ respectively. Then the kH-homomorphism
f :
⊕n

i=1 Vi →
⊕n

i=1 V
′
i is given by the matrix representation

f = [fi,j ]1≤i,j≤n

of f with respect to V and V ′, with components fi,j : Vj → V ′i which are
the compositions of f with the standard embeddings and projection. The
matrix f is upper-triangular since f(Vj) ⊆ V ′j (V

′
j =
⊕j

i=1 V
′
i , consequently

fi,j = 0 for all i > j). Note that

(i)
∑

i≤l≤j

µ(h)i,l · fl,j =
∑

i≤l≤j

fi,l · µ(h)l,j

for all 1 ≤ i, j ≤ n, h ∈ H.
Denote by f ⊗k B : V ⊗k B → V ′ ⊗k B the k-linear map given by the

matrix

f ⊗k B = [fi,j ⊗k βi,j ]1≤i,j≤n

with k-linear components fi,j ⊗k βi,j : Vj ⊗k Bj → V ′i ⊗k Bi.

Lemma. The map f ⊗k B is a kH-homomorphism.
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Proof. It suffices to show that the (i, j)th components of the matrices
(µ ⊗k β)(h) · (f ⊗k B) and (f ⊗k B) · (µ ⊗k β)(h), h ∈ H, are equal for
all 1 ≤ i, j ≤ n. In fact we can assume that i ≤ j (all matrices are upper-
triangular). Then by 2.1(iv) and 2.2(i) we have

n∑

l=1

(µ(h)i,l ⊗k βi,l(h)) · (fl,j ⊗k βl,j) =
∑

i≤l≤j

µ(h)i,l fl,j ⊗k βi,l(h)βl,j

=
∑

i≤l≤j

µ(h)i,l fl,j ⊗k βi,j(h) =
∑

i≤l≤j

fi,l µ(h)l,j ⊗k βi,j(h)

=
∑

i≤l≤j

fi,l µ(h)l,j ⊗k βi,l βl,j(h) =
n∑

l=1

(fi,l ⊗k βi,l) · (µ(h)l,j ⊗k βl,j(h))

and the proof is complete.

2.3. Now we define the tensor product functor −⊗k B : In-spr(kH)→
MOD(kH)op. For every object V in In-spr(kH) we fix a sequence of com-
plementary direct summands V = (Vi)i=1,...,n. Then we set

V ⊗k B = V ⊗k B

for any object V in In-spr(kH), and

f ⊗k B = f ⊗k B

for any morphism f : V → V ′, where f = [fi,j ]1≤i,j≤n is the matrix repre-
sentation of f with respect to V and V ′.

Proposition. The mapping − ⊗k B : In-spr(kH)→ MOD(kH)op is a
k-linear functor.

Proof. By Lemmas 2.1 and 2.2 the mapping − ⊗k B is well defined on
objects and morphisms. The equality idV⊗kB = idV ⊗kB follows by an easy
check on definitions. To show (f ′⊗kB) ·(f ′⊗kB) = f ′f⊗kB for morphisms
f : V → V ′ and f ′ : V ′ → V ′′ in In-spr(kH) note that the components of
the matrix representations f , f ′ and f ′f (of f , f ′ and f ′f with respect to
V , V ′ and V ′′ respectively) satisfy the equalities

(i) (f ′f)i,j =
∑

i≤l≤j

f ′i,l · fl,j

for all i ≤ j. Now applying (i) and 2.1(iii) we check, as in the proofs of
Lemmas 2.1 and 2.2, that the (i, j)th components of both maps from the
required equality coincide for all 1 ≤ i, j ≤ n.

Remark. Different choices of sequences of complementary direct sum-
mands V for all V in In-spr(kH) lead to isomorphic functors.
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2.4. From now on we assume that H is a subgroup of Autk(R). We
generalize the above construction and define the tensor product functor

−⊗k B : In-spr(kH)→ Mod
HR

for a sequence B in ModHR.

This functor is related to the previous one by a “forgetful functor” from
ModHR to MOD(kH)op, which is also an efficient tool used in our further
proofs.

We fix some notation. For an R-module M we set

M (k) =
⊕

x∈obR

M(x),

and for an R-homomorphism f : M → M ′ we denote by f (k) the k-linear
map ⊕

x∈obR

f(x) :M (k) →M ′ (k).

Let µ = (µh : M → h−1M)h∈H be a family of R-homomorphisms. Then
we define a map µ(k) : H → Endk(M (k)) assigning to h ∈ H the matrix

µ(k)(h) = [µ(k)(h)x,y]x,y∈obR

with components µ(k)(h)x,y :M(y)→M(x) given by

µ(k)(h)x,y =

{
µh(y) if x = hy,
0 if x 6= hy.

Observe that for each h ∈ H we have µ(k)(h) = ξh−1(M) · µ
(k)
h , where

ξh−1(M) : (
h−1M)(k)

∼
→M (k) is the canonical k-isomorphism.

Lemma. (a) Let f : M → M ′, f ′ : M ′ → M ′′ and f ′′ : M → M ′′ be
R-homomorphisms. Then f ′′ = f ′f if and only if f ′′(k) = f ′(k)f (k).

(b) Let µ be as above. Then µ is an R-action of H on M if and only if
µ(k) is a k-linear action of H on M (k).

(c) Let (M,µ), (M ′, µ′) be in MODHR and f : M → M ′ be an R-
homomorphism. Then f : (M,µ) → (M ′, µ′) is a morphism in MODHR if
and only if f (k) :M (k) →M ′(k) is a morphism in MOD(kH)op.

Proof. An easy check on definitions.

It is clear (by the implications “⇒”) that the mappings introduced above
yield k-linear functors

(−)(k) : MODR→ MOD k and (−)(k) : MODHR→ MOD(kH)op

(we use the same notation).
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Remark. The kH-moduleM (k) is free for anyM = (M,µ) in MODHR
(M (k) ≃ (

⊕
x∈Ro

M(x)) ⊗k kH, where Ro is a fixed set of representatives

of H-orbits in obR). Moreover, the kH-module M (k) is finitely generated if
and only if M belongs to ModHf R.

2.5. Suppose we are given a sequence

B : B1
β2
← B2 ← . . .← Bn−1

βn
← Bn

in ModHR, i.e. all objects Bi = (Bi, νi) are in Mod
HR (Bi is an R-

module and νi is an R-action of H on Bi) and all R-homomorphisms βi
are morphisms in ModHR (the βi are compatible with the actions). We de-

note by β the family (βi,j(h) = (νi)h · βi,j : Bj → h−1Bi)1≤i,j≤n, h∈H of
R-homomorphisms, where the homomorphisms βi,j : Bj → Bi are defined
by 2.1(ii).

Recall that for any k-vector space W and an R-module M we denote
by W ⊗k M the R-module which assigns to each x ∈ obR the k-vector
space W ⊗k M(x) and to each r ∈ R(x, y) the k-linear homomorphism
idW ⊗k M(r) :W ⊗k M(y)⊗W ⊗k M(x).

Let V = (Vi)i=1,...,n be a sequence of complementary direct summands
for V in In-spr(kH). We set

V ⊗k B =
n⊕

i=1

V ⊗k Bi

and define an R-action µ⊗k B of H on the R-module V ⊗k B as follows.

Let (µ⊗kB)h : V ⊗kB → h−1(V ⊗kB), h ∈ H, be the R-homomorphism
given by the matrix

(µ⊗k B)h = [µ(h)i,j ⊗k βi,j(h)]1≤i,j≤n :
n⊕

i=1

Vj ⊗k Bj →
n⊕

i=1

h−1(Vj ⊗k Bj).

Lemma. The family µ⊗k B = ((µ⊗k B)h)h∈H is an R-action of H on
V ⊗k B.

Proof. We show that ((V ⊗kB)(k), (µ⊗kB)(k)) defines a left kH-module

(cf. 2.4). Note that for any h ∈ H the (x, y)th component (µ⊗kB)(k)(h)x,y :
(V ⊗k B)(y) → (V ⊗k B)(x), x, y ∈ obR, of the k-linear endomorphism
(µ ⊗k B)(k)(h) of the k-vector space (V ⊗k B)(k) =

⊕
x∈obR(

⊕n
i=1 Vi ⊗k

Bi(x)) is given by

(µ⊗k β)
(k)(h)x,y =

{
µ(h)i,j ⊗k βi,j(h)(y) if x = hy,
0 if x 6= hy.

We denote by B(k) the image of B under the functor (−)(k) : MODHR →
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MOD(kH)op, i.e. the sequence

B(k) : B
(k)
1

β
(k)
2←− B

(k)
2 ← . . .← B

(k)
n−1

β(k)n←− B(k)n

where B
(k)
i = (B

(k)
i , ν

(k)
i ) and β

(k)
i =

⊕
x∈obR βi(x) for every i, and by

β(k) the collection (β
(k)
i,j (h))1≤i,j≤n, h∈H of k-linear maps β

(k)
i,j (h) = ν

(k)
i (h) ·

β
(k)
i,j . Then V ⊗k B

(k) = (V ⊗k B(k), µ ⊗k β(k)) is a left kH-module (see

Lemma 2.1). Denote by η(V ) = η(V ) : (V ⊗k B)(k) → V ⊗k B(k) the
canonical k-isomorphism

⊕

x∈obR

( n⊕

i=1

Vi ⊗k Bi(x)
)
≃

n⊕

i=1

Vi ⊗k
( ⊕

x∈obR

Bi(x)
)
.

Observe that η(V ) · (µ ⊗k B)(k)(h) = (µ ⊗k B(k))(h) · η(V ) for all h ∈ H.

Indeed, fix 1 ≤ i, j ≤ n, i ≤ j, and h ∈ H. Then β
(k)
i,j (h)hy,y = βi,j(h)(y)

for every y ∈ obR, where β
(k)
i,j (h)hy,y is the (hy, y)th component of β

(k)
i,j (h)

(these are the only non-zero components). Consequently, (µ ⊗k B)(k) is a

k-linear action of H on (V ⊗k B)(k) and, by Lemma 2.4(b), the proof is
complete.

Remark. If B1 = . . . = Bn = X and β2 = . . . = βn = idX , for
X in ModHR, then the canonical isomorphism

⊕n
i=1 Vi ≃ V induces an

isomorphism υV,X : V ⊗k B → Vn ⊗k X in Mod
HR (if n = 1, then υV,X is

the identity map V ⊗k B → Vn ⊗k X).

2.6. Let V = (Vi)i=1,...,n, V
′ = (V ′i )i=1,...,n be sequences of complemen-

tary direct summands for V , V ′ in In-spr(kH) respectively, and f : V → V ′

be a morphism in In-spr(kH) given by a matrix f = [fi,j ]1≤i,j≤n (see 2.2).
We denote by f ⊗kB : V ⊗kB → V ′⊗kB the R-homomorphism defined by

f ⊗k B = [fi,j ⊗k βi,j ]1≤i,j≤n

with R-linear components fi,j ⊗k βi,j : Vj ⊗k Bj → V ′i ⊗k Bi.

Lemma. The R-homomorphism f ⊗k B belongs to Hom
H
R (V ⊗k B,

V ′ ⊗k B).

Proof. We prove that (f ⊗k B)(k) : (V ⊗k B)(k) → (V ′ ⊗k B)(k) is a
kH-homomorphism (cf. 2.4). Keeping the notation from the proof of Lem-
ma 2.5 observe that η(V ) : (V ⊗k B)(k) → V ⊗k B(k) is a kH-isomorphism
(for any V ). Next note that (f ⊗k B(k)) · η(V ) = η(V ′) · (f ⊗k B)(k) where

f ⊗k B(k) : V ⊗k B(k) → V ′ ⊗k B(k). Since from Lemma 2.2, f ⊗k B(k) is a
kH-homomorphism, the assertion follows by Lemma 2.4(c).
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2.7. To define the functor

−⊗k B : In-spr(kH)→ Mod
HR

we proceed analogously to 2.3. For every object V in In-spr(kH) we fix a
sequence of complementary direct summands V = (Vi)i=1,...,n. Then we set

V ⊗k B = V ⊗k B

for any object V in In-spr(kH), and

f ⊗k B = f ⊗k B

for any morphism f : V → V ′, where f = [fi,j ]1≤i,j≤n is the matrix repre-

sentation of f with respect to V and V ′.

Proposition. The mapping − ⊗k B : In-spr(kH) → Mod
HR is a

k-linear functor.

Proof. The mapping − ⊗k B is well defined on objects and morphisms
by Lemmas 2.5 and 2.6. The equality idV⊗kB = idV ⊗k B is again easy to
check. To show that

(f ′ ⊗k B) · (f ⊗k B) = f
′f ⊗k B

for morphisms f : V → V ′ and f ′ : V ′ → V ′′ in In-spr(kH), we consider the
functor

−⊗k B
(k) : In-spr(kH)→ MOD(kH)

op

based on the same fixed selection of sequences of complementary direct
summands (we keep the notation from the proof of Lemma 2.5). Since

(f ′ ⊗k B
(k)) · (f ⊗k B

(k)) = (f ′f ⊗k B
(k))

and (f ⊗k B(k)) · η(V ) = η(V ′) · (f ⊗k B)(k), (f ′ ⊗k B(k)) · η(V ′) = η(V ′′) ·
(f ′ ⊗k B)(k), (ff ′ ⊗k B(k)) · η(V ) = η(V ′′) · (f ′f ⊗k B)(k) (see proof of
Lemma 2.6) we have

(f ′ ⊗k B)
(k) · (f ⊗k B)

(k) = (f ′f ⊗k B)
(k)

and by Lemma 2.4(a) the proof is complete.

Remark. (a) The family η = {η(V )}V ∈ob In-spr(kH) yields an isomor-
phism of functors

(−⊗k B)
(k),−⊗k B

(k) : In-spr(kH)→ MOD(kH)
op.

(b) Different choices of sequences of complementary direct summands V
V in In-spr(kH) lead to isomorphic functors.

(c) If all Bi, i = 1, . . . , n, are in Mod
H
f R then the functor −⊗k B leads

in fact to ModHf R.
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2.8. Suppose we are given another sequence

B′ : B′1
β′2← B′2 ← . . .← B′n−1

β′n← B′n

in ModHR and a map φ : B → B′ of sequences, i.e. a sequence φi : Bi → B′i,
i = 1, . . . , n, of morphisms in ModH R such that β′iφi = φi−1βi for every
i > 2. For any V in In-spr(kH) with a fixed sequence V = (Vi)i=1,...,n of
complementary direct summands, we define the R-homomorphism

V ⊗k φ : V ⊗k B → V ⊗k B
′

by setting

V ⊗k φ =
n⊕

i=1

idVi ⊗k φi.

Proposition. (a) V ⊗k φ belongs to Hom
H
R (V ⊗k B, V ⊗k B

′).
(b) The family −⊗k φ = {V ⊗k φ}V ∈ob In-spr(kH) yields an isomorphism

of functors

−⊗k B,−⊗k B
′ : In-spr(KH)→ Mod

HR.

Proof. Proceeding as before, one proves first the corresponding result
when B, B′ are sequences in MOD(KH)op, and then, by applying Lem-
ma 2.4, the assertions (a) and (b).

Let X be in ModHR and X [n] be the sequence

X [n] : X
idX←− X

idX←− . . .
idX←− X

idX←− X

of length n in ModH R. Then for any morphism f1 : X → Bn (resp. f2 :

B1 → X) in ModHR we denote by the f
[n]
1 : X

[n] → B (resp. f
[n]
2 : B →

X [n]) the map of sequences given by the morphisms βi,n ·f1 : X → Bi (resp.

f2 · β1,i : Bi → X), i = 1, . . . , n. We denote by Vn ⊗ f
[n]
1 the composite

R-homomorphism

Vn ⊗k X
υ−1
−→ V ⊗k X

[n] V⊗f
[n]
1−−−→V ⊗k B

and by Vn ⊗ f
[n]
2 the composite R-homomorphism

Vn ⊗ f
[n]
2 : V ⊗k B

V⊗f
[n]
2−−−→V ⊗k X

[n] υ→ Vn ⊗k X

where υ = υV,X (see Remark 2.5).

Corollary. Vn ⊗ f
[n]
1 and Vn ⊗ f

[n]
2 are morphisms in Mod

HR.

2.9. For any 1 ≤ i ≤ j ≤ n, we denote by B[i,j] the restriction of the
sequence B to the interval [i, j], i.e. the sequence

B[i,j] : Bi
βi+1
←− . . .

βj
←− Bj

in ModH R of length j − i+ 1.
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Let V be an object in In-spr(kH). For any i = 1, . . . , n, we denote by
V(i) the object (V1 ⊆ . . . ⊆ Vi) in Ii-spr(kH), and for any i = 0, . . . , n − 1,
by V/Vi the object (Vi+1/Vi ⊆ . . . ⊆ Vn/Vi) in In−i-spr(kH), where V0 = 0.
If V = (Vj)j=1,...,n is a sequence of complementary direct summands for V
then (Vj)j=1,...,i is a sequence of complementary direct summands for V(i),
and (Vj,i)j=i+1,...,n, where Vj,i = (Vj + Vi)/Vi (= (Vj ⊕ Vi)/Vi ≃ Vj), is a
sequence of complementary direct summands for V/Vi.
For any 0 ≤ i < l ≤ j ≤ n, let

vi,l,j :
l⊕

t=i+1

Vt,i ⊗k Bt →

j⊕

t=i+1

Vt,i ⊗k Bt

be the canonical embedding of R-modules, and, for any 0 ≤ i ≤ l < j ≤ n,

rj,l,i :

l⊕

t=i+1

Vt,i ⊗k Bt ⊕

j⊕

t=l+1

Vt,i ⊗k Bt →

j⊕

t=l+1

Vt,l ⊗k Bt

the R-epimorphism given by the components (0,
⊕j

t=l+1 κt⊗Bt), where κt
denotes the composition Vt,i ≃ Vt ≃ Vt,l of the canonical isomorphisms.

Lemma. For any 1 ≤ i ≤ l < j ≤ n, the sequence

0→ V(l)/Vi−1 ⊗k B
[i,l] v→ V(j)/Vi−1 ⊗k B

[i,j] r
→ V(j)/Vl ⊗k B

[l+1,j] → 0

is an exact sequence in ModHR, where v = vi−1,j,l and r = rj,l,i−1.

Proof. The exactness (in ModR) and the fact that v, r are morphisms

in ModH R follow immediately from definitions.

Let W be a sequence W1
p1
→ W2

p2
→ . . .

pn−1
−→ Wn of epimorphisms in

MOD(kH)op. WithW we can associate the object V (W ) = (V1 ⊆ . . . ⊆ Vn)
in In-spr(kH) given by Vi = Ker(pi · . . . · p1) for i = 1, . . . , n (pn is the map
Wn → 0). Then we define

W ⊗k B = V (W )⊗k B.

In particular, for any morphism f : B1 → X in ModHR we have a morphism
W1 ⊗ f [n] : W ⊗k B → W1 ⊗k X in Mod

HR, where W1 ⊗ f [n] = Vn ⊗ f [n]

(see Corollary 2.8).
Conversely, with any V = (V1 ⊆ . . . ⊆ Vn) in In-spr(kH) we can asso-

ciate the sequence W (V ) of the canonical projections

V1
p1
→ Vn/V1

p2
→ . . .

pn−1
−→ Vn/Vn−1

in MOD(kH)op, induced by the inclusions from V . Then W (V ) ⊗k B
= V ⊗k B, and consequently W ⊗k B =W (V (W ))⊗k B for every W .
For a given W as above and any i = 1, . . . , n, we denote by W(i) the

sequence Wi
pi
→ Wi+1

pi+1
−→ . . .

pn−1
−→ Wn. Then applying the lemma to V =
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V (W ), the canonical isomorphisms Wi ≃ Vn/Vi−1, i = 1, . . . , n, yield the
following result.

Corollary. For any 1 < i ≤ n, the sequence

0→ Ker pi−1 ⊗k Bi−1
v
→W(i−1) ⊗k B

[i−1,n] r
→W(i) ⊗k B

[i,n] → 0

is exact in ModHR.

3. On some construction of non-orbicular modules. In this sec-
tion we apply a generalized tensor product to construct a functor from
In-spr(kH) to mod(R/G) whose image contains a large subcategory con-
sisting of non-orbicular modules.

3.1. Let H be a subgroup of the group G, where G ⊆ Autk(R) is a
group of k-linear automorphisms acting freely on R. Recall [3, 2.3] that we
have at our disposal the induction functor

θ = θGH : Mod
H
f R→ Mod

G
f R.

For any M = (M,µ) in ModHf R, θ(M) is defined by setting θ(M) =

(
⊕

g1∈SH
g1M,µG). TheR-isomorphisms µGg :

⊕
g1∈SH

g1M→
⊕

g2∈SH
g−1g2M,

g ∈ G, are given by the families g1µh :
g1M → g−1g2M , g1 ∈ SH , where

g2 ∈ SH and h ∈ H are determined by the equality gg1 = g2h. Here SH is
a fixed set of representatives of left cosets in G/H containing the unit e.
Let B be a sequence

B : B1
β2
← B2 ← . . .← Bn−1

βn
← Bn

of morphisms in ModHf R, where Bi = (Bi, νi) for all i = 1, . . . , n. Then we

denote by Φ̃B the composite functor

In-spr(kH)
−⊗kB−−−→ModHf R

θ
→ ModGf R

(see Remark 2.7(c)). We also set

ΦB = F−1• ◦ Φ̃
B : In-spr(KH)→ mod(R/G)

where F−1• is a fixed quasi-inverse functor of F• : mod(R/G)→ Mod
G
f R.

Set Bo = {B1, . . . , Bn} and B = {gBi}i=1,...,n; g∈SH . Observe that if all
Bi’s are G-atoms (consequentlyH is a subgroup of GBi of finite index for ev-

ery i) then ImΦB ⊂ modBo(R/G) since Im Φ̃
B ⊂ ModGf,BoR. Here, Mod

G
f,BoR

denotes the subcategory of ModGf R corresponding via F• to modBo(R/G).
Moreover, if GBi = H for every i, then for any V in In-spr(kH)

op we have

dsc(ΦB(V )) = cdn(V )

under the identification via the canonical embedding Nn →֒ NAo given by
i 7→ Bi.
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We also denote by Bo (resp. B) the full subcategory of ModR formed by

Bo (resp. B). By B̃ we denote the full subcategory of ModR formed by all
R-modules M of the form

(i) M ≃
⊕

g∈SH

n⊕

i=1

gB
di,g
i ,

di,g ∈ N. Recall [12, 6] that in ModR we have the uniqueness of decompo-
sition into a direct sum of indecomposables.

Let N be an ideal in B. Then we denote by No the restriction of N to Bo.
If N is summably closed (see definition below) then we denote by Ñ the

ideal extension of N to B̃ given by the formula

(ii) Ñ
( ⊕

g∈SH

n⊕

i=1

gB
di,g
i ,

⊕

g′∈SH

n⊕

j=1

g′B
d′j,g′
j

)

=
∏

g,g′∈SH

n∏

i,j=1

Md′j,g′×di,g(N (
gBi,

g′Bj))

(cf. [5]). Note that since N is summably closed, Ñ is a well defined ideal

in B̃. In particular, the above formula uniquely (independently of the choice

of the isomorphisms (i)) determines the value Ñ (M,M ′) for anyM,M ′ in B̃.

Following [5], N is said to be summably closed provided each subspace
N (B′, B′′) ⊆ HomR(B′, B′′), B′, B′′ ∈ B, is summably closed. This by def-
inition means that for any summable family of R-homomorphisms fi ∈
N (B′, B′′), i ∈ I, (i.e. for each x ∈ obR, fi(x) = 0 for almost all i) the sum
f =
∑
i∈I fi belongs to N (B

′, B′′).

Let GBi = H for every i = 1, . . . , n. We say that an ideal N in B is
determined by the ideal No in Bo provided

(iii) N (gBi,
g′Bj) =

{
HomR(

gBi,
g′Bj) if g 6= g′,

gNo(Bi, Bj) if g = g′,

where i, j ∈ {1, . . . , n}, g, g′ ∈ SH .

Remark. Any family M of subspaces M(B′, B′′) ⊆ HomR(B,B′′),
B′, B′′ ∈ Bo, can be extended to the family N of subspaces N (B′, B′′) ⊆
HomR(B,B

′′), B′, B′′ ∈ B, by applying formula (iii). Then N is an ideal
in B (and No = M) if and only if M is an ideal in Bo and for any
f ∈ HomR(Bi,gBl), f ′ ∈ HomR(gBl, Bj) the composition f ′f belongs to
M(Bi, Bj) for all Bi, Bj , Bl ∈ Bo such that M(Bi, Bj)  HomR(Bi, Bj),
and g ∈ SH , g 6= e. In this situation the ideal N is summably closed if and
only if so is No =M, and then Ñ is a well defined ideal in B̃ (also summably
closed).
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Recall (see [5]) that for any objects M ′ = (M ′, µ′), M ′′ = (M ′′, µ′′)
in ModH R the space HomR(M

′,M ′′) carries the structure of a left kH-
module which is given by (h, f) 7→ h ∗ f = hµ′′h ·

hf · µ′h−1 for h ∈ H and
f ∈ HomR(M ′,M ′′).
An ideal M in Bo is called H-invariant provided M(Bi, Bj) is a kH-

submodule of the kH-module HomR(Bi, Bj) for all i, j = 1, . . . , n. Note that
this definition does not depend on the choice of R-actions νi of H on Bi,
i = 1, . . . , n.

Following [5] we denote by Pu the pure-projective ideal which by defini-
tion is the two-sided ideal in MODR given by the subspaces Pu(M,N) ⊆
HomR(M,N), M , N in MODR, consisting of all R-homomorphisms f :
M → N having a factorization through a direct sum of finite-dimensional
R-modules. Note that the ideal PuBo is H-invariant, and by [5, Theorem
A(ii)], PuBo is summably closed provided H is an infinite cyclic group. One
can show (see Remark 3.5) that then PuB is also summably closed (PuB̃ is
not necessarily so).
Now we are able to formulate our first main result of this paper.

Theorem. Let H be a subgroup of a group G ⊆ Autk(R) acting freely

on R. Suppose we are given a sequence B in ModHf R as above such that
all Bi’s are G-atoms with GBi = H, i = 1, . . . , n. Assume that βi,j 6= 0
for all 1 ≤ i ≤ j ≤ n, and that B contains an ideal N determined by an
H-invariant summably closed ideal No in Bo satisfying the condition

(∗) HomR(Bj , Bi) = No(Bj , Bi)⊕ kβi,j

for all 1 ≤ i, j ≤ n (see 2.1 for definition of βi,j). Then the functor

ΦB : In-spr(kH)→ mod(R/G)

is a representation embedding (in the sense of [27]). Moreover ,

(a) if H ≃ Z and N = PuB then ΦB : In-spr(kH) → modBo(R/G) is
dense and induces an equivalence

In-spr(kGB) ≃ modBo(R/G)/[modAfo(R/G)]modBo (R/G),

(b) if G = H and No = 0, then ΦB yields an equivalence In-spr(kH) ≃
modBo(R/G),
(c) if n ≥ 2 and H has a factor which is an infinite cyclic group

(resp. a cyclic p-group of order greater than 7, if char(k) = p > 0) then
the full subcategory formed by all indecomposable non-orbicular modules in

modBo(R/G) is wild.

Note that the condition (∗) implies that allBi’s, i = 1, . . . , n, are pairwise
non-isomorphic (No(Bi, Bi)  EndR(Bi) and No(Bj , Bi) = HomR(Bj , Bi)
for i > j).
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The proof of the theorem consists of several facts stated in 3.2–3.7. Its
most important part is the construction of a functor Ψ̃B (left quasi-inverse

to Φ̃B) which is done in a few steps. Therefore, we first formulate an imme-
diate important consequence of Theorem 3.1 and illustrate it by an example.

Corollary. Let R, G, and H be as in Theorem 3.1. Assume, in ad-
dition, that G acts freely on (indR)/≃ and H is an infinite group. Under
the assumptions in 3.1(c) the category mod2(R/G) is wild.

Proof. Under the above assumption we have modBo(R/G)⊂mod2(R/G)
(see [12, 2.3]).

Example. Let R be the locally bounded k-category opposite to the
category kQ/I, where Q is the quiver

−3′

◦
−2′

◦
−1′

◦
0′

◦
1′

◦
2′

◦
3′

◦

◦
−3

◦
−2

◦
−1

◦
0

◦
1

◦
2

◦
3

� � � � � � � � � � � � � a′−2oo b′−2 // a′0oo b′0 // a′2oo b′2 // � � � � � � � � � � � � �
� � � � � � � � � � � � � c−3

OO

a−2oo b−2 //

c−2

OO
c−1

OO

a0oo b0 //

c0

OO

c1

OO

a2oo b2 //

c2

OO

c3

OO

� � � � � � � � � � � � �
and I is the ideal of the path category kQ generated by all elements of the
form ci−1ai−a′ici and ci+1bi−b

′
ici, i ∈ 2Z. The category R is equipped with a

natural free action of the infinite cyclic subgroup G = 〈g〉 of Autk(R), where
g is defined by the equalities g(i) = i+2, g(i′) = (i+2)′, for i ∈ Z. Let B1 be
the “line” R-module given by B1(i) = k, B1(i

′) = 0, B1(a2i) = B1(b2i) = idk
for all i ∈ Z, and B1(γ) = 0 for all other arrows γ in Q. We also define the
R-module B2 by setting B2(i) = B2(i

′) = k and B2(γ) = idk for all i ∈ Z
and arrows γ in Q. Moreover, we consider the second “line” R-module B3
given by B3(i

′) = k, B3(i) = 0, B3(a
′
2i) = B3(b

′
2i) = idk for all i ∈ Z, and

B3(γ) = 0 for all other arrows γ in Q. Clearly B1, B2, B3 are G-atoms
with the common stabilizer H = G and they admit natural R-actions of
H. Denote by β2 : B2 → B1 (resp. β3 : B3 → B2) the R-homomorphisms
given by β2(i) = idk and β2(i

′) = 0 (resp. β2(i
′) = idk and β2(i) = 0) for

i ∈ Z. The maps β1 and β2 can be regarded as morphisms in Mod
HR, but

the sequence
B1

β2
← B2

β3
← B3

does not satisfy the assumptions of the theorem (β2β3 = 0), in contrast to
the sequence

B : B1
β2
← B2

(take for No the zero ideal). Therefore the functor

ΦB : I2-spr(kH)→ mod(R/G)

is a representation embedding and mod{B1,B2}(R/G) (⊂ mod2(R/G)) con-
tains a wild subcategory of non-orbicular modules (the same holds for the
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sequence B : B2
β3← B3). Note that this example can be easily generalized

(by adding “new layers” in the quiver Q) to obtain analogous embeddings
for sequences B of arbitrary length n ≥ 2.

3.2. Denote by I = IB the full subcategory of Mod
G
f R, contained in

ModGf,BoR, formed by all objects Φ̃
B(V ) with V in In-spr(KH). We construct

a functor
Ψ̃B : I → In-spr(kH)

which is a left quasi-inverse of Φ̃B.
For any i = 1, . . . , n, we denote by

Hi : Mod
G
f R→ MOD(kH)

op

the functor induced by the functor HomR(Bi,−) : ModR → MOD k which
assigns to each M = (M,µ) in ModGf R the left kH-module HomR(Bi,M)
with the kH-module structure given by the R-actions νi and µ|H of H on
Bi and M , respectively.

Lemma. Let M be an object in I. If an ideal N in B is determined
by No and No is an H-invariant summably closed ideal in Bo then the
k-subspace Ñ (Bi,M) ⊆ HomR(Bi,M) is a kH-submodule of Hi(M) for
every i = 1, . . . , n.

Proof. Let V in In-spr(KH) be such that Φ̃
B(V ) = M . Then M =

(
⊕

g∈SH
g(V ⊗k B), (µ⊗kB)G), where µ is a k-linear action defining the kH-

module structure on Vn. Take any h ∈ H and f ∈ Ñ (Bi,
⊕

g∈SH
g(V ⊗k B))

with components fg ∈ Ñ (Bi, g(V ⊗k B)), g ∈ SH . To show that h ∗ f :

Bi →
⊕

g∈SH
g(V ⊗k B) belongs to Ñ we have to verify that so do all

components (h ∗ f)g, g ∈ SH . In fact, we only need to show that (h ∗ f)e ∈

Ñ (Bi, g(V ⊗k B)) since HomR(B, gBj) = N (B, gBj) for all j = 1, . . . , n and
e 6= g ∈ SH . Note thatM decomposes as (V⊗kB)⊕(

⊕
e 6=g∈SH

g(V ⊗k B)) in

ModHR (see definition of θGH). Therefore (h∗f)e =
h(µ⊗k B)h ·hfe ·(νi)h−1 .

The map fe (resp. (h ∗ f)e) is given by components fj (resp. (h ∗ f)j) in

Ñ (Bi, Vj ⊗k Bj), j = 1, . . . , n, where V = (Vj)j=1,...,n is a fixed sequence of
complementary direct summands for V . Then by definition we have

(h ∗ f)j =
n∑

l=1

h(µ(h)j,l ⊗k βj,l(h)) ·
hfl · (νi)h−1(i)

=

n∑

l=1

(µ(h)j,l ⊗k
hβj,l(h)) ·

hfl · (νi)h−1

=

n∑

l=1

(µ(h)j,l ⊗k (βj,l ·
h(νl)h)) ·

hfl · (νi)h−1 .
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We fix bases of the spaces Vl, l = 1, . . . , n, and the induced isomorphisms
Vl ⊗k Bl ≃ Bdll , where dl = dimk Vl. Passing to components we con-
clude by (i) that each component of (h ∗ f)j belongs to No(Bi, Bj), since
fl ∈ No(Bi, Bl) for all l = 1, . . . , n (No(Bi, Bl) is an H-invariant sub-

space of HomR(Bi, Bl)). Consequently, (h ∗ f)j ∈ Ñ (Bi, Vj ⊗k Bj) for all

j = 1, . . . , n, (h ∗ f)e ∈ Ñ (Bi, V ⊗k Bj) and h ∗ f ∈ Ñ (Bi,M).

3.3. Suppose we are given an ideal N in B which satisfies the assump-
tions of Theorem 3.1. For any i = 1, . . . , n, we denote by Hi the functor

Hi : I → MOD(kH)
op

which associates with M in I the kH-module Hi(M)/Ñ (Bi,M) (see Lem-
ma 3.2) and with any morphism f :M →M ′ in I the k-linear map Hi(f) :
Hi(M) → Hi(M ′) induced by Hi(f) = HomR(Bi, f). Note that Hi(f) is
well defined since N is an ideal, and that Hi(f) is a kH-homomorphism,
since so is Hi(f). Observe also that by analogous reasons the morphism
βi,j : Bj → Bi in Mod

H
f R induces a kH-homomorphism ιj,i(M) : Hi(M)→

Hj(M) for all i ≤ j. We set ιj,i = {ιj,i(M)}M∈ob I . It is clear that each ιj,i
defines a natural transformation ιj,i : Hi → Hj of functors, and that by
2.1(iii) we have ιj,l · ιl,i = ιj,i for all i ≤ l ≤ j.

Lemma. (a) Im(Hi) ⊂ mod(kH)op for every i = 1, . . . , n.

(b) Each ιj,i is a natural embedding of functors, for i ≤ j.

Proof. Fix M = Φ̃B(V ) in Im Φ̃B, where V is in In-spr(kH). Then we
have an R-isomorphismM =

⊕
g∈SH

⊕n
l=1

g(Vl⊗kBl), where (Vl) l=1,...,n is
a fixed sequence of complementary direct summands for V and dl = dimk Vl.
Then 3.1(ii), 3.1(∗) together with the isomorphisms

(i)l Vl ⊗k Bl ≃ B
dl
l ,

l = 1, . . . , n, given by fixing bases of the spaces Vl, yield k-isomorphisms

Hi(M) ≃
∏

g∈SH

n∏

l=1

HomR(Bi,
gBl)

dl/N (Bi,
gBl)

dl(ii)i

≃
i⊕

l=1

(kβl,i)
dl ≃

i⊕

l=1

Vl ⊗k kβl,i,

i = 1, . . . , n. Consequently, Hi(M) is a finite-dimensional kH-module and
(a) is proved.

To prove (b) note that the k-linear map ιj,i(M) becomes, under the

identifications (ii)i and (ii)j , the canonical embedding given by
⊕i

l=1 idVl ⊗
· βi,j for all i ≤ j.
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3.4. For every i = 1, . . . , n, we denote by H′i the subfunctor ιn,i(Hi)
of Hn. We define the functor

Ψ̃B : I → In-spr(kH)

by setting

Ψ̃B(M) = {H′1(M) ⊆ . . . ⊆ H
′
n(M) = Hn(M)}

for any object M in I, and

Ψ̃B(f) = Hn(f)

for any morphism f : M → M ′ in I. Note that Ψ̃B(M) is an object of
In-spr(kH), since ιj,i’s satisfy the commutativity condition, and Hn(f) is a
morphism in In-spr(kH), because ιj,i’s are natural transformations.

Remark. The functors Hi and consequently Ψ̃B can be extended, by
the same formula, to the whole category ModGf,BoR. In this way we obtain

the functor ΨB : modBo(R/G) → In-spr(kH), Ψ
B = Ψ̃B ◦ F•, satisfying

cdn(ΨB(X)) = dsc(X) for X in modBo(R/G) (cf. 3.1).

To prove that ΦB is a representation embedding it suffices to show the
following.

Proposition. (a) The functors Ψ̃BΦ̃B and idIn-spr(kH) are isomorphic.

(b) Ker Ψ̃B contains no non-zero idempotents.

Proof. (a) Fix V in In-spr(kH) together with a sequence V = (Vl)l=1,...,n
of complementary direct summands for V (dl = dimk Vl). The identifications

3.3(ii)i, i = 1, . . . , n, yield H′i(Φ̃
B(V )) =

⊕i
l=1 Vl ⊗k kβl,n.

We show that the induced action of H on the k-vector space
⊕i

l=1 Vl⊗k
kβl,i is given by the family

(i)i {[µ(h)m,l ⊗k βm,l ·]m,l∈{1,...,i}}h∈H

of k-linear automorphisms (cf. 2.1).
For any f ∈ HomR(Bi,

⊕n
l=1 Vl ⊗k Bl) we denote by f = (f l)l=1,...,i

∈
⊕i

l=1(kβl,i)
dl (f l = al · βl,i for some al ∈ kdl) and f ′ = (f ′l )l=1,...,n ∈⊕n

l=1N (Bi, Bl)
dl the components of f under the isomorphism

HomR

(
Bi,

n⊕

l=1

Vl ⊗k Bl
)
≃

i⊕

l=1

(kβl,i)
dl ⊕

n⊕

l=1

N (Bi, Bl)
dl ,

induced by the identifications 3.3(i)l (cf. 3.1(∗)).

Recall that Ψ̃B(V ) = (
⊕n

l=1 Vl ⊗k Bl) ⊕ (
⊕

e 6=g∈SH

⊕n
l=1

g(Vl ⊗k Bl))

is a decomposition in ModHR, therefore the kH-module HomR(Bi, Ψ̃
B(V ))

decomposes as
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HomR

(
Bi,

n⊕

l=1

Vl ⊗k Bl
)
⊕ HomR

(
Bi,

⊕

e 6=g∈SH

n⊕

l=1

g(Vl ⊗k Bl)
)
,

and that

HomR

(
Bi,

⊕

e 6=g∈SH

n⊕

l=1

g(Vl ⊗k Bl)
)
= N
(
Bi,

⊕

e 6=g∈SH

n⊕

l=1

g(Vl ⊗k Bl)
)

(cf. 3.1(ii) and 3.1(iii)).
Observe that to prove (i)i it suffices to show the formula

(ii)i,m bm =
i∑

l=1

µ(h)m,l · al

for all h ∈ H, f ∈ HomR(Bi, Vl ⊗k Bl) and m = 1, . . . , i, where (h ∗ f)m =
bm · βm,i, b ∈ kdm , and µ(h)m,l ∈ Mdm×dl(k) is the matrix of the k-linear
map µ(h)m,l : Vl → Vm in the fixed bases.

Note that µ(h)m,l ⊗k βm,l(h) : Vl ⊗k Bl →
h−1(Vm ⊗k Bm) corresponds

via 3.3(i)l and 3.3(i)m to the map µ(h)m,l · βm,l(h) : B
dl
l →

h−1Bdmm . There-

fore, by definition, the mth component (h∗f)m ∈ HomR(Bi, Bm)dm of h∗f
is given by

(h ∗ f)m =
n∑

l=1

(µ(h)m,l ·
hβm,l(h)) ·

hfl · (νi)h−1

=
n∑

l=1

(µ(h)m,l·
hβm,l(h))·

hf ′l ·(νi)h−1+
i∑

l=1

(µ(h)m,l·
hβm,l(h))·(al·

hβl,i)·(νi)h−1

for every m = 1, . . . , n. It is easily seen that the first summand of the
above sum belongs to N (Bi, Bm)dm . The second summand is equal to∑i
l=1(µ(h)m,l · al) · βm,i ( = (h ∗ f)m), since

hβm,l(h) ·
hβl,i · (νi)h−1 =

h((νm)h · βm,i) · (νi)h−1

= h(h
−1

βm,i · (νi)h) · (νi)h−1 = βm,i

(see 2.1). Consequently, (ii)i,m holds for every m = 1, . . . , i, and the action
we search for is just given by the family (i)i.
To complete the proof of (a) observe that the composition of 3.3(ii)n

with the canonical isomorphism
⊕i

l=1 Vl ⊗k kβl,n ≃
⊕i

l=1 Vl = V yields a

kH-isomorphism α(V ) : Ψ̃BΦ̃B(V )→ V (see the proof of Lemma 3.3(b)). It
is easy to check that the family (α(V ))V ∈In-spr(KH) is natural with respect
to V and therefore defines the required isomorphism of functors.
(b) Observe first that since EndR(Bi) is local, we have No(Bi, Bi) ⊆

J(EndR(Bi)) for every i = 1, . . . , n. Then Ker Ψ̃
B is nilpotent, by the lemma

below, and (b) holds.
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Lemma. Let N be an ideal in B determined by an ideal No in Bo, where
Bo and B are as in Theorem 3.1. Then the following conditions are equiva-
lent :

(a) No(Bi, Bi) ⊆ J(EndR(Bi)) for every i = 1, . . . , n,
(b) No is nilpotent ,
(c) N is nilpotent ,

(d) Ñ is nilpotent.

Moreover , for a morphism f :M →M ′ in ModGf,BoR defined by the compo-

nents f
(g′,g)
j,i ∈ HomR(gB

di
i ,

g′B
d′j
j ), where M = (

⊕
g∈SH

g(
⊕n

i=1B
di
i ), µ) and

M ′ = (
⊕

g∈SH
g(
⊕n

j=1B
d′j
j ), µ

′), the following conditions are equivalent :

(e) f belongs to Ñ ,

(f) Ψ̃B(f) = 0 (see Remark 3.4),

(g) f
(e,e)
j,i belongs to Md′j×di(N (Bi, Bj)) for all i ≥ j.

In particular , Ker Ψ̃B ⊂ Ñ .

Sublemma. Let H be a subgroup of G ⊂ Autk(R) acting freely on R,
and L be a full subcategory of R. Suppose that H stabilizes L (i.e. hL = L

for all h ∈ H), and that m = |obL/H| is a natural number. Then
⋂m+1
l=1 glL

is a trivial subcategory for any pairwise different g1, . . . , gm+1 in SH .

Proof. Let obL = Hx1 ∪ . . . ∪ Hxm be a splitting of obL into a dis-
joint union of H-orbits. Suppose that x ∈

⋂m+1
l=1 glL, where g1, . . . , gm+1

are as above. Then there exist h1, . . . , hm+1 ∈ H and i(1), . . . , i(m + 1) ∈
{1, . . . ,m} such that x = g1h1xi(1) = . . . = gm+1hm+1xi(m+1). Conse-
quently, i(l) = i(s) for some 1 ≤ l < s ≤ m + 1, and glhl = gshs. This

contradicts glH 6= gsH, therefore
⋂m+1
l=1 glL is trivial.

Proof of Lemma. We start by observing that by [7, Theorem 2.9], each
algebra EndR(Bi) is semiprimary (see [1]), so (a) is equivalent to No(Bi, Bi)
being a nilpotent ideal in EndR(Bi) for every i = 1, . . . , n.

(a)⇒(b). The nilpotency degree of No is bounded by nn′, where n′

is a common bound of the nilpotency degrees of the ideals No(Bi, Bi)
⊆ EndR(Bi), i = 1, . . . , n. This follows from the fact that for any
sequence (i(j))j=0,1,...,nn′ of elements of {1, . . . , n} there exists i such that
|{j ∈ {0, . . . , nn′} : i(j) = i}| ≥ n′ + 1.
(b)⇒(c). Denote by L the union

⋃n
i=1 suppBi. Note that L satisfies

the assumption of the Sublemma since all Bi’s are G-atoms. We set m =
|obL/H| and denote by m′ the nilpotency degree of No. We show that
fmm′ · . . . · f1 = 0 for any collection {fl ∈ N (gl−1Bi(l−1),

glBi(l))}l=1,...,mm′
of R-homomorphisms, where Bi(l) ∈ Bo and gl ∈ SH for l = 0, 1, . . . ,mm

′.
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Observe that if |{gl}l=0,1,...,mm′ | > m then the claim follows immediately by
the Sublemma. Consider the case |{gl}l=0,1,...,mm′ | ≤ m. Then there exists
g ∈ SH such that |{l ∈ {0, . . . ,mm′} : gl = g}| ≥ m′ + 1. Consequently,
the claim follows from the equality Nm′

o = 0 by definition of N . Hence N
is nilpotent.

The implication (c)⇒(d) follows easily from the definitions, (c)⇒(a) from
the introductory remark.

To prove the second part of the lemma we fix f as above.

(e)⇒(f). Note that ImHomR(Bn, f) ⊆ Ñ (Bn,M ′) for f ∈ Ñ (M,M ′),

and consequently Ψ̃B(f) = 0.

(f)⇒(g). We start by observing that 3.1(∗) induces the k-isomorphism

HomR

( n⊕

i=1

Bdii ,

n⊕

j=1

B
d′j
j

)

≃
∏

1≤j≤i≤n

Md′j×di(kβj,i) ⊕
∏

1≤i, j≤n

Md′j×di(N (Bi, Bj)).

Then the R-homomorphism f (e,e) :
⊕n

i=1B
di
i →

⊕n
j=1B

d′j
j , defined by the

components f
(e,e)
j,i , 1≤j, i≤n, is given by the two collections {f

(e,e)
j,i }1≤j≤i≤n

and {(f
(e,e)
j,i )

′}1≤j, i≤n, where f
(e,e)
j,i = aj,i ·βj,i, aj,i ∈ Md′j×di(k) for all

1 ≤ j ≤ i ≤ n, and (f
(e,e)
j,i )

′ ∈ Md′j×di(N (Bi, Bj)) for all 1 ≤ i, j ≤ n. Then

the morphism Ψ̃B(f) : Ψ̃B(M) → Ψ̃B(M ′) in In-spr(kH), under the iden-

tifications Ψ̃B(M) ≃
⊕n

i=1(kβi,n)
di and Ψ̃B(M ′) ≃

⊕n
j=1(kβj,n)

d′j (see
3.1(∗) and 3.1(ii); cf. 3.3(ii)n), is given by the k-linear block matrix map

a :
⊕n

i=1(kβi,n)
di →

⊕n
j=1(kβj,n)

d′j , where a = [aj,i · βj,i]1≤i, j≤n (we set

aj,i = 0 for i < j). Hence, if Ψ̃B(f) = 0, then aj,i = 0 for all 1 ≤ i, j ≤ n,

and consequently, f
(e,e)
j,i ∈Md′j×di(N (Bi, Bj)) for all i ≥ j.

(g)⇒(e). Note that, by definition of N and Ñ , we only have to show

that f
(g,g)
j,i belongs to Ñ for all g ∈ SH and 1 ≤ i, j ≤ n (in fact

1 ≤ j ≤ i ≤ n; see 3.1(∗)). Since f is a morphism in ModGR, we have h
−1

f ·
µh = µ′h · f for every h ∈ G. Then for any g, g′1 ∈ SH , looking at the
(g′1, g)-components of the above equality, we obtain the following equalities

in HomR(
g(
⊕n

i=1B
di
i ),

h−1g′1(
⊕n

j=1B
d′j
j )):

(iii)(h, g′1, g)
∑

g1∈SH

h−1f (g
′
1, g1) · µ

(g1, g)
h =

∑

g′∈SH

ν
(g′1, g

′)
h · f (g

′, g)

where µ
(g1, g)
h : g(

⊕n
i=1B

di
i )→

h−1g1(
⊕n

i=1B
di
i ) (resp. µ

′
h
(g′1, g

′)
: g
′

(
⊕n

j=1B
d′j
j )
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→ h−1g′1(
⊕n
j=1 B

d′j
j )) is the (g1, g)-component (resp. (g

′
1, g
′)-component) of

the R-isomorphism µh :
⊕

g∈SH
g(
⊕n

i=1B
di
i ) →

h−1(
⊕

g1∈SH
g1(
⊕n

i=1B
di
i ))

(resp. µ′h :
⊕

g′∈SH
g′(
⊕n

j=1B
d′j
j ) →

h−1(
⊕

g′1∈SH
g′1(
⊕n

j=1B
d′j
j ))) defining

the R-action µ (resp. µ′) of H, and f (g
′, g) : g(

⊕n
i=1B

di
i ) →

g′(
⊕n

j=1B
d′j
j )

(resp. f (g
′
1, g1) : g1(

⊕n
i=1B

di
i )→

g′1(
⊕n

j=1B
d′j
j ) is the R-homomorphism with

components f
(g′, g)
j,i (resp. f

(g′1, g1)
j,i ), 1 ≤ i, j ≤ n. Assume now that g′1 = e

and h = g−1. Note that µ
(g1, g)
h , µ′h

(e, g′) ∈ Ñ for g1 6= e and g′ 6= g; also
gf (e, e) ∈ Ñ (f (e, e) ∈ Ñ !). Then (iii)(g−1, e, g) implies that µ

′
h
(e, g) ·f (g, g) ∈ Ñ .

But by [7, Lemma 2.4], µ′h
(e, g)
is an R-isomorphism and therefore f (g, g) ∈ Ñ

for every g ∈ SH ; consequently, f ∈ Ñ .

Corollary. The functor ΦB induces a representation embedding of the
subcategory of all indecomposable objects in In-spr

′(kH) into the full subcat-
egory formed by all indecomposable non-orbicular modules in modBo(R/G).

3.5. In this subsection we assume that H ≃ Z and N = PuB.

Remark. (a) For any i = 1, . . . , n, and M = (
⊕

g∈SH
g(
⊕n

j=1B
dj
j ), µ)

in ModGf,BoR, M and Bi satisfy the assumptions of [5, Theorem A(iii)]
(H ⊆ GM = G and suppBi ∩ suppM ⊂ suppBi), therefore we have the

equalities Ñ (Bi,M) = Pu(Bi,M) and Ñ (M,Bi) = Pu(M,Bi).

(b) Analogously, we obtain Ñ (V ⊗k B,M) = Pu(V ⊗k B,M) and

Ñ (M,V ⊗k B) = Pu(M,V ⊗k B) for V in In-spr(kH). However generally,

only the inclusion Pu B̃ ⊂ Ñ (= P̃uB) holds; it is not clear if Pu B̃ = Ñ .

To prove the first statement of Theorem 3.1(a) it suffices to show the
following (see first Remark 3.4).

Lemma. Φ̃BΨ̃B(M) is a direct summand of M for all M in ModGf,BoR.

Sublemma. Let

0 C1 C2 C3 0

0 D1 D2 D3 0

// w1 //

f1

��

p1 //

f2

��

//

f3

��
// w2 // p2 // //

be a commutative diagram (in an abelian category C) whose rows are split-
table exact sequences. Suppose that f3 is a monomorphism and D1 is an
injective A-module. Then for any splitting s1 : C3 → C2 of p1 there exists
a splitting s2 : D3 → D2 of p2 such that f2s1 = s2f3.

Proof. Let s1 be as above. Fix s
′
2 : D3 → D2 such that p2s

′
2 = idD3 .

Since p2(f2s1−s′2f3) = 0, we have f2s1−s
′
2f3 = w2u for some u : C3 → D1.
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Then by our assumptions there exists u′ : D3 → D1 such that u = u′f3.
Now it is easily seen that s2 = s

′
2 + w2u

′ satisfies the assertion.

Proof of Lemma. To prove that, for a given M in ModGf,BoR, Φ̃
BΨ̃B(M)

= θ(Ψ̃B(M) ⊗k B) is a direct summand of M , we construct a splittable

monomorphism ϕ : Ψ̃B(M) ⊗k B → M in ModH R. We may as-
sume that M =

⊕
g∈SH

g(
⊕n

i=1B
di
i ) =

⊕n
i=1B

di
i ⊕ M ′, where M ′ =⊕

e 6=g∈SH
g(
⊕n

i=1B
di
i ).

For any i = 1, . . . , n− 1 consider the commutative diagram

0 Ñ (Bi,M) HomR(Bi,M) Hi(M) 0

0 Ñ (Bi+1,M) HomR(Bi+1,M) Hi+1(M) 0

// εi //

Ñ (βi,M)

��

πi //

HomR(βi,M)

��

//

ιi+1,i(M)

��
// εi // πi+1 // //

in MOD(kH)op. By [5, Theorem A(iv)] all kH-modules Ñ (Bi,M), i =

1, . . . , n, are injective since Ñ (Bi,M) = Pu(Bi,M) (see Remark). Then
by the Sublemma one can inductively construct a family si : Hi(M) →
HomR(Bi,M), i = 1, . . . , n, such that πisi = idHi(M) for every i, and
HomR(βi+1,M) · si = si+1 · ιi+1,i(M) for i < n.

Let s̃i : Hi(M)⊗kBi →M be the morphism in ModHR which is adjoint
to si, i = 1, . . . , n (see [3, Lemma 2.4]). Then by the last equality we have

(i) s̃i · (Hi(M)⊗ βi) = s̃i+1 · (ιi+1,i(M)⊗Bi)

for i < n.

For any l = 1, . . . , i and t = 1, . . . , dl, we denote by βl,i,t the composite

map Bi
βl,i
−→ Bl →

⊕n
j=1B

dj
j , where the second map is the standard embed-

ding into the tth component of Bdll . Then the equality πisi = idHi(M) implies

that under the identifications Hi(M) ≃
⊕i

l=1(kβl,i)
dl =
⊕i

l=1

⊕dl
t=1 kβl,i,t

and HomR(Bi,M) ≃ HomR(Bi,
⊕n

j=1B
dj
j ) ⊕ HomR(Bi,M

′) of k-linear
spaces, we have

si(βl,i,t) = (βl,i,t + ϕl,i,t, ϕ
′
l,i,t)

for all i = 1, . . . , n, l = 1, . . . , i, t = 1, . . . , dl, where ϕl,i,t ∈ Ñ (Bi,
⊕n

j=1B
dj
j )

and ϕ′l,i,t ∈ HomR(Bi,M
′). Note that, via the R-isomorphism Hi(M)⊗kBi

≃
⊕i

l=1B
dl
i , the R-homomorphism s̃i regarded as a map

⊕i
l=1B

dl
i →⊕n

j=1B
dj
j ⊕M

′ has components (βl,i,t + ϕl,i,t, ϕ
′
l,i,t)l∈{1,...,i}, t∈{1,...,dl}.

Set for simplicity V = Ψ̃B(M). From now on we will identify the k-spaces
Vi = H′i(M) and Hi(M) (via ιn,i(M)), i = 1, . . . , n.
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To define ϕ we construct inductively a family {ϕi : V(i) ⊗k B
[1,i] →

M}i=1,...,n of kH-homomorphisms such that

(ii) ϕi|V(i−1)⊗B[1,i−1] = ϕi−1

for i > 1, and

(iii) s̃i = ϕi · (Vi ⊗ id
[i]
Bi
)

for every i (see 2.8 for definition of Vi ⊗ id
[i]
Bi
).

We set ϕi = s̃1. To construct ϕi+1 from ϕi, for 1 < i < n, we consider
the commutative diagram

0 Vi ⊗k Bi+1 Vi+1 ⊗k Bi+1 (Vi+1/Vi)⊗k Bi+1 0

0 V(i) ⊗k B
[1,i] V(i+1) ⊗k B

[1,i+1] (Vi+1/Vi)⊗k Bi+1 0

// wi //

Vi⊗β
[i]
i+1

��

//

Vi+1⊗id
[i]
Bi

��

//

=

��
// vi // ri // //

in ModHR with exact rows where wi = ιi+1,i(M) ⊗ Bi+1 (see Lemma 2.9

for definition of the lower row). Observe that s̃i+1wi = ϕi · (Vi⊗ β
[i]
i+1) since

s̃i+1 · (ιi+1,i(M) ⊗ Bi+1) = ϕi · (Vi ⊗ id
[i]
Bi
) · (Vi ⊗ βi+1) by (i) and (iii).

Consequently, there exists a unique morphism f : V(i+1) ⊗k B
[1,i+1] → M

satisfying fvi = ϕi, f · (Vi+1 ⊗ id
[i+1]
Bi+1
) = s̃i+1, and we set ϕi+1 = f .

Now we define ϕ : Ψ̃B(M)⊗k B →M by setting ϕ = ϕn.

To give a direct description of ϕ recall that, under the identification Vn =
Hn(M) ≃

⊕n
l=1(kβl,n)

dl , each Vi corresponds to
⊕i

l=1(kβl,n)
dl (see 3.3),

and we can assume that the sequence (Vi)i=1,...,n of complementary direct
summands for V is given by Vi = (kβi,n)

di , i = 1, . . . , n. Consequently, we

have R-isomorphisms V(i)⊗kB
[1,i] ≃

⊕i
l=1B

dl
l , and in particular Ψ̃

B(M)⊗k
B ≃
⊕n

l=1B
dl
l . Now it is easily seen that by (ii) and (iii), ϕ regarded as an

R-homomorphism
⊕n

l=1B
dl
l →

⊕n
j=1B

dj
j ⊕M

′ is given by the components
(βl,l,t + ϕl,l,t, ϕ

′
l,l,t)l∈{1,...,n}, t∈{1,...,dl} (βl,l = idBl !).

To show that ϕ is a splittable monomorphism in ModHR we construct
a morphism ψ : M → Φ̃BΨ̃B(M) in ModHR such that ψϕ is an invertible
R-homomorphism. In the construction we apply, in contrast to the previous
case, the functors

Hi : ModGf,BoR→ MOD(kH)
op,

i = 1, . . . , n, which are defined by setting

Hi(N) = HomR(N,Bi)/Ñ (N,Bi)

for N in ModGf,BoR. By similar arguments to those for Hi, we have the
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canonical k-isomorphism

(iv) Hi(M) ≃
n⊕

l=i

(kβi,l)
dl .

We also have at our disposal the natural compatible monomorphisms

ιi,j : Hj →Hi

of functors induced by βi,j , i ≤ j, which evaluated at M correspond to the
canonical k-linear monomorphisms

(v)

n⊕

l=j

(kβj,l)
dl →

n⊕

l=i

(kβi,l)
dl

given by βi,j ·.
Now applying analogous arguments as before one can inductively con-

struct kH-homomorphisms si : Hi(M) → HomR(M,Bi), i = n, . . . , 1, such
that si splits the canonical projection πi : HomR(M,Bi) → Hi(M) for
every i, and HomR(M,βi) · si = si−1 · ιi−1,i(M) for i > 1.
For any i = 1, . . . , n, consider the composite map

ui :M ⊗R B
∗
i

ε
→֒ HomR(M,Bi)

∗ (s
i)∗

−→ Hi(M)∗

of left kH-modules, where ε is the embedding from [3, Corollary 2.4] (see
[7, 5.1] for the definitions). Denote by ũi the composition

M → Homk(B
∗
i ,H

i(M)∗)→Hi(M)∗ ⊗k Bi

where the first map is adjoint to ui and the second is given by the functor
isomorphism from [3, Lemma 2.2]. It is easily seen that by the commutativity
condition for the si’s we have

(vi) (Hi(M)∗ ⊗ βi) · ũi = ((ι
i,i−1(M))∗ ⊗Bi−1) · ũi−1

for every i > 1. For any l = i, . . . , n and t = 1, . . . , dl, we denote by β
t
i,l

the composite map
⊕n

j=1B
dj
j → Bl

βi,l
→ Bi, where the first map is the stan-

dard projection onto the tth component of Bdll . Then the equality π
iwi =

idHi(M) implies that, under the identifications H
i(M) ≃

⊕n
l=i(kβi,l)

dl ≃
⊕n

l=i

⊕dl
t=i kβ

t
i,l and HomR(M,Bi)≃HomR(

⊕n
j=1B

dj
j , Bi)⊕HomR(M

′, Bi)
of k-linear spaces, we have

si(βti,l) = (β
t
i,l + ψ

t
i,l, ψ

′ t
i,l)

for all i = 1, . . . , n, l = i, . . . , n, t = 1, . . . , dl, where ψ
t
i,l ∈ Ñ (

⊕n
j=1B

dj
j , Bi)

and ψ′ ti,l ∈ HomR(M
′, Bi). It is easily seen that under the R-isomorphism

Hi(M)∗ ⊗k Bi ≃
⊕n

l=iB
dl
i induced by the k-linear isomorphism H

i(M)∗ ≃⊕n
l=i(kβ

∗
i,l)

dl (dual to (iv)), the R-homomorphism ũi regarded as a map
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⊕n
j=1B

dj
i ⊕M

′ →
⊕n

l=iB
dl
i is given by the components (β

t
i,l + ψ

t
i,l, ψ

′ t
i,l),

l ∈ {i, . . . , n}, t ∈ {1, . . . , dl}.

Denote by W = (W1
p1
→ . . .

pn−1
−→ Wn) the sequence of epimorphisms

in mod (kH)op given by Wi = Hi(M)∗ and pi = (ιi+1,i(M))∗. To define
ψ we proceed analogously as in the case of ϕ, and construct inductively
kH-homomorphisms ψi :M →W(i) ⊗k B

[i,n], i = n, . . . , 1, such that

(vii) riψi = ψi+1

for i < n, and

(viii) (Wi ⊗ id
[n−i+1]
Bi

) · ψi = ũi

for every i (see 2.9 for definitions ofWi⊗id
[n−i+1]
Bi

:W(i)⊗kB
[i,n] →Wi⊗kBi

and ri :W(i)⊗k B
[i,n] →W(i+1) ⊗k B

[i+1,n]). We set ψn = ũn. To construct
ψi−1 from ψi, for 1 < i < n, consider the commutative diagram

0 Ker pi−1 ⊗k Bi−1 W(i−1) ⊗k B
[i−1,n] W(i) ⊗k B

[i,n] 0

0 Ker pi−1 ⊗k Bi−1 Wi−1 ⊗k Bi−1 Wi ⊗k Bi−1 0

// //

=

��

ri−1 //

Wi−1⊗id
[n−i+2]
Bi−1

��

//

Wi⊗β
[n−i+1]
i

��
// // pi−1⊗Bi−1 // //

in ModHR with exact rows (see Corollary 2.9).

Note that (pi−1 ⊗Bi−1) · ũi = (Wi ⊗ β
[n−i+1]
i ) · ψi, as (pi−1 ⊗Bi−1) · ũi

= (Wi ⊗ βi) · (Wi ⊗ id
[n−i+1]
Bi

) · ψi by (vi) and (viii). Consequently, there

exists a unique map f ′ : M → W(i−1) ⊗k B
[i−1,n] satisfying ri−1f

′ = ψi,

(Wi−1 ⊗ id
[n−i+2]
Bi−1

) · f ′ = ũi−1, and we set ψi−1 = f ′.

Now we define ψ :M → Ψ̃B(M) by setting ψ = ψ1.

To give a direct description of ψ note that, under the k-linear isomor-
phisms Hi(M)∗ ≃

⊕n
l=i(kβ

∗
i,l)

dl (dual to (iv)), pi corresponds to the stan-

dard k-linear epimorphism
⊕n

l=i(kβ
∗
i,l)

dl →
⊕n

l=i+1(kβ
∗
i+1,l)

dl (dual to (v))

with kernel (kβ∗i,l)
di . In this way we obtain the induced R-isomorphisms

W(i) ⊗k B
[i,n] ≃

⊕n
l=iB

dl
l , and in particular Ψ̃

B(M) ⊗k B ≃
⊕n

l=1B
dl
l . It

is easily seen that by (vii) and (viii), ψ regarded as an R-homomorphism⊕n
j=1B

dj
j ⊕M

′ →
⊕n

l=1B
dl
l is given by the components (β

t
l,l + ψ

t
l,l, ψ

′ t
l,l),

l = 1, . . . , n, t = 1, . . . , dl (βl,l = idBl !).

In conclusion, ϕψ is an isomorphism in ModHR, since by [7, Lemma 2.4]

it is an invertible R-homomorphism (Ñ ⊂ JR). In this way we constructed

a splittable monomorphism ϕ : Ψ̃B(M)⊗k B →M in ModHR and now the
assertion follows immediately from [7, Lemma 6.2].

The result below completes the proof of Theorem 3.1(a).
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Proposition. (a) KerΨB = [modAfo (R/G)]modBo (R/G).

(b) The functors ΦR and ΨB induce an equivalence

In-spr(kH) ≃ modBo(R/G)/ [modAfo (R/G)]modBo (R/G).

Proof. We start by observing that, by Proposition 3.4(a) and Lemma 3.5,
(a) immediately implies (b). Moreover, by Lemma 3.4, we have the inclusion

[modAfo (R/G)]modBo (R/G) ⊂ KerΨ
B (Pu B̃ ⊂ Ñ !). To prove the inverse

inclusion we show first that any morphism ϕ : θGH(V ⊗k B)→ kH ⊗k Bm in
MODHR,m ∈ {1, . . . , n}, V in In-spr(kH), factors through θHe (Z), for some
Z in modR (here e denotes the trivial subgroup of G). Observe that for this
purpose, it suffices to show that the map ψ : V ⊗k B → θGH(kH ⊗k Bm)
which corresponds to ϕ under the natural isomorphisms

HomHR (θ
G
H(V ⊗k B), kH ⊗k Bm) ≃ Hom

G
R(θ

G
H(V ⊗k B), θ

G
H(kH ⊗k Bm))

≃ HomHR (V ⊗k B, θ
G
H(kH ⊗k Bm)),

(see [3, Lemma 2.3]; (supp kH ⊗k Bm)/H is finite!) factors through θHe (Z)
for some Z in modR.
Fix a map ψ as above. Note that kH ⊗k Bm ≃ θHe (Bm) in MOD

HR;
an isomorphism is given by

⊕
h∈H(νm)h−1 :

⊕
h∈H Bm →

⊕
h∈H

hBm,
under the identification kH ⊗k Bm ≃

⊕
h∈H h ⊗ Bm ≃

⊕
h∈H Bm. Con-

sequently, θGH(kH ⊗k Bm) ≃ θGe (Bm), since θ
G
e = θGH ◦ θ

H
e . The module

θGe (Bm) =
⊕

g∈G
gBm, as an object in MOD

HR, decomposes into a di-

rect sum
⊕

g′∈UH
θGH(

g′Bm) =
⊕

g′∈UH
(
⊕

h∈H
hg′Bm), where UH is a fixed

set of representatives of right cosets H/G containing e. Then the map
ψ : V ⊗k B → θGe (Bm), under the k-isomorphism

HomHR (V ⊗k B, θ
G
e (Bm)) ≃ Hom

H
R

(
V ⊗k B,

⊕

g′∈UH

θGH(
g′Bm)

)
,

is given by the components ψg′ = (ψh,g′)h∈H , g
′ ∈ UH . Since (V ⊗k B)(k)

is a finitely generated kH-module (see Remarks 2.7(a) and 2.4), there exist
g1, . . . , gt0 ∈ UH such that ψg′ = 0 for all g

′ ∈ UH \ {g1, . . . , gt0}. Note that
ψgt factors through

⊕
h∈H Imψh,gt = θ

H
e (Imψe,gt) (Imψgt ⊆

⊕
h∈H Imψh,gt

and Imψh,gt =
h(Imψe,gt)). Hence, ψ factors through

⊕t0
t=1 θ

H
e (Imψe,gt).

To complete the proof of our claim, it suffices to show that dimk(Imψe,g′)
is finite for every g′ ∈ UH . Set L = suppB1 ∪ . . . ∪ suppBn (clearly,
supp(V ⊗kBm) ⊂ L and L/H is finite). Note that if Gg′Bm ∩H = e then, by

[3, Lemma 3.6], L∩supp g
′

Bm is finite, and consequently dimk(Imψe,g′) is fi-
nite. Consider the caseH ′ = Gg′Bm∩H 6= e. Then L is contained in the union
of a finite number of H ′-orbits, since [H : H ′] is finite (H ≃ Z!). Suppose
that dimk(Imψe,g′) is infinite, equivalently, supp(Imψe,g′) is infinite. Then
there exist x ∈ obL and pairwise different elements hs ∈ H ′, s ∈ N, such
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that ψe,g′(hsx) 6= 0 for all s. This implies that ψh−1s , g′(x) 6= 0 for all s ∈ N,

a contradiction ((Imψg′)(x) ⊆ (
⊕

h∈H
hg′Bm)(x) =

⊕
h∈H

g′Bm(h
−1x)!).

Consequently, all modules Imψe,gt , t = 1, . . . , t0, are finite-dimensional, and

ψ factors through θHe (Z), where Z =
⊕t0

t=1 Imψe,gt ; the claim is proved.

Next we prove that any morphism ϕ :M → N in ModHR, betweenM in
ModGf,BoR and N = V ⊗k B, V in In-spr(KH), factors through

⊕n
i=1 Pi ⊗k

Bi, where all Pi’s are finitely generated free kH-modules, provided the

R-homomorphism ϕ belongs to Ñ .
Consider first the case N = W ⊗k Bm, m ∈ {1, . . . , n}, where W is in

mod(kH)op. Recall that B∗m stands for the object in Mod
HRop which con-

sists of the k-dual to Bm, the R
op-module B∗m (B

∗
m(x) = Homk(Bm(x), k)

for every x ∈ obR), and the standard Rop-action of H on B∗m (see [7, 5.1],
also [3, 2.1], where the notation B⊛

m is used). Then the image ϕ
′ of the map

ϕ via the natural isomorphisms

HomHR (M,W⊗kBm) ≃ Hom
H
R (M,Homk(B

∗
m,W )) ≃ HomkH(M⊗RB

∗
m,W )

(see [3, 2.2 and 2.4]) admits a factorization ϕ′ = (idN )
′ · (ϕ⊗R B∗m), where

(idN )
′ corresponds to idN via Hom

H
R (N,W⊗kBm) ≃ HomkH(N⊗RB

∗
m,W ).

We prove that ϕ⊗RB∗m factors through a free finitely generated kH-module.
Since M ⊗R B∗m is a finitely generated kH-module ((suppBm)/H is fi-
nite), M ⊗R B∗m decomposes into a direct sum M ⊗k B∗m = P ⊕ F of kH-
submodules, where P is free finitely generated and F is finite-dimensional
(kH ≃ k[T, T−1] is a principal ideal domain). Consequently, ϕ ⊗R B∗m can
be regarded as a matrix map [s1, s2] : P ⊕ F → N ⊗k B∗m. We show that
s2 = 0. For this purpose consider the dual map (ϕ⊗RB∗m)

∗ : (N⊗RB∗m)
∗ →

(M ⊗R B∗m)
∗, which can now be viewed in the form

[
s∗1
s∗2

]
: (N ⊗k B∗m)

∗

→ P ∗ ⊕ F ∗. Observe that, under the natural kH-isomorphisms ηN :
HomR(N,Bm) → (N ⊗R B∗m)

∗ and ηM : HomR(M,Bm) → (M ⊗R B∗m)
∗

(see [3, 2.4]), the map (ϕ⊗R B∗m)
∗ corresponds to HomR(ϕ,Bm). Since by

Remark 3.5, Ñ (M,Bm) = Pu(M,Bm), the kH-submodule U = Ñ (M,Bm)
of HomR(M,Bm) is injective (see [5, Theorem A(iv]), and HomR(M,Bm)
has a decomposition HomR(M,Bm) = U ⊕ U0, where U0 is a finite-dimen-
sional kH-module (U0 ≃

⊕n
i=m(kβm,i)

di as k-vector spaces, where di =
dsc(F−1• (M))Bi , i = 1, . . . , n). Then HomR(ϕ,Bm) is given by the matrix

map
[
u
0

]
: HomR(N,Bm)→ U⊕U0 (ϕ belongs to Ñ and ImHomR(ϕ,Bm) ⊆

Ñ (M,Bm)). Moreover, the isomorphism ηM is given by the matrix map[
w11
0

w12
w22

]
: U ⊕ U0 → P ∗ ⊕ F ∗ (HomkH(U,F ∗) = 0, because there is no

non-trivial divisible finite-dimensional kH-module). Consequently,[
s∗1
s∗2

]
· ηN =

[
w11 w12
0 w22

]
·

[
u
0

]
,

and s2 = 0.



NON-ORBICULAR MODULES 277

Now we consider the general case. For any non-zero morphism ϕ :M→N ,
whereN = V ⊗kB for V in In-spr(kH), we denote bym = m(ϕ) the smallest
i ∈ {1, . . . , n} such that Imϕ ⊆ V(i) ⊗k B

[1,i] (we set m(ϕ) = 0 if ϕ = 0).
We show by induction on m that ϕ factors through

⊕m
i=1 Pi ⊗k Bi, where

all Pi’s are finitely generated free kH-modules, provided ϕ belongs to Ñ .

By the previous considerations (the case N =W ⊗k Bm) we can assume
that m ≥ 2. Moreover, by the same reason, the map rϕ has a factorization

M
ψ
→ Pm ⊗k Bm

ψ′

→ Vm ⊗k Bm

where

(∗) 0→ V(m−1) ⊗k B
[1,m−1] v→ V(m) ⊗k B

[1,m] r
→ Vm ⊗k Bm → 0

is an exact sequence in ModHR defined in 2.9 (here Vm = V(m)/V(m−1))
and Pm is a finitely generated free kH-module. Observe that the map

HomkH(Pm,HomR(Bm, r)) : HomkH(Pm,HomR(Bm, V(m) ⊗k B
[1,m]))

→ HomkH(Pm,HomR(Bm, Vm ⊗k Bm)),

which corresponds under the standard adjunction isomorphisms to

HomR(Pm ⊗k Bm, r) :

HomHR (Pm ⊗k Bm, V(m) ⊗k B
[1,m])→ HomHR (Pm ⊗k Bm, Vm ⊗k Bm),

is surjective (Pm is kH-projective, and HomR(Bm, r) is a kH-epimorphism
since (∗) is R-splittable). Therefore, there exists ψ′′ : Pm ⊗k Bm → V(m) ⊗k
B[1,m] such that rψ′′ = ψ′, and consequently ϕ′ : M → V(m−1) ⊗k B

[1,m−1]

such that vϕ′ = ϕ−ψ′′ψ, because r(ϕ−ψ′′ψ) = 0. Note that m(ϕ′) ≤ m−1,

and that by Remark 3.5, ϕ′ belongs to Ñ , since ψ′′ψ ∈ Pu by the first part
of the proof; therefore all components of ϕ − ψ′′ψ belong to N . Hence, by
the inductive assumption, ϕ′ factors through

⊕m−1
i=1 Pi ⊗k Bi, where all Pi

are finitely generated free kH-modules, and ϕ = vϕ′ +ψ′′ψ factors through⊕m
i=1 Pi ⊗k Bi.

Now we can prove the inclusion KerΨB ⊂ [modAfo (R/G)]modBo (R/G).

Let f : M → N be a morphism in ModGf,BoR such that Ψ̃
B(f) = 0. Then,

by Lemma 3.5, M ≃ θGH(V ⊗k B) and N ≃ θGH(V
′ ⊗k B) for some V, V ′ in

In-spr(kH). By Lemma 3.4, all components of f belong to N ; therefore, the
morphism ϕ ∈ HomHR (θ

G
H(V ⊗kB), V

′⊗kB) which corresponds to f via the

isomorphism from [3, 2.3] belongs to Ñ . Consequently, by the second part
of the proof, ϕ factors through

⊕m
i=1 Pi⊗k Bi, where Pi’s are as above, and

by the first, through θHe (Z), for some Z in modR. Hence, f factors through
θGe (Z) = θ

G
H(θ

H
e (Z)) (apply [3, 2.3]), and the proof is complete.
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3.6. The next result proves Theorem 3.1(b).

Lemma. The functors Ψ̃BΦ̃B, idModGf,BoR
: ModGf,BoR → Mod

G
f,BoR are

isomorphic provided G = H and No = 0 (see Remark 3.4).

Proof. By Proposition 3.4(a), it suffices to show that the functors

Ψ̃B(−) ⊗k B|M and id|M are isomorphic, where M is the full (dense) sub-

category of ModGf,BoR formed by all M = (M,µ) such that M =
⊕n

i=1B
di
i ,

di ∈ N, i = 1, . . . , n.
Fix any M inM . Then for any h ∈ H the composite R-homomorphism

n⊕

i=1

Bdii
µh→ h−1

( n⊕

i=1

Bdii

)
≃

n⊕

i=1

h−1Bdii
v
→

n⊕

i=1

Bdii ,

v =
⊕n

i=1((νi)
−1
h )

di , is given by the components Ai,j(h) ·βi,j :
⊕n

j=1B
dj
j →⊕n

i=1B
di
i , where Ai,j(h) ∈ Mdj×di(k), i, j = 1, . . . , n, are uniquely deter-

mined by the equalities HomR(Bj , Bi) = kβi,j for i ≤ j, and Ai,j(h) = 0 for
j < i. Consequently, we have (µh)i,j = ((νi)h)

di (Ai,j(h) · βi,j) = Ai,j(h) ·

βi,j(h), where (µh)i,j : B
dj
j →

h−1Bdii is the (i, j)th component of µh, i, j =

1, . . . , n. Applying the k-isomorphisms Hi(M) ≃
⊕i

l=1(kβl,i)
dl , H′i(M) ≃⊕i

l=1(kβl,n)
dl and passing to components, we obtain Ψ̃B(M) ≃ V , where V

in In-spr(KH) is the object given by the spaces Vi =
⊕i

l=1 k
di , i = 1, . . . , n,

and the linear maps ν(h) : Vn → Vn, h ∈ H, with components Ai,j(h)· :
kdj → kdi . It is easily seen that if we set Vi = kdi , i = 1, . . . , n, then the
standard R-isomorphism

n⊕

i=1

Vi ⊗k Bi ≃
n⊕

i=1

Bdii

is an isomorphism in ModGf,BoR.
We denote by ξ(M) the composite isomorphism

Ψ̃B(M)⊗k B ≃ V ⊗k B ≃M

in ModGf,BoR and show that ξ = {ξ(M)}M∈obM yields the required isomor-
phism of functors.
Fix any morphism f :M →M ′ inM , where M =

⊕n
i=1B

di
i and M

′ =
⊕n

i=1B
d′i
i . Then the R-homomorphism f is given by the R-components Fi,j ·

βi,j : B
di
i → B

d′i
i , i, j = 1, . . . , n, where Fi,j ∈ Md′i×dj (k) are uniquely

determined by the equalities HomR(Bj , Bi) = kβi,j for i ≤ j, and Fi,j = 0

for i < j. Consequently, the kH-homomorphism Ψ̃B(f), regarded as a map

V → V ′ under the isomorphisms Ψ̃B(M) ≃ V , Ψ̃B(M ′) ≃ V ′ as above, is
given by the components Fi,j · : kdj → kd

′
i , i, j = 1, . . . , n. Now the equality

f · ξ(M) = ξ(M ′) · (Ψ̃B(f)⊗k B) follows by an easy check on definitions.
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3.7. To prove 3.1(c), recall that any surjective k-algebra homomorphism
A→ A0 induces a full and faithful embedding of categories

mod(A0)
op →֒ mod(A)op,

and consequently

In-spr(A0) →֒ In-spr(A).

Therefore, a surjective homomorphism H → H0 of groups induces a full and
faithful embedding

In-spr(kH0) →֒ In-spr(kH)

which preserves the coordinate vectors.
It is also well known that, for a k-algebra A and m ≤ n, any s =

(si)i=1,...,m ∈ Nm such that 1 ≤ s1 < . . . < sm ≤ n yields the full embedding

εns : Im-spr(A) →֒ In-spr(A)

given by (V1 ⊆ . . . ⊆ Vm) 7→ (V ′1 ⊆ . . . ⊆ V ′n), where V
′
j = 0 for j < s1,

V ′j = Vi for si ≤ j < si+1, i = 1, . . . , n − 1, and V ′j = Vm for j ≥ sm.
Note that εns preserves the coordinate vectors, i.e. cdn(ε

n
s (V ))j = cdn(V )i

if j = si for some i and cdn(ε
n
s (V ))j = 0 otherwise, for V in Im-spr(A).

In consequence, the result below completes the proof of Theorem 3.1.

Lemma. Let H be an infinite cyclic group (resp. a cyclic p-group of
order |H| ≥ 8 if char(k) = p > 0). Then the category I2-spr′(kH) is wild.

Proof. It is enough to show that the category I2-spr
′(A) is wild, where

A = k[T ]/(T 8) (k[T ] is the polynomial algebra in one variable T ). The
algebra A can be regarded as a factor algebra of kH ≃ k[T, T−1] (resp. of
kH ≃ k[T ]/(T p

m

− 1) for m ∈ N large enough if char(k) = p > 0) and then
the category I2-spr

′(kH) is also wild.
To prove our claim we apply the arguments suggested by D. Simson and

consider the universal covering F ′ : R′ → R′ = R′/G′ of the algebra T2(A
op)

(A(R′) ≃ T2(Aop), G′ ≃ Z). The cover category R′ can be regarded as the
locally bounded k-category opposite to kQ/I, where Q is the quiver

−3′

◦
−2′

◦
−1′

◦
0′

◦
1′

◦
2′

◦
3′

◦

◦
−3

◦
−2

◦
−1

◦
0

◦
1

◦
2

◦
3

� � � � � � � � � � � � � b−3 // b−2 // b−1 // b0 // b1 // b2 // � � � � � � � � � � � � �
� � � � � � � � � � � � � a−3 //

c−3

OO

a−2 //

c−2

OO

a−1 //

c−1

OO

a0 //

c0

OO

a1 //

c1

OO

a2 //

c2

OO

� � � � � � � � � � � � �c3

OO

and I is the ideal in the path category kQ generated by all elements of the
form ci+1ai − bici, ai+7 · . . . · ai and bi+7 · . . . · bi, i ∈ Z. Denote by C the full
subcategory of modR′ formed by all representations V such that V (c0) is
injective and V (0), V (−1′) 6= 0, satisfying the following conditions: V (i) = 0
for i ≥ 5 and i ≤ −4, V (i′) = 0 for i ≥ 5 and i ≤ −1, V (i) = V (i′) and
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V (ci) = idVi for 1 ≤ i ≤ 4, V (ai) = V (bi) for 1 ≤ i ≤ 3 and V (a0) =
V (b0)V (c0). It is easily seen that C is equivalent to the wild subcategory D
of mod(kQ′)op formed by all representations W of Q′ such that W (c0) is
injective and W (0),W (−1′) 6= 0, where Q′ is the quiver

−3′

◦
−2′

◦
−1′

◦
0′

◦
1′

◦
2′

◦
3′

◦
4′

◦

◦
0

b−3 // b−2 // b−1 // b0 // b1 // b2 // b3 //

c0

OO

Observe that F ′λ(C) ⊂ I2-spr
′(A), where F ′λ : modR

′ → modT2(Aop) is
the “push-down” functor associated with F ′. Moreover, F ′λ preserves the
indecomposability (G′ is torsionfree) and (F ′λ)|C sends non-isomorphic in-
decomposables into non-isomorphic ones, since gV 6≃ V ′ for all V , V ′ in C
and e 6= g ∈ G′ (see [15]). Consequently, the category I2-spr′(kH) is wild
(see [11]).

Corollary. If H is as is 3.1(c) then, for any 1 ≤ i < j ≤ n, the
full subcategory of all indecomposable non-orbicular modules in the category

mod{Bi,Bj}(R/G) is wild.

Remark. (a) One can show that if H is as above then for any sequence
1 ≤ i1 < . . . < im ≤ n, 2 ≤ m ≤ n, the full subcategory formed by
all indecomposable non-orbicular modules X in mod{Bi1 ,...,Bim}(R/G) such
that dss(X) = {Bi1 , . . . , Bim} is wild.

(b) The minimal value of n ∈ N such that I2-spr(k[T ]/(Tn)) is wild is
not known to the author (clearly n ≥ 5, by [29]).

4. Non-orbicular modules in mod{B,B̃}(R/G) and mod{ ˜̃B,B,B̃}
(R/G).

We apply Theorem 3.1 to the sequence of length 2 (resp. 3) induced by a
G-atom B, which consists of B and its Kan extensions.

4.1. Let B be a G-atom. For simplicity we set S = suppB and denote
by B̃ the R-module eSλ(B|S), where e

S
λ : MODS → MODR is the left

adjoint to the restriction functor eS• : MODR → MODS. The module B̃

belongs to IndR, EndR(B̃) ≃ EndS(B|S) ≃ EndR(B) (e
S
λ is a full and

faithful embedding of ModS into ModR), and the support S̃ = supp B̃ is

contained in Ŝ (see 1.5). Observe that GB̃ contains GB; consequently, B̃ is

a G-atom, since Ŝ is the union of a finite number of GB-orbits in R (R is
locally bounded and S/GB is finite).

Note that iterating this construction we always get eS̃λ(B̃|S̃) ≃ B̃, where

eS̃λ : MOD S̃ → MODR is the left adjoint to the restriction functor e
S̃
• :
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MODR → MOD S̃ (for any x ∈ obS, we have eSλ(S(−, x)) ≃ R(−, x) ≃

eS̃λ(S̃(−, x)) and e
S̃
• (R(−, x)) is equal to the projective module S̃(−, x)).

Suppose that B admits an R-action ν of GB. Then ν induces an R-action
ν̃ = (ν̃h)h∈GB on B̃, where each ν̃h is a family

{ν̃h(x) : B ⊗S R(x,−)→ B ⊗S R(hx,−)}x∈obR

of k-linear maps given by ν̃h(x)(b⊗ α) = νh(b)⊗ hα for y ∈ obS, b ∈ B(y),

α ∈ R(x, y). Note that the counit map β(B) : B̃ → B (see 1.5) is a morphism

from B̃ = (B̃, ν̃) to B = (B, ν) in ModGBf R.

Fix ν as above and denote by B the sequence

B : B1
β2
← B2

of length 2, where B1 = B, B2 = B̃ and β2 = β(B). Then according

to the notation introduced in 3.1 we have Bo= {B, B̃} and B= {gB,gB̃}g∈SB ,
where SB = SGB .

Now we are able to formulate our second main result of the paper.

Theorem. Let G ⊆ Autk(R) be a group of k-linear automorphisms
acting freely on R. Suppose that B is a G-atom which admits an R-action
ν of GB, and B satisfies the following conditions:

(a) EndR(B)/J(EndR(B)) ≃ k,

(b) B̃ 6≃ B (equivalently , S  S̃),

(c) B|S is not a direct summand of any
gB̃|S , for g ∈ SB \ {e}.

Then the functor ΦB : I2-spr(kGB) → mod(R/G) is a representation em-
bedding. In particular 3.1(c) holds. If , in addition, G is torsionfree then
the non-orbicular indecomposable modules in mod{B,B̃}(R/G) form a wild
subcategory of mod2(R/G).

Remark. The condition (c) immediately implies

(d) GB̃ = GB,

since otherwiseB|S is a direct summand of
gB̃|S (≃ B̃|S) for any g∈(GB̃\GB)

∩SB ( 6= ∅). (For better understanding of (c) we also refer to Corollary 4.2.)

The proof (see 4.3) needs some preparation. We first illustrate the above
result, and also the meaning of the conditions (c) and (d), by presenting
several examples.

Example (i). Let R be the locally bounded k-category from Ex-
ample 3.1. Keeping the notation from 3.1, we set B = B1. It is easily seen
that this example fits exactly into the context of Theorem 4.1. Note that
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all assumptions are trivially satisfied (B̃ ≃ B2 and β(B) = β2, under this
identification).

Exaample (ii). Let R be the opposite (locally bounded) k-category to
the path category kQ of the following quiver Q:

−3′

◦
−2′

◦
−1′

◦
0
◦

1′

◦
2′

◦
3′

◦

◦
3′

◦
−2

◦
−1

◦
0

◦
1

◦
2

◦
3

� � � � � � � � � � � � � a′−2oo b′−2 // a′0oo b′0 // a′2oo b′2 // � � � � � � � � � � � � �
� � � � � � � � � � � � � � a−2oo b−2 //

c−2

OO

a0oo b0 //

c0

OO

a2oo b2 //

c2

OO

� � � � � � � � � � � � �
The category R is equipped with a natural free action of the infinite cyclic
subgroup G = 〈g〉 of Autk(R), where g is defined by g(i) = i + 2, g(i′) =
(i+ 2)′ for i ∈ Z. Let B be the indecomposable R-module given by B(i) =
B((4i)′) = k for all i ∈ Z, B(i′) = 0 for all i 6∈ 4Z, and B(a2i) = B(b2i) =
B(c4i) = idk, B(a

′
2i) = B(b′2i) = B(c4i+2) = 0 for all i ∈ Z. The module

B is a G-atom with stabilizer GB = 〈g2〉. Then B̃ can be viewed as an

R-module given by setting B̃|suppB ≃ B|suppB , B̃((4i+2)
′) = k, B̃((2i+1)′)

= k2, and B̃(c4i+2) = idk, B̃(a
′
2i) = w1, B̃(b

′
2i) = w2 for all i ∈ Z, where

w1 =
[
1
0

]
· (resp. w2 =

[
0
1

]
·) are the canonical embeddings. Consequently,

GB̃ = G (! GB) and
gB̃|suppB ≃ B|suppB (SB = {e, g}).

Example (iii). Let R be the locally bounded k-category opposite to the
category kQ/I, where Q is the quiver

−3′

◦
−2′

◦
−1′

◦
0′

◦
1′

◦
2′

◦
3′

◦

◦
−3

◦
−2

◦
−1

◦
0

◦
1

◦
2

◦
3

� � � � � � � � � � � � � b−3 //

c−2

��

b−1 //a−1oo

c0

��

b1 //a1oo

c2

��

a3oo � � � � � � � � � � � � �
� � � � � � � � � � � � � c−3

OO

a−2oo b−2 //

c0

OO

a0oo b0 //

c1

OO

a2oo b2 //

c3

OO

� � � � � � � � � � � � �
and I the ideal of the path category kQ generated by the elements bi−1ci−1ai
− ai+1ci+1bi, cibi−1ci−1ai, i ∈ Z. The category R is equipped with a free
action of the infinite cyclic subgroup G = 〈g〉 of Autk(R), where g is defined
by g(i) = (i+1)′, g(i′) = i+1 for i ∈ Z. Let B be the “line” R-module given
by B(i) = k, B(i′) = 0, B(a2i) = B(b2i) = idk for all i ∈ Z, and B(γ) = 0

for all other arrows γ in Q. Then B̃ can be viewed as an R-module given by
B̃(i) = B̃(i′) = k, B̃(ai) = B̃(bi) = B̃(c2i+1) = idk and B̃(c2i) = 0 for all

i ∈ Z. Both modulesB and B̃ are G-atoms with stabilizersGB = 〈g2〉 = GB̃,

but gB̃|suppB ≃ B|suppB (SB = {e, g}).

4.2. Lemma. Let G be as above, H be a subgroup of G, and L a non-
trivial full subcategory of R. Suppose that H stabilizes L and that L is
contained in the union of a finite number of H-orbits in R. Then gL ⊂ L
if and only if gL = L, for any g ∈ G.
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Proof. Fix x1, . . . , xn ∈ obL such that L = Hx1 ∪ . . . ∪Hxn, an object
x in L, and an element g ∈ G such that gL ⊂ L. Then for every l ∈ N we
have a descending sequence of inclusions

L ⊃ gL ⊃ g2L ⊃ . . . ⊃ glL

of subcategories of R. Note that, for every m ∈ N, gmx = hmxi(m) for
some hm ∈ H and 1 ≤ i(m) ≤ n. Then i(p) = i(m) for some m > p and
h−1p gpx = h−1m gmx. Since Gx = {e}, we have gm−p ∈ H and glL = L, where
l = m− p > 0. Consequently, gL = L and the proof is complete.

Corollary. Let B be a G-atom, B̃ = eSλ(B|S) and g ∈ G. If
gB̃ ≃ B

or B|S isomorphic to a direct summand of
gB|S then g ∈ GB.

Proof. In the case gB̃ ≃ B, we have gS ⊂ gS̃ ⊂ S. Then by the lemma

gS = gS̃ = S. This implies B̃ ≃ B since S̃ = S, and so g ∈ GB.
In the second case we have gS ⊃ S and then by the lemma gS = S. This

implies gB ≃ B and consequently g ∈ GB.

4.3. Proof of Theorem 4.1. We construct an ideal N in B which satisfies
the assumptions of Theorem 3.1. For simplicity we set E = EndS(B|S)
(≃ EndR(B)) and J = J(E). We denote by I the inverse image of J under
the canonical isomorphism

HomR(B̃, B) ≃ E

which can also be viewed as the composition

HomR(B̃, B)→ HomS(B̃|S , B|S)→ E,

where the first map is given by the restriction functor eS• and the second is

induced by an isomorphism β(B)|S : B̃|S → B|S (see 1.5).
We first define a family No = {No(B′, B′′) ⊆ HomR(B′, B′′)}B′,B′′∈Bo

of k-subspaces by setting

No(B
′, B′′) =




HomR(B

′, B′′) if B′ = B, B′′ = B̃,

I if B′ = B̃, B′′ = B,
J(EndR(B

′)) if B′ = B′′.

We denote by N the family {N (B′, B′′) ⊆ HomR(B′, B′′)}B′,B′′∈B of k-
subspaces given by 3.1(iii). To prove that N is an ideal in B we show first
that No is an ideal in Bo, equivalently, that

N =

(
No(B,B) No(B̃, B)

No(B, B̃) No(B̃, B̃)

)

is an ideal in the endomorphism algebra

E = EndR(B ⊕ B̃) =

(
HomR(B,B) HomR(B̃, B)

HomR(B, B̃) HomR(B̃, B̃)

)
.
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Consider the algebra homomorphism

r : E→ M2(E)

which is the composition of the restriction map EndR(B⊕B̃)→ EndS(B|S⊕

B̃|S) given by e
S
• and the isomorphism EndS(B|S ⊕ B̃|S)→ M2(E) induced

by β(B)|S. Observe that the first map, and then also r, is an embedding

since eS• induces the isomorphism EndR(B̃) ≃ EndS(B̃|S) and S = suppB.
Moreover, we have

r(E) = E′ =

(
E E
U E

)
and r(N) = N ′ =

(
J J
U J

)

where U is the image of HomR(B, B̃) under the (2, 1)th component of r.
The space U forms a two-sided ideal in E, since multiplication in E is
well defined. Note that U is contained in J , since otherwise there exists
f ∈ HomR(B, B̃) such that β(B)|Sf|S ∈ EndS(B|S) is an isomorphism, and

consequently β(B)f ∈ EndR(B) is an isomorphism and B̃ ≃ B, a contra-
diction.
Now it is easy to check that N ′ is an ideal in E′. Consequently, the same

holds for N in E and No in Bo.
Next we show that the ideal No is H-invariant, where H = GB = GB̃

(see Remark 4.1). Note that since JR is a G-invariant ideal in ModR and

No(B, B̃) = HomR(B, B̃) we only need to check that No(B̃, B) = I is an

H-invariant subspace of HomR(B̃, B). In order to show that h∗f ∈ I for all
f ∈ I and h ∈ H, it suffices to show that (h ∗ f)|S = (

hνh |S)(
hf|S)(ν̃h |S)

−1

is a non-isomorphism. Observe that (hf)| (hS) is a non-isomorphism since by

definition of I so is f|S . Consequently, (
hf)|S is a non-isomorphism since

hS = S, and therefore so is (h ∗ f)|S (νh, ν̃h are isomorphisms).
Recall that JR and HomR are summably closed ideals in ModR

(see [5, 7]). Therefore to show that the ideal No is summably closed we

have to check only that No(B̃, B) = I is a summably closed subspace of

HomR(B̃, B). Fix a summable family fi ∈ HomR(B̃, B), i ∈ T , such that

fi ∈ I for every i. Then {fi |S}i∈T is a summable family in HomS(B̃|S , B|S)
and
∑
i∈T fi |S = f|S , where f =

∑
i∈T fi. Since all fi |S are in J ◦ β(B)|S

and J is a summably closed subspace of E, f|S also belongs to J ◦ β(B)|S.
Consequently, f ∈ I and the claim is proved.
Finally, we show that N is an ideal in B. Since No is an ideal in Bo we

have to check that for any f ∈ HomR(Bi, gBl) and f ′ ∈ HomR(gBl, Bj),
the composition f ′f belongs to N , for all e 6= g ∈ SH and Bi, Bl, Bj ∈ Bo
as in Remark 3.1. We first consider the case Bi = Bj . Suppose that f

′f 6∈
N (Bi, Bj). Then gBl ≃ Bi (Bl is indecomposable). Since g 6= e, we have

Bl 6= Bi and then either gB̃ ≃ B or g
−1

B̃ ≃ B, hence, by Corollary 4.2, g is
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in H, a contradiction. Consequently, f ′f ∈ N . It remains to consider the
case Bi = B̃, Bj = B, since No(B, B̃) = HomR(B, B̃). Suppose again that
f ′f 6∈ N (Bi, Bj) = I. This means that the composition

(i) B|S
β(B)−1|S
−−−−→ B̃|S

f|S
−→ gBl |S

f ′|S
−→ B|S

does not belong to J and B|S is isomorphic to a direct summand of
gBl |S .

Then Corollary 4.2 (the case Bl = B) and the assumption (c) (the case

Bl = B̃) imply g = e, a contradiction. In consequence, f ′f ∈ N , and N is
an ideal in B.
Note that by construction the ideal N satisfies the remaining assump-

tions of Theorem 3.1, in particular (∗), and the proof is complete.

Remark. If G = GB, the situation discussed in Theorem 4.1 is fully
controlled by the subalgebra E′ ⊆ M2(E) and the ideal N ′ (see 4.3).

4.4. Corollary. Let G ⊆ Autk(R) be an infinite cyclic group act-
ing freely on R. Suppose that there exists a G-atom such that GB = G,
EndR(B)/J(EndR(B)) ≃ k and B̃ 6≃B̃. Then mod2(R/G) contains a wild
subcategory consisting of non-orbicular indecomposable modules which is

contained in mod{B,B̃}(R/G). Moreover , if J(EndR(B)) = Pu(B,B) and

HomR(B, B̃) = Pu(B, B̃), then the faithful embedding ΦB : I2-spr(kG) →
mod{B,B̃}(R/G) is dense and induces an equivalence

I2-spr(kG) ≃ mod{B,B̃}(R/G)/ [mod1(R/G)]mod{B,B̃}(R/G).

Proof. The first assertion is an immediate consequence of Theorem 4.1.
The second can be derived from Theorems 3.1(b) and 4.1, once we show

that I = Pu(B̃, B) and J(EndR(B̃)) = Pu(B̃, B̃). But these equalities

follow easily from the definition of I and the isomorphism EndR(B̃) ≃

HomS(BS , B̃S) ≃ EndS(BS), by the lemma below.

We denote by Pu′ the pure-projective ideal in the category MODS.

Lemma. (a) For any M in MODR and N in MODS, the canonical
adjunction isomorphism HomR(e

S
λ(N),M) ≃ HomS(N, e

S
• (M)) induces an

isomorphism Pu(eSλ(N),M) ≃ Pu
′(N, eS• (M)).

(b) For any M in ModR and N in ModS, the canonical adjunction iso-
morphism HomR(M, eS̺ (N)) ≃ HomS(e

S
• (M), N) induces an isomorphism

Pu(M, eS̺ (N)) ≃ Pu
′(eS• (M), N) (see 1.5 for definition of e

S
• ).

(c) For any M,M ′ in MODR such that suppM, suppM ′ ⊂ S, the
restriction functor eS• induces an isomorphism Pu(M,M ′) ≃ Pu′(eS• (M),
eS• (M

′)).

Proof. The statements (a) and (b) follow easily from the basic properties
of the functors e• and e̺ (to prove (b) apply the fact that each morphism
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in Pu′ModS factorizes through a locally finite-dimensional module which de-
composes into a direct sum of finite-dimensional modules).
(c) It is clear that the restriction map Pu(M,M ′) → Pu′(M|S ,M

′
|S)

is well defined and injective. To show that it is surjective we fix an
S-homomorphism f ∈ Pu(M|S ,M

′
|S). It admits a factorization M|S

u
→ Z

v
→ M ′|S , where Z =

⊕
t∈T Zt, u = (ut)t∈T , v = (vt)t∈T and all Zt’s

are in modS. Therefore f factors through the S-module Z ′ =
⊕

t∈T Z
′
t,

where Z ′t = Imut for every t ∈ T (f = v′u′, u′ = (u′t)t∈T , v
′ = (v′t)t∈T ).

Since suppM ′ ⊂ S, each Z ′t as an S-factor of M can be extended by ze-
ros to a module Z ′′t in modR. Then all S-homomorphisms u

′
t, v
′
t, t ∈ T ,

and f, u′v′ can be regarded as R-homomorphisms and f factors through
Z ′′ =

⊕
t∈T Z

′′
t .

We prove that, under the above assumptions (generally if G acts freely

on ind(R/G)/≃ , GB is infinite and B 6≃ B̃), also the category mod1(R/G)
is wild since so is modR (see Theorems 7.1 and 7.6).

4.5. For a given G-atom B we can also consider the functor ΦB relating
to the dual construction, namely the sequence

B :
˜̃
B

β′(B)
←− B

where
˜̃
B = eS̺ (B) (see 1.5 for definition of e

S
̺ : ModS → ModR and β

′(B)).

Observe that
˜̃
B, analogously to B̃, is a G-atom and β′(B) can be regarded

as a morphism in ModGBR provided B is equipped with a fixed R-action ν

of GB (if it admits any) and
˜̃
B with the R-action ˜̃ν of GB which is induced

by ν.
It is rather easily seen that for the sequence B as above we can prove

results analogous to Theorem 4.1 and Corollary 4.4.
One can also study properties of the functor ΦB for the “full” sequence

induced by the G-atom B, i.e. the sequence

B :
˜̃
B

β′(B)
←− B

β(B)
←− B̃

of length 3 in MODGBR. It is clear that now ImΦB ⊂ mod ˜̃
B,B,B̃

(R/G)

(Bo = {
˜̃
B,B, B̃}).

The following result extends Theorem 4.1 in a natural way.

Theorem. Let G ⊆ Autk(R) be a group of k-linear automorphisms
acting freely on R. Suppose that B is a G-atom which admits an R-action
ν of GB and B satisfies the following conditions:

(a) EndR(B)/J(EndR(B)) ≃ k,

(b) B̃ 6≃ B 6≃
˜̃
B,

(c) GB̃ = GB = G ˜̃B = G.
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Then the functor ΦB : I3-spr(kG) → mod(R/G) is a representation em-
bedding. In particular 3.1(c) holds and , if additionally G is torsionfree,
then the non-orbicular indecomposable modules in mod

{
˜̃
B,B,B̃}

(R/G) form a

wild subcategory of mod2(R/G). Moreover , if G is an infinite cyclic group

and J(EndR(B) = Pu(B,B), HomR(B, B̃) = Pu(B, B̃), HomR(
˜̃
B,B) =

Pu(
˜̃
B,B), HomR(

˜̃
B, B̃) = Pu(

˜̃
B, B̃), then the functor ΦB : I3-spr(kG) →

mod
{
˜̃
B,B,B̃}

(R/G) is dense and induces an equivalence

I3-spr(kG) ≃ mod
{
˜̃
B,B,B̃}

(R/G)/ [mod1(R/G)]mod
{
˜̃
B,B,B̃}

(R/G).

Proof. Keeping all notation from 4.3 we construct, as in the proof of
Theorem 4.1, the ideal N in B satisfying the assumptions of Theorem 3.1.
We denote by I ′ the inverse image of J under the standard adjunction

isomorphism

HomR(B,
˜̃
B) ≃ E

(see 1.5 for the factorization), and by I ′′ the inverse image of J under the
composite map

HomR(B̃,
˜̃
B)→ HomS(B̃|S ,

˜̃
B|S)→ E,

where the first map is given by the restriction functor eS• and the second
is induced by the isomorphisms β(B)|S and β

′(B)|S (see 1.5). Then we let
No = {No(B′, B′′) ⊆ HomR(B′, B′′)}B′,B′′∈Bo be the family of k-subspaces
given by

No(B
′, B′′) =





J(EndR(B
′)) if B′ = B′′,

I if B′ = B̃, B′′ = B,

I ′ if B′ = B, B′′ =
˜̃
B,

I ′′ if B′ = B̃, B′′ =
˜̃
B,

HomR(B
′, B′′) otherwise.

To show thatNo is an ideal we consider the subspaceN of the endomorphism
algebra

E = EndR(
˜̃
B ⊕B ⊕ B̃) =



HomR(

˜̃
B,
˜̃
B) HomR(B,

˜̃
B) HomR(B̃,

˜̃
B)

HomR(
˜̃
B,B) HomR(B,B) HomR(B̃, B)

HomR(
˜̃
B, B̃) HomR(B, B̃) HomR(B̃, B̃)




defined by No, and the algebra homomorphism

r : E→ M3(E)

which is the composition of the restriction map EndR(
˜̃
B ⊕ B ⊕ B̃) →

EndS(
˜̃
B|S ⊕ B|S ⊕ B̃|S) defined by e

S
• and the isomorphism EndS(

˜̃
B|S ⊕

B|S ⊕ B̃|S)→ M3(E) induced by β(B)|S and β
′(B)|S .
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Observe that all components ri,j (i, j = 1, 2, 3) of r but r3,1 are injective

(the map r1,3 has a factorization HomR(B̃,
˜̃
B) ≃ HomS(B|S ,

˜̃
B|S) ≃ E, for

the remaining ones apply arguments from 4.3). Then

r(E) =



E E E
U E E
U ′′ U ′ E


 , r(N) =




J J J
U J J
U ′′ U ′ J


 ,

where U = Im r2,1, U
′ = Im r3,2, U

′′ = Im r3,1. The spaces U , U
′ form

two-sided ideals in E which are contained in J (see 4.3).

Finally observe that HomR(
˜̃
B, B̃) = JR(

˜̃
B, B̃) since by (b), B̃ and

˜̃
B

are not isomorphic.
By the above remarks it is easily seen that No forms an ideal in Bo. As

in 4.3, the ideal N = No satisfies the remaining assumptions of Theorem 3.1.
To complete the proof one shows that No = PuBo (this follows by

Lemma 4.4 and definitions of I, I ′ and I ′′).

5. The case of different stabilizers. In this section we briefly discuss
the problem of how to construct indecomposable non-orbicular modules in
modBo(R/G), by use of generalized tensor product, in the case when the
stabilizers GBi of G-atoms Bi, i = 1, . . . , n, are not all equal to H (see 3.1).

We study more carefully the very special situation when Bo = {B, B̃} for a
G-atom B (as in the previous section), but in contrast (to 3.1 and 4.1) we
now assume GB  GB̃ (see Example 4.1(ii)).

5.1. Keeping the notation from 4.1 and assumptions (a) and (b) from
Theorem 4.1 (we drop assumption (c)), we assume that there exists an R-

action ν of H = GB on B such that the R-action ν̃ = ν̃H of H on B̃ can be
extended to an R-action ν̃GB of GB̃ on B̃ (i.e. (ν̃Gν̃ )|H = ν̃H).
We fix ν and ν̃GB as above and assume for simplicity that GB̃ = G.

Then the morphism β = β(B) : (B̃, ν̃H) → (B, ν) in Mod
H
f R induces the

morphism
βG : (B̃, ν̃G)→ (B

G, νG) (= θGGB (B, ν))

in ModGf R given by components βg =
gβ · νg−1 : B̃ →

gB, where BG =⊕
g∈SH

gB (see [3, Lemma 2.3]).
From now on we use the notation ν̃ also for ν̃G

B̃
.

Denote by B the sequence

B : B1
β2
←− B2

of length 2, where B1 = BG, B2 = B̃ and β2 = βG. According to 3.1, the
sequence B induces the functors Φ̃B : I2-spr(kG)→ Mod

G
f R, Φ̃

B = −⊗kB,

and ΦB : I2-spr(kG) → mod(R/G), ΦB = F−1• ◦ Φ̃B. It is easily seen
that similarly to 4.1 we have Im ΦB ⊂ mod{B,B̃}(R/G) and dsc(Φ

B(V )) =
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cdn(V ) for V in I2-spr(kG) (cf. 3.1). Moreover, Φ
B(V ) is in modB(R/G)

if and only if V is in I2-spr1(kG), where I2-spr1(kG) is the full subcate-
gory of I2-spr(kG) formed by all objects V = (V1 ⊆ V2) such that V1 = V2
(I2-spr1(kG) = Im ε

2
(1), cf. 3.7). Nevertheless, we cannot expect such nice

behaviour of the functor ΦB as in Theorem 4.1 and Corollary 4.4 (see The-
orem 5.5). To study it we will proceed analogously and define a functor
ΨB : mod{B,B̃}(R/G)→ I2-spr(kG) (see 5.2).

Denote by B the full subcategory of ModR formed by {B} ∪ {gB}g∈SH ,
and byN the familyN (B′, B′′) ⊆ HomR(B,B′′),B′, B′′ ∈ B, of k-subspaces
defined by

(i) N (B′, B′′) =




JR(B′, B′′) if B′ = B′′,
gI · ν̃g−1 if B′ = B̃, B′′ = gB,
HomR(B

′, B′′) otherwise,

where I is as in 4.3. Note that the definition of N does not depend on the
choice of the isomorphisms ν̃g−1 , g ∈ SH (ϕ I = I for any ϕ ∈ AutR(B)),
and that the restriction of N to the full subcategory Bo of B formed by the
set {B, B̃} is equal to the ideal No from 4.3. We also have the formulas

(ii) HomR(B
′, B′′) = kβB′′,B′ ⊕N (B

′, B′′)

where

(iii) βB′′,B′ =

{
idB′ if B

′ = B′′,
βg if B′ = B̃, B′′ = gB,
0 otherwise.

Lemma. N is an ideal in B.

Proof. Since No is an ideal in Bo, the restriction of N to the full subcate-
gory formed by {gB, B̃} is an ideal for every g ∈ SH . Therefore to show that

N is an ideal in B, it suffices to know that f ′f belongs to HomR(B̃, B) for

all f ∈ HomR(B̃, gB), f ′ ∈ HomR(gB,B), e 6= g ∈ SH . But this has already
been proved (see 4.3(i)).

5.2. Let B̃ denote the additive closure of B (i.e. the full subcategory of

ModR formed by all R-modules M of the form M ≃
⊕

g∈SH
gBdg ⊕ B̃d,

where dg, d ∈ N), and Ñ the ideal in B̃ which is the unique extension of N

to B̃ (|SH | = [GB̃ : GB ] is finite!).

Lemma. The k-subspace Ñ (M,M ′) ⊆ HomR(M,M ′) is a kG-submod-
ule of HomR(M,M ′) for any M,M ′ in ModGf R.

Proof. First we show that ϕ−12 ·
gf · ϕ1 ∈ Ñ (g1B1, g2B2) for any g ∈ G,

B1, B2 in B, f ∈ Ñ (B1, B2) and R-isomorphisms ϕi : giBi → gBi, i = 1, 2,
where gi represents gg

′ in SH in case Bi =
g′B, g′ ∈ SH , or gi = e in case

Bi = B̃. Since JR is an ideal in ModR and N is an ideal in B, it suffices
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to check the case B1 = B̃, B2 =
g′B, and ϕ1 = ν̃g−1, ϕ2 = (

gg′νh2)
−1,

where g2h2 = gg′, g2 ∈ SH , h ∈ H. Fix f = g′f0 · ν̃g′−1 ∈ N (B̃,
g′B), where

f0 ∈ N (B̃, B). Then

gg′νh2 ·
g(g

′

f0 ·ν̃g′−1)·ν̃g−1 =
g2h2νh2 ·

gg′f0 ·ν̃(gg′)−1 =
g2(h2νh2 ·

g2h2f0 ·ν̃h−12 )·ν̃g
−1
2
.

Note that h2νh2 ·
g2h2f0 · ν̃h−12 ∈ N (B̃, B) since No is a kH-invariant ideal

in Bo (see 4.3). Consequently, g2(h2νh2 ·
g2h2f0 · ν̃h−12 ) · ν̃g

−1
2
∈ N (B̃, g2B).

Now we prove the main assertion. Fix g ∈ G and a morphism f :
(M,µ) → (M ′, µ′) in ModGf R which belongs to Ñ (M,M ′). To check that

g ∗ f = gµ′g ·
gf · µg−1 belongs to Ñ (M,M ′), we show that each compo-

nent (g ∗ f) ′ : B1 → B2, B1, B2 in B, of the R-homomorphism g ∗ f ,

under the fixed R-module identifications M ≃
⊕

g∈SH
gBn ⊕ B̃ñ, M ′ ≃

⊕
g∈SH

gBn
′

⊕ B̃ñ
′

, n, n′, ñ, ñ′ ∈ N, belongs to N (B1, B2). Observe that,
for each component f ′ : B1 → B2, B1, B2 in B, of f , the R-homomorphism
g(f ′) : gB1 → gB2 (under the above identifications) can be represented in the
form ϕ2 ·ϕ

−1
2 ·

gf ·ϕ1 ·ϕ
−1
2 , where ϕ1, ϕ2 are as in the first part of the proof.

Now passing to components of the R-isomorphisms µg−1 ,
gµ′g, and applying

the fact that all ϕ−12 ·
g(f ′) · ϕ1’s belong to the ideal N , we immediately

obtain our claim.

To define ΨB we denote by

H1,H2 : Mod
G
f, {B,B̃}

R→ MOD(kG)op

the functors H1 = HomR(BG,−)/Ñ (BG,−), H2 = HomR(B̃,−)/Ñ (B̃,−)
and by

ι : H1 →H2

the natural transformation of functors induced by the morphism βG :
B̃ → BG in ModGf R (H1,H2 and ι are well defined by Lemmas 5.1 and 5.2).
Note that Hi(Mod

G
f,{B,B̃}

R) ⊂ mod(kG)op for i = 1, 2 (see 5.1(ii)).

Now we define the functor

Ψ̃B : ModG
f,{B,B̃}

R→ I2-spr(kG).

We set

Ψ̃B(M) = (Im ι(M) ⊆ H2(M))

for M in ModG
f,{B,B̃}

.

Let f : M → M ′ be a morphism in ModG
f,{B,B̃}

. Since ι is a natural

transformation, we have H2(f)(Im ι(M)) ⊆ Im ι(M ′). We set
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Ψ̃B(f) = H2(f).

It is easily seen that Ψ̃B is a k-linear functor.
We denote by ΨB : mod{B,B̃}(R/G)→ I2-spr(kG) the functor

ΨB = Ψ̃B ◦ F•.

Remark. (a) LetM be in ModG
f, {B,B̃}

. ThenH1(M)≃
⊕

g∈SH
(k idgB)

n,

H2(M) ≃
⊕

g∈SH
(kβg)

n⊕ (k idB̃)
ñ, where M ≃

⊕
g∈SH

gBn⊕ B̃ñ, n, ñ∈N

(we have HomR(B
G,M) ≃

⊕
g∈SH
(k idgB)

n ⊕ Ñ (BG,M) and HomR(B̃,M)

≃
⊕

g∈SH
(kβg)

n ⊕ (k idB̃)
ñ ⊕ Ñ (B̃,M), by 5.1(ii)).

(b) The map ι(M) is a kG-monomorphism for any M in ModG
f, {B,B̃}

R

(by the identifications from (a), ι(M) maps a · idgB onto a ·βg for any g ∈ SH
and a ∈ kn).
(c) For any X in mod{B,B̃}(R/G), we have

cdn(ΨB(X))2 = dimkH2(F•(X))− dimk Im ι(F•(X)) = dsc(X)B̃,

cdn(ΨB(X))1 = dimk Im ι(F•(X)) = [G : H] · dsc(X)B.

In particular, ΨB(X) is in I2-spr1(kG) if and only if X is in mod{B}(R/G),
and ΨB(X) is in I2-spr

′(kG) if and only if X is non-orbicular.

5.3. Now we compute the composition ΨB ◦ ΦB.
For any W = (W,µ) in mod(kG)op we denote by WG/H the kG-module

defined by the k-space k(G/H)⊗k W =
⊕

γ∈G/H γ ⊗W together with the

linear action µG/H = (µG/H(g))g∈G of G given by (g, γ ⊗ w) 7→ gγ ⊗ gw,
g ∈ G, γ ∈ G/H, w ∈ W (G acts on the set G/H of left cosets by left
shifts). Note that we have a kG-isomorphism KG ⊗kH W ≃ WG/H given
by g ⊗ w 7→ gH ⊗ gw, g ∈ G, w ∈W , which is natural with respect to W .
We denote by ∇ = ∇W : WG/H → W and ∆ = ∆W : W → WG/H

([G : H] = [GB̃ : GB] is finite) the standard (natural with respect to W )
kG-homomorphisms given by γ ⊗ w 7→ w and w 7→

∑
γ∈G/H γ ⊗ w. Note

that ∇∆ = [G : H] · idW .
We define the functor

Γ : I2-spr(kG)→ I2-spr(kG)

setting

Γ (V ) = (Im i ⊆ V
G/H
1 ⊔V1 V2)

for V = (V1 ⊆ V2) in I2-spr(kG), where i = i(V ) : V
G/H
1 → V

G/H
1 ⊔V1 V2

is the first canonical embedding into an amalgamated sum (defined by the

maps V1 →֒ V2 and ∆V1 : V1 → V
G/H
1 ). Note that we have Γ (I2-spr1(kG)) ⊂

I2-spr1(kG).



292 P. DOWBOR

Remark. (a) V
G/H
1 ⊔V1V2 can be identified with the kG-module defined

by the space V
G/H
1 ⊕ V2 with the G-action given by the matrices

µG/H(g) =

[
(µ1,1)

G/H(g) µG/H(g)1,2
0 µ(g)2,2

]
, g ∈ G,

where V2 is a fixed complementary direct summand for V1 in V (V2 =
V1 ⊕ V2), µ1,1 = (µ(g)1,1)g∈G and µ

G/H(g)1,2 : V2 →
⊕

γ∈G/H γ ⊗ V1 is

given by v 7→
∑
γ∈G/H γ ⊗ µ(g)1,2(v), v ∈ V2. The identification is induced

by the canonical embeddings w1 : V
G/H
1 → V

G/H
1 ⊕ V2 and ∆V1 ⊕ idV2 :

V2 → V
G/H
1 ⊕ V2. Under this identification, i corresponds to w1 and the

second embedding i′ = i′(V ) : V2 → V
G/H
1 ⊔V1 V2 to ∆V1 ⊕ idV2 .

(b) The family i′(V ) : V2 → V
G/H
1 ⊔V1 V2, V in I2-spr(kG), of kG-

homomorphisms defines the natural transformation i′ : idI2-spr(kG) → Γ of
functors.

Proposition. ΨB ◦ ΦB ≃ Γ .

Proof. Fix V = (V1 ⊆ V2) in I2-spr(kG) together with a complementary
direct summand V2 ⊆ V2 for V1 in V2 (V2 = V2 ⊕ V2). We construct an

isomorphism η(V ) : Ψ̃BΦ̃B(V )→ Γ (V ) in I2-spr(kG).

Fix bases of the spaces V1, V2 and denote by ψg : V1 ⊗k gB → gBd1 ,

g ∈ SH , and by ψ2 : V2 ⊗k B̃ → B̃d2 the isomorphisms induced by the
selection of bases, where d1 = dimk V1 and d2 = dimk V2. For any g ∈ G we
denote by µ(g)

i,j
the matrices of the k-linear maps µ(g)i,j, i, j = 1, 2, in the

fixed bases above (cf. 2.1).

For any f ∈ HomR(B̃, Φ̃B(V )) we denote by f1 ∈ HomR(B̃, V1 ⊗k BG)

(resp. f2 ∈ HomR(B̃, V2⊗k B̃)) the components of f under the identification

induced by the equality Φ̃B(V ) = V1 ⊗k BG ⊕ V2 ⊗k B̃, and by f1,g ∈

HomR(B̃, V1 ⊗k gB), g ∈ SH , the components of f1 under the identification
given by the canonical isomorphism V1 ⊗k BG ≃

⊕
g∈SH

V1 ⊗k gB.

For any f ∈ HomR(B̃, V2 ⊗k B̃) we denote by f ∈
⊕

g∈SH
(k idB̃)

d2 and

f ′ ∈ N (B̃, B̃)d2 the components of f under the identification HomR(B̃,

V2 ⊗k B̃) ≃ (k idB̃)
d2 ⊕N (B̃, B̃)d2 induced by ψ2 (cf. 5.1(ii)).

For any f ∈ HomR(B̃, V1⊗k gB), g ∈ SH , (resp. f ∈ HomR(B̃, V1⊗kBG)

with components fg ∈ HomR(B̃, V1 ⊗k gB), g ∈ SH) we denote by f ∈

(kβg)
d1 and f ′ ∈ N (B̃, gB)d1 (resp. f = (fg) ∈

⊕
g∈SH
(kβg)

d1 and f ′ =

(f ′g) ∈
⊕

g∈SH
N (B̃, gB)d1) the components of f under the identification

HomR(B̃, V1 ⊗k gB) ≃ (kβg)d1 ⊕N (B̃, gB)d1 , induced by ψg (cf. 5.1(ii)).
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To construct the isomorphism η(V ) we first compute (g ∗ f)i, g ∈ G,

i = 1, 2, for any f ∈ HomR(B̃, V1 ⊗k BG) and f ∈ HomR(B̃, V2 ⊗k B̃).

Fix f ∈ HomR(B̃, V1 ⊗k BG). Since µ(g)2,1 = 0, we have (g ∗ f)2 = 0,
and consequently

(i) (g ∗ f)2 = 0.

To compute (g ∗ f)1 observe that

(g ∗ f)1 =
g(µ(g)1,1 ⊗k ν

G
g ) ·

gf · ν̃g−1

and

((g ∗ f)1)g2 = (µ(g)1,1 ⊗k
gg1νh) ·

gf · ν̃g−1

for any fixed g2 ∈ SH , where gg1 = g2h, g1 ∈ SH , h ∈ H (see 2.5 and 5.1).
Then

ψg2 · ((g ∗ f)1)g2 = (µ(g)1,1 ·
gg1νh) (

g(fg1 + f
′
g1) · ν̃g−1)

= (µ(g)
1,1

ag1)(
gg1νh ·

gβg1 · ν̃g−1)

+ (µ(g)
1,1
· gg1νh)(

gf ′g1 · ν̃g−1)

where fg1 = ag1 · βg1 , ag1 ∈ k
d1 . The second summand belongs to N (see

the proof of Lemma 5.2), the first is equal to (µ(g)
1,1
ag1) · βg2 since

gg1νh ·
gβg1 · ν̃g−1 =

gg1νh ·
gg1β · g ν̃g−11 · ν̃g

−1

= gg1h
−1

β · gg1 ν̃h · ν̃(gg1)−1 =
g2β · gν̃g−12

(β is a morphism in ModGf R). Consequently,

(ii) ((g ∗ f)1)g2 = (µ(g)1,1 ag1) · βg2 .

Fix f ∈ HomR(B̃, V2 ⊗k B̃). Then by definition we have

(g ∗ f)2 =
g(µ(g)2,2 ⊗k ν̃g) ·

gf · ν̃g−1

and

ψ2 (g ∗ f)2 = (µ(g)2,2 ·
g ν̃g)(

g(f2 + f
′
2) · ν̃g−1)

= (µ(g)
2,2
ã)(gν̃g ·

g idB̃ · ν̃g−1) + (µ(g)2,2 ·
gν̃g)(

gf ′2 · ν̃g−1),

where f = ã · idB̃, ã ∈ k
d2 . The second summand belongs to N , the first is

equal to (µ(g)
2,2
ã) · idB̃, and hence

(iii) (g ∗ f)2 = (µ(g)
2,2
ã) · idB̃ .

Analogously we have

(g ∗ f)1 =
g(µ(g)1,2 ⊗k (ν

G
g · β

G)) · gf · ν̃g−1
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and

((g ∗ f)1)g2 = (µ(g)1,2 ⊗k (
gg1νh ·

gg1β · gν̃g−11 ) ·
gf · ν̃g−1

for any fixed g2 ∈ SH , where gg1 = g2h, g1 ∈ SH , h ∈ H (see 2.5 and 3.1),
and then

ψ1, g2 · ((g ∗ f)1)g2 = (µ(g)1,2 · (
gg1νh ·

gg1β · gν̃g−11 )) ·
g(f + f ′) · ν̃g−1

= (µ(g)
1,2
ã)(gg1νh ·

gg1β · g ν̃g−11 ·
g idB̃ · ν̃g−1)

+ (µ(g)
1,2
· (gg1νh ·

gg1β · g ν̃g−11 )) ·
gf ′ · ν̃g−1 .

Again the second summand belongs to N , the first is equal to (µ(g)
1,2

ã)·βg2
since

gg1νh ·
gg1β · g ν̃g−11 · ν̃g

−1 = gg1h
−1

β · gg1 ν̃h · ν̃(gg1)−1 =
g2β · ν̃h(gg1)−1 = βg2 .

Consequently,

(iv) ((g ∗ f)1)g2 = (µ(g)1,2 ã) · βg2 .

Note that we have the k-linear isomorphisms

(v) H2(Φ̃
B(V )) ≃

⊕

g1∈SH

(kβg1)
d1 ⊕ (k idB̃)

d2

induced by f 7→ (((f1)g1), f2), f ∈ HomR(B̃, Φ̃
B(V )) (cf. Remark 5.2(a)),

and

(vi) V
G/H
1 ⊕ V2 ≃

⊕

g1∈SH

(kβg1)
d1 ⊕ (k idB̃)

d2

given by g1H ⊗ v1 7→ a1 · βg1 , g1 ∈ SH , v1 ∈ V1, where a1 ∈ kd1 is the
coordinate vector of v1 (resp. v2 7→ a2 · idB̃, v2 ∈ V2, where a2 ∈ kd2

is the coordinate vector of v2). Then by (i)–(iv) the composition of the
k-isomorphisms (v) and (vi) yields the kG-module isomorphism

(vii) H2(Φ̃
B(V )) ≃ V

G/H
1 ⊕ V2

(see Remark 5.3 for the kG-module structure on V
G/H
1 ⊕ V2). It is easily

seen that, under the above isomorphism, ι(Φ̃B(V )) corresponds to V
G/H
1

(see Remark 5.2(b)). Hence, defining

η(V ) : Ψ̃BΦ̃B(V )→ Γ (V )

as the composition of the isomorphism from Remark 5.3 and the isomor-
phism (vii) we obtain an isomorphism in I2-spr(kG).
One can show that the family η = (η(V ))V ∈I2-spr(kG) is natural with

respect to V . Consequently, η defines an isomorphism Ψ̃BΦ̃B ≃ Γ , and the
proof is complete, since ΨBΦB ≃ Ψ̃BΦ̃B .
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Let

ΦB : I2-spr(kG)/[I2-spr1(kG)]→ mod{B,B̃}(R/G)/[mod{B}(R/G)],

ΨB : mod{B,B̃}(R/G)/[mod{B}(R/G)]→ I2-spr(kG)/[I2-spr1(kG)],

Γ : I2-spr(kG)/[I2-spr1(kG)]→ I2-spr(kG)/[I2-spr1(kG)]

be the functors induced by ΦB , ΨB and Γ , respectively (see 5.1–5.3).

Corollary. ΨB ◦ ΦB ≃ Γ .

5.4. From now on we assume that char(k) does not divide the index
[G : H].

Lemma. For any V in I2-spr(kG) there exists a kG-isomorphism
Γ (V ) ≃ V ⊕ V 1, where V 1 is in I2-spr1(kG) (V

1 = ε 2(1)(κ(V1)) = (κ(V1) ⊆

κ(V1)) for κ = idV G/H1
− 1
[G:H] ·∆V1∇V1).

Proof. Consider the following commutative diagram with exact rows in
the category mod(kG)op:

0 V1 V2 V2/V1 0

0 V
G/H
1 V

G/H
1 ⊔V1 V2 V2/V1 0

0 V1 V ′2 V2/V1 0

// �o //

∆V1
��

π //

i′(V )
��

//

=

��
// i //

∇V1
��

p //

α′(V )

��

//

=

��
// α // π′ // //

Here the middle exact sequence is the standard exact sequence induced by
∆V1 from the upper one, the lower one is the standard exact sequence in-
duced by ∇V1 from the middle one. The composition ∇V1 · ∆V1 =
[G : H] · idV1 is an isomorphism, hence by the Five Lemma so is α

′(V ) ·i′(V ).
Now the assertion follows easily.

We denote by I2-spr
′
1(kG) the additive closure of the subcategory formed

by all indecomposables in I2-spr(kG) off I2-spr1(kG) (I2-spr
′
1(kG) =

I2-spr(kG) \ I2-spr1(kG)).

Corollary. (a) ΨB ◦ ΦB ≃ idI2-spr(kG)/[I2-spr1(kG)].
(b) The functor ΦB yields an injection between the set of isoclasses in

I2-spr
′
1(kG) and the set of all isoclasses in mod{B,B̃}(R/G).

Proof. (a) By the above lemma, i′ (see Remark 5.3(b)) induces an iso-
morphism idI2-spr(kG)/[I2-spr1(kG)] ≃ Γ and (a) follows directly from Corol-
lary 5.3.
(b) If ΦB(V ) ≃ ΦB(V ′) for V, V ′ in I2-spr′(kG), then by Proposition 5.3

and Lemma 5.4 we have V ⊕V 1 ≃ V ′⊕V ′1, where V 1, V ′1 are in I2-spr1(kG).
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Consequently, by the uniqueness of decomposition into a direct sum of in-
decomposables we have V ≃ V ′.

5.5. Finally we analyse decompositions of modules in ImΦB|I2-spr′1(kG)op
.

Lemma. Let V = (V1 ⊆ V2) be an indecomposable object in I2-spr′1(kG).
Then there exists an indecomposable direct summand X of ΦB(V ) with the
following properties:

(a) dsc(X)B̃ = dsc(Φ
B(V ))B̃ (= dimk(V2/V1)),

(b) ΨB(X) ≃ V ⊕ V̌ for some V̌ in I2-spr1(kG).

In particular , X = XV as above is uniquely determined by V up to isomor-
phism, and ΦB(V ) ≃ X ⊕ Y for some Y in mod{B}(R/G).

Proof. Since V is in I2-spr
′
1(kG), there exists an indecomposable direct

summand X of ΦB(V ) such that B̃ ∈ dss(X). We show that X satisfies (a)
and (b). By Proposition 5.3 and Lemma 5.4, ΨB(X) is a direct summand
of V ⊕ V 1, where V 1 is in I2-spr1(kG). Moreover, Ψ

B(X) does not belong

to I2-spr1(kG) since B̃ ∈ dss(X) (see Remark 5.2(c)). This immediately im-
plies (b). Consequently, by Remark 5.2(c), we have dsc(X)B̃ = dimk(V2/V1),
and (a) holds since dsc(ΦB(V ))B̃ = dimk(V2/V1) (see 5.1). The last assertion
follows immediately from (a).

Theorem. Let G ⊆ Autk(R) be a group of k-linear automorphisms
acting freely on R. Suppose that B is a G-atom which admits an R-action
ν of GB, and satisfies the following conditions:

(a) EndR(B)/J(EndR(B)) ≃ k,

(b) B̃ 6≃ B,

(c) ν̃ can be extended to an R-action of GB̃ on B̃,
(d) char(k) does not divide [GB̃ : GB],
(e) GB̃ = G.

Then the functor ΦB is a representation embedding and the mapping V 7→
XV (see Lemma 5.5) yields an injection between the set of isoclasses of in-
decomposables in I2-spr

′
1(kG) (resp. I2-spr

′(kG)) and the set of isoclasses of
indecomposables in mod{B,B̃}(R/G) \mod{B}(R/G) (resp. indecomposable

non-orbicular modules in mod{B,B̃}(R/G)) (cf. Lemma 3.7).

Proof. The first assertion follows from Corollary 5.4 since Lemma 5.5
shows that ΦB(V ) (≃ XV ) is an indecomposable object in the category
mod{B,B̃}(R/G)/ [mod{B}(R/G)] for any V in I2-spr

′
1(kG).

If now XV ≃ XV ′ for indecomposable V, V
′ in I2-spr

′
1(kG), then by

Lemma 5.5(b) we have V ⊕ V̌ ≃ V ′ ⊕ V̌ ′, where V̌ , V̌ ′ are in I2-spr1(kG).
Consequently, V ≃ V ′. Finally, note that if an indecomposable object V
belongs to I2-spr

′
1(kG) then by Lemma 5.5(a) the indecomposable module
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XV does not belong to mod{B}(R/G), and if V is in I2-spr
′(kG) then XV

is non-orbicular by Remark 5.2(c) and Lemma 5.5(b).

5.6. We end this section by showing that as far as constructing inde-
composable non-orbicular R/G-modules is concerned, one should expect dif-
ferent behaviour of ΦB in the case char(k) is positive and divides [G : H].

From now on we assume that G = GB̃ is an infinite cyclic group with a
fixed generator g.

Let V = (V1 ⊆ V2) be an indecomposable object in I2-spr
′(kG) which

is given by V2 = k2, V1 = k
[
1
0

]
where the kG-module structure on V2 is

defined by the action µ(g) =
[
1
0
1
1

]
· of the generator g on k2. Clearly, we can

take V2 = k
[
0
1

]
.

Lemma. If char(k) = 2 = [G : H] then

Φ̃B(V ) ≃ BG ⊕ B̃ in ModG
f,{B,B̃}

(R/G)

(cf. Example 4.3(ii)).

Proof. We show that the exact sequence

0→ V1 ⊗k B
G w
→ V ⊗k B

p
→ V2 ⊗k B̃ → 0

splits in ModGf R. For simplicity we set Be = B and Bg =
gB (SG = {e, g}).

Then under the standard identifications V1⊗k BG ≃ Be⊕Bg, V2⊗k B̃ ≃ B̃

and V ⊗k B ≃ (Be ⊕ Bg) ⊕ B̃, the R-actions of the generator g on these
R-modules are given respectively by the R-homomorphisms

νGg =

[
0 gνg2
idBe 0

]
, ν̃g,

[
νGg (ν1,2)g
0 ν̃g

]
,

where

(ν1,2)g =

[
gνg2 ·

gβ · ν̃g−1
β

]
: B̃ → g−1Be ⊕

g−1Bg.

To prove our claim we show that the R-homomorphism
[
s
idB̃

]
: B̃ → (Be ⊕Bg)⊕ B̃, where s =

[
β
0

]
,

splits p in ModGf R. It suffices to check that
[
s
id
B̃

]
is a morphism in ModGR,

or equivalently to verify the formula

(i) (ν1,2)g =
g−1s · ν̃g − ν

G
g · s

(G = 〈g〉!). It is easily seen that

g−1s · ν̃g − ν
G
g · s =

[
g−1β · ν̃g
−β

]
.
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We also have gνg2 ·
gβ · ν̃g−1 =

g(g
−2

β · ν̃g2) · ν̃g−1 =
g−1β · ν̃g. Now (i) follows

from the assumption char(k) = 2.

6. Extension embeddings for matrix rings. In this section we de-
velop the extension embedding technique (see Theorem 6.3), used later in
the proof of Theorem 7.1.

6.1. Let A0, A
′ be k-algebras, A0MA′ be an A0-A

′-bimodule and A′NA0
be an A′-A0-bimodule. Assume that the field k acts centrally on both bi-
modules M and N . Suppose we are given two bimodule homomorphisms
γ0 : A0M ⊗A′ NA0 → A0A0A0 and γ

′ : A′N ⊗A0 MA′ → A′A
′
A′ such that

γ0(m ⊗ n) ·m1 = m · γ′(n ⊗m1) and n1 · γ0(m ⊗ n) = γ′(n1 ⊗m) · n for
all m,m1 ∈ M , n, n1 ∈ N . These data define a k-algebra structure on the
k-vector space

A =

(
A0 M
N A′

)
.

The space A equipped with this structure is called a matrix algebra.
A right module over the matrix algebra A can be viewed as a quad-

ruple X = (X0, X
′, ϕ, ψ), which consists of X0 in MODA0, X

′ in MODA′,
an A′-homomorphism ϕ : X0 ⊗ A0MA′ → X ′A′ , and an A0-homomorphism
ψ : X ′ ⊗A′ NA0 → X0A0 , satisfying the equalities ψ(ϕ(x0 ⊗ m) ⊗ n) =
x0 · γ0(m ⊗ n) and ϕ(ψ(x′ ⊗ n) ⊗ m) = x′ · γ′(n ⊗ m) for all x0 ∈ X0,
x′ ∈ X ′, m ∈ M , n ∈ N . Under the above interpretation of A-modules,
an A-homomorphism from X = (X0, X

′, ϕX , ψX) to Y = (Y0, Y
′, ϕY , ψY )

is a pair c = (c0, c
′) where c0 : X0 → Y0 is an A0-homomorphism and

c′ : X ′ → Y ′ is an A′-homomorphism such that ϕY ◦ (c0 ⊗ idM ) = c′ ◦ ϕX
and ψY ◦ (c′ ⊗ idN ) = c0 ◦ ψX .
Denote by

A =

(
A0 M
0 A′

)

the upper triangular matrix algebra associated with A. Then A-modules can
be regarded as triples X = (X0, X

′, ϕ), where X0 is in MODA0, X
′ is in

MODA′ and ϕ : X0 ⊗ A0MA′ → X ′A′ is an A
′-homomorphism. Morphisms

from X to Y are pairs c = (c0, c
′) of homomorphisms (as above) satisfying

the equality ϕY ◦ (c0 ⊗ idM ) = c′ ◦ ϕX .
Observe that the mappingX = (X0, X

′, ϕ, ψ) 7→ X = (X0, X
′, ϕ) defines

a faithful k-linear functor ζ : MODA→ MODA.
Denote by MOD0A (resp. mod0A) the full subcategory of MODA (resp.

modA) formed by all X = (X0, X
′, ϕX , ψX) such that ψ = 0, and by

MODAA (resp. modAA) the full subcategory of MODA (resp. modA)
formed by all Y = (Y0, Y

′, ϕY ) such that Im γ0 ⊆ ann(Y0A0) and Im γ
′ ⊆

ann(Y ′A′).
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Lemma. The functor ζ yields an equivalence

MOD0A ≃ MODAA (resp. mod0A ≃ modAA).

Proof. Note that an A-module Y = (Y0, Y
′, ϕY ) belongs to MOD

AA if
and only if Y = (Y0, Y

′, ϕY , 0) defines an A-module.

6.2. Denote by eλ : MODA0 → MODA the left adjoint functor to
the restriction functor e• : MODA → MODA0, where e•(X) = X0 for
X = (X0, X

′, ϕ, ψ) in MODA. Recall that for Z in MODA0, eλ(Z) =
(Z,Z ⊗ A0M, idZ⊗A0M , idZ ·γ0), where (idZ ·γ0)(z ⊗m⊗ n) = z · γ0(m⊗ n)
for all z ∈ Z, m ∈ M and n ∈ N . It is clear that if dimk A is finite then
eλ(modA0) ⊂ modA.

Remark. We say that Z in MODA0 is a module over A provided
(Z, 0, 0, 0) is in MODA, or equivalently Im γ0 ⊆ ann(ZA0) (see Lemma 6.1).
If Z is as above then the A-module eλ(Z) belongs to MOD

0A.

Suppose that A′ = A1 × . . . × Ar, r ∈ N, is a product of rings. Conse-
quently, the A0-A

′-bimodule M decomposes into a direct sum of bimodules
M =

⊕r
i=1Mi, where each Mi is an A0-A

′-bimodule. Then an A-module
X is given by a tuple (X0, (Xi)i=1,...,r, (ϕi)i=1,...,r), where each Xi is in
MODAi and each ϕi : X0 ⊗ A0Mi → Xi is an Ai-homomorphism. Accord-
ingly, an A-homomorphism from X to X ′ = (X ′0, (X

′
i)i=1,...,r, (ϕ

′
i)i=1,...,r)

is a family c = (c0, (ci)i=1,...,r) of Ai-homomorphisms ci : Xi → X ′i such
that ϕ ◦ (c0 ⊗ idMi) = ci ◦ ϕi for every i = 1, . . . , r. From now on we as-
sume that dimk A is finite and that A

′ = A1 × . . . × Ar. We fix a mod-
ule Z in modA0 which is also an A-module, i.e. Im γ0 ⊆ ann(ZA0). Then

the A-module Z̃ = eλ(Z) regarded as an object of mod
AA is defined by

the collection (Z, (Z⊗A0Mi)i=1,...,r, (idZ⊗A0Mi)i=1,...,r) (see Lemma 6.1 and
Remark 6.2).
Let Σr = kQ

op
r be the path k-category of the quiver Q

op
r opposite to the

following one:
1

2
0 .

.

.

.
n

QQQQQQQQQQQ((

eeeeeeeeeee22mmmmmmmmmmm66

and by modeΣr the full cofinite subcategory of modΣr formed by all repre-
sentations V = (fi : V0 → Vi)i=1,...,r of Qr such that all fi’s are surjective.
We define a functor

E : modeΣr → modA

as follows. Given an object V = (fi : V0 → Vi)i=1,...,r in mod
eΣr we set

E(V ) = (V0 ⊗ A0Z, (Vi ⊗k Z ⊗ A0Mi)i=1,...,r, (fi ⊗ idZ⊗A0Mi)i=1,...,r),
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where fi⊗ idZ⊗A0Mi : V0⊗k Z ⊗A0Mi → Vi⊗k Z ⊗A0Mi. If α : V → V ′ is a
morphism in modeΣr given by the family (αi : Vi → V ′i )i=0,1,...,r of k-linear
maps, where V = (fi : V0 → Vi)i=1,...,r, V

′ = (f ′i : V
′
0 → V ′i )i=1,...,r, we set

E(α) = (α0 ⊗ idZ , (αi ⊗ idZ⊗A0Mi)i=1,...,r).

Lemma. The mapping E as above defines a k-linear functor E : modeΣr
→ modAA.

Proof. It is clear that E defines a k-linear functor E : modeΣr → modA.
To prove that Im E ⊂ modAA observe that ann(V0⊗k ZA0) = ann(ZA0) and
ann((

⊕r
i=1 Vi⊗k ⊗Z ⊗A0Mi)A′) =

∏r
i=1 ann(Z ⊗A0Mi) = ann(Z ⊗A0MA′)

for V in modeΣr. Consequently, E(V ) belongs to mod
AA since Z̃ does.

6.3. Our main result of this section is the following.

Theorem. Let Z be an indecomposable A0-module such that Im γ0 ⊆
ann(ZA0). Assume that EndA0(Z)/J(EndA0(Z)) ≃ k and that all modules
Z ⊗ A0Mi, i = 1, . . . , r, are non-zero. Then the functor E : mod

eΣr →
modAA is a faithful embedding (in the sense of [27]). In particular the
algebras A and A are wild provided r ≥ 5.

To prove the above theorem we show that the restriction E0 of E to the
dense full subcategory mode0Σr consisting of all matrix representations of
Qr is a representation embedding. Recall that by a matrix representation
of Qr we mean a Σr-module (= representation of Qr) of the form V = (fi :
kn0 → kni)i=1,...,r (fi = Fi·, where Fi ∈ Mni×n0(k), for every i). For this
purpose we construct a left inverse functor π : E → mode0Σr for E0, where
E is the full subcategory of modΣr formed by all E0(V ), V in mod

e
0Σr (see

Proposition 6.6).

6.4. Lemma. Let V = (fi : V0 → Vi)i=1,...,r, V
′ = (f ′i : V

′
0 → V ′i )i=1,...,r

be objects in modeΣr, and c = (c0, (ci)i=1,...,r) : E(V ) → E(V ′) be a
Σr-homomorphism. Then each ci : Vi ⊗k Z ⊗ A0Mi → V ′i ⊗k Z ⊗ A0Mi

has the form c′i ⊗ idMi where c
′
i ∈ HomA0(Vi ⊗k Z, V

′
i ⊗k Z), i = 1, . . . , r.

Proof. Fix i ∈ {1, . . . , r}. The k-epimorphism fi : V0 → Vi admits a
section. Fix a k-linear map si : Vi → V0 such that fi◦si = idVi , consequently
(fi ⊗ idZ⊗A0Mi) ◦ (si ⊗ idZ⊗A0Mi) = idVi⊗kZ⊗A0Mi . Then multiplying the
equality

(f ′i ⊗ idZ⊗A0Mi) ◦ (c0 ⊗ idMi) = ci ◦ (fi ⊗ idZ⊗A0Mi)

by si ⊗ idZ⊗A0Mi on the right, we obtain ci = c′i ⊗ idMi where c
′
i = (f

′
i ⊗

idZ) ◦ c0 ◦ (si ⊗ idZ).

For any m,n ∈ N and a module X over an algebra Λ we have at our
disposal the standard isomorphisms

(i) km ⊗k XΛ ≃ (XΛ)
m
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and

(ii) HomΛ(X
n, Xm) ≃ Mm×n(EndΛ(X)).

We set E0 = EndA0(Z) for simplicity. For any i = 1, . . . , r, we denote
by Ei the image Im pi, where pi : E0 → EndAi(Z ⊗ A0Mi) is the k-algebra
homomorphism given by h 7→ h⊗ idMi for h ∈ E0.
Applying now the identifications (i) and (ii), we can rephrase the lemma

as follows.

Corollary. Let c = (c0, (ci)i=1,...,r) : E0(V ) → E(V ′) be a morphism
in E, where V = (fi = Ai· : V0 → Vi)i=1,...,r and V ′ = (f ′i = A′i· :
V ′0 → V ′i )i=1,...,r are in mod

e
0Σr. Then each ci ∈ HomAi(Vi ⊗k Z ⊗ A0Mi,

V ′i ⊗k Z ⊗ A0Mi) belongs to Mn′i×ni(Ei) for i = 1, . . . , r.

6.5. From now on we assume that all modules Z⊗A0Mi, i = 1, . . . , r, are
non-zero and the A0-module Z is indecomposable with E0/J0 ≃ k, where
J0 = J(E0). Observe that then each Ei is a local k-algebra with Jacobson
radical Ji = pi(J0), and Ei/Ji ≃ k.
Let E be a local k-algebra such that E/J ≃ k, where J = J(E). For

any m,n ∈ N and c ∈ Mm×n(E), we denote by c and c′ the matrices
c ∈ Mm×n(k) and c′ ∈ Mm×n(J) corresponding to c under the canonical
identification

(i) Mm×n(E) = Mm×n(k) · 1E ⊕Mm×n(J)

induced by the equality E = k · 1E ⊕ J . It is easily seen that

(ii) cd = c d

for all c ∈ Mm×n(E), d ∈ Mn×p(E), m,n, p ∈ N.

Let V = (fi : k
n0 → kni)i=1,...,r and V

′ = (f ′i : k
n′0 → kn

′
i)i=1,...,r be

objects in mode0Σr, where fi = Fi· , f
′
i = F

′
i · for some Fi ∈Mni×n0(k), F

′
i ∈

Mn′i×n′0(k), and let c = (c0, (ci)i=1,...,r) : E0(V ) → E0(V
′) be a morphism

in E. We denote by c the collection c = (ci· : kni → kn
′
i)i=0,...,r of k-linear

maps, where each ci is now regarded as an element of Mn′i×ni(Ei) (cf. 6.4(i),
6.4(ii) and Corollary 6.4).

Lemma. (a) The collection c is a morphism from V to V ′ in mode0Σr.
(b) V = V ′ provided E0(V ) = E0(V ′).

Proof. (a) Fix i ∈ {1, . . . , r}. To show that F ′i c0 = ciFi we treat the
map fi⊗ idZ⊗A0Mi (resp. f

′
i⊗ idZ⊗A0Mi) as an element of Mni×n0(Ei) (resp.

Mn′i×n′0(Ei)), c0 ⊗ idMi as an element of Mn′0×n0(Ei) (cf. 6.4(i), 6.4(ii)),
and ci as an element of Mn′i×ni(Ei) (cf. Corollary 6.4). Note that we have

fi ⊗ idZ⊗A0Mi = Fi, f ′i ⊗ idZ⊗A0Mi = F ′i (in fact, fi ⊗ idZ⊗A0Mi = Fi ·

idZ⊗A0Mi , f
′
i ⊗ idZ⊗A0Mi = F

′
i · idZ⊗A0Mi) and c0 ⊗ idMi = c0 (see definition
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of pi and 6.5(i)). Now the equality

ci ◦ (fi ⊗ idZ⊗A0Mi) = (f
′
i ⊗ idZ⊗A0Mi) ◦ (c0 ⊗ idMi)

immediately implies the required assertion by 6.5(ii).
(b) Suppose that E0(V ) = E0(V ′). Clearly, ni = n′i for every i = 0, . . . , r.

Since fi ⊗ idZ⊗A0Mi = Fi · idZ⊗A0Mi and f
′
i ⊗ idZ⊗A0Mi =F

′
i · idZ⊗A0Mi , the

equality fi ⊗ idZ⊗A0Mi = f
′
i ⊗ idZ⊗A0Mi implies Fi=F

′
i for all i = 1, . . . , r.

6.6. We now define a functor π : E→ mode0Σr (cf. 6.3). For any object
X = E0(V ) in E we set

π(X) = V.

For any morphism c = (c0, (ci)i=1,...,r) : X → X ′ in E, where X = E0(V ),
X ′ = E0(V ′) and V, V ′ are in mod

e
0Σr, we set

π(c) = c.

The following fact immediately implies Theorem 6.3.

Proposition. The mapping π as above defines a k-linear functor π :
E→ mode0Σr which has the following properties:

(a) πE0 = idmode0 Σr ,
(b) Kerπ contains no non-zero idempotent.

Proof. By Lemma 6.5 the mapping π yields well defined functions from
obE to obmode0Σr and from HomA(X,X

′) to HomΣr(π(X), π(X
′)) for any

X,X ′ in E. The functoriality of π follows immediately from 6.5(ii). The
property (a) is satisfied by construction. To show (b), it suffices to observe
that Kerπ is a nilpotent ideal, since each ideal Ji, i = 0, . . . , r, is nilpotent
with nilpotency degree bounded by dimk E0.

7. Embedding induced by the left Kan extension of

an infinite G-atom

7.1. The main aim of this section is to prove the following result.

Theorem. Let R be a tame locally bounded k-category and G be a group
of k-linear automorphisms acting freely on R. Then for any infinite G-
atom B with EndR(B)/J(EndR(B)) ≃ k the counit map β(B) yields an

R-isomorphism B̃ ≃ B (see 4.1 and 1.5 for definition of B̃ and β(B)).

7.2. We recall from [7] and [8] a notion which is essential for our study
of the indecomposable objects of the category ModR.

Definition. Let M be in IndR and C a full subcategory of R. The full
subcategory U ofR containingC is called anM -neighbourhood of C provided
there exists an indecomposable U -module MU satisfying the following two
conditions:
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(N1) MU is isomorphic to a direct summand of M|U ,
(N2) MU

|C =M|C .

AnM -neighbourhood U of C is called finite (resp. connected) if the category
U is finite (resp. connected). An M -neighbourhood U of C is called sincere
provided there existsMU as above which is sincere. A subcategory U is said
to be an M -neighbourhood provided U is an M -neighbourhood of some
subcategory C which intersects suppM non-trivially.

Remark. (a) If U is anM -neighbourhood thenM|U 6=0. IfM|C =0 then
any subcategory U containing C such thatM|U 6= 0 is anM -neighbourhood
of C.
(b) If C is contained in suppM and U is an M -neighbourhood of C,

then U ∩ suppM (resp. suppMU ) is an M -neighbourhood (resp. a sincere
M -neighbourhood, hence connected) of C, contained in suppM .
(c) If U is anM -neighbourhood and V is a full subcategory of R contain-

ing U then V is also an M -neighbourhood (by the uniqueness of decompo-
sition into a direct sum of indecomposables in ModS for any S). Moreover,
U is then an MV -neighbourhood, where MV is as in the definition.

The following fact is crucial for the remaining part of the paper.

Theorem. Let R be a connected locally bounded k-category and M be an
R-module in IndR. Then any finite full subcategory of R (resp. which in ad-
dition is contained in suppM) admits a finite, connected M -neighbourhood
(resp. which in addition is sincere).

7.3. We present the proof of the above result (see [12] for k algebraically
closed). The basic role is played by the following fact.

Proposition (cf. [12, Proposition 4.2]). Let {Cn}n∈N be a family of

finite full subcategories of R such that
⋃
n∈N

Cn = R and Cn ⊂ Cn+1 for
every n ∈ N. Then for any M , N in ModR, N is isomorphic to a direct
summand of M if and only if N|Cn is isomorphic to a direct summand of
M|Cn for all n ∈ N.

Proof. We can repeat all the arguments from the proof of [12, Proposi-
tion 4.2] which use only the fact that dimk HomCn(V|Cn ,WCn) is finite for
V,W in ModR and does not use the general assumption of [12] (that k is
algebraically closed). The only part of that proof which need to be proved
in the more general setting is the lemma below (cf. also [7, Proof of Propo-
sition 2.6]); in fact the full proof of the original version of the lemma for
k algebraically closed was not presented in [12] and differed from the one
given here).

Lemma. Let ̺ : A → A′ be a surjective homomorphism of artinian
rings, and e and f two (orthogonal) idempotents of A. Suppose that there
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exist elements x ∈ fAe and y ∈ eAf such that yx = e. Then for all a′ ∈
̺(f)A′̺(e) and b′ ∈ ̺(e)A′̺(f) such that b′a′ = ̺(e) there exist elements
a ∈ fAe and b ∈ eAf such that ̺(a) = a′, ̺(b) = b′ and ba = e.

Proof. Fix a′, b′ as above. We start by observing that if the element z =
e−b1a1 (∈ Ker ̺) is nilpotent for a1 ∈ fAe∩̺−1(a′) and b1 ∈ eAf ∩̺−1(b′)
(it is the case for all a1, b1 as above provided Ker ̺ ⊆ J(A)), then a, b
satisfying the assertion exist. Indeed, setting a =

∑∞
i=0 a1z

i and b = b1
(z0 = e), we have ̺(a) = a′, ̺(b) = b′ and e − ba = e − b1a1

∑∞
i=0 z

i =
e− (e− z)

∑∞
i=0 z

i = 0.

Next we show the existence of a and b under the extra assumption that
A is a semisimple ring. In this case A′′ = Ker ̺ is a direct factor of A (as a
ring), therefore we may assume that A = A′×A′′ and that ̺ is the canonical
projection on the first component. It is easy to check that now the elements
a = (a′, x′′) and b = (b′, y′′), where x = (x′, x′′) and y = (y′, y′′), satisfy the
required condition.

Consider the general case. Since ̺(J) ⊆ J ′, ̺ induces a (surjective) ho-
momorphism ̺ : A/J → A′/J ′ such that π′̺ = ̺π, where J = J(A), J ′ =
J(A′) and π : A → A/J , π′ : A′ → A′/J ′ are the canonical projec-
tions. Note that ̺(J) = J ′ since Im ̺ = A′ and A′/̺(J) as a factor of
A/J is a semisimple ring. The semisimple ring A/J and ̺, π(e) and π(f)
satisfy the assumption of the lemma. Therefore by the previous observa-
tion there exist a ∈ π(f)(A′/J ′)π(e) and b ∈ π(e)(A′/J ′)π(f) such that
̺(a) = π′(a′), ̺(b) = π′(b′) and ba = π(e). Then by the first remark there
exist a0 ∈ fAe ∩ π−1(a) and b0 ∈ eAf ∩ π−1(b) such that b0a0 = e. Since
̺(a0) − a′, ̺(b0) − b′ ∈ J ′ and ̺(J) = J ′, there exist c ∈ fJe and d ∈ eJf
such that a1 = a0+ c ∈ ̺−1(a′) and b1 = b0+d ∈ ̺−1(b′). Then e− b1a1 be-
longs to J and hence is a nilpotent element. Consequently, the first remark
implies the existence of a, b satisfying the required conditions.

7.4. For the benefit of the reader, we complete the proof of Theorem 7.2,
slightly reordering and simplifying arguments from [12].

Proof of Theorem 7.2. Fix a full finite subcategory C of R. We can
assume that C ∩ suppM is non-trivial (see Remark 7.2(a)). Denote by
{Cn}n∈N the family of finite full subcategories of R defined inductively

by setting C0 = C and Cn+1 = Ĉn for n ∈ N. Since R is connected, we
have R =

⋃
n∈N

Cn and Cn is connected for almost all n. Fix a sequence
of indecomposable direct summands Mn of M|Cn , n ∈ N, such that M

n is
isomorphic to a direct summand of Mn+1

|Cn . Fix also a sequence of split-
table Cn-monomorphisms un : M

n → Mn+1
|Cn , n ∈ N. For simplicity set

enλ = e
Cn+1,Cn
λ and εnλ = eCnλ for n ∈ N. The functors ε

n
λ and ε

n+1
λ enλ are

isomorphic (both are left adjoint to the restriction functor eCn• ). Fix iso-
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morphisms θn : ε
n
λ → εn+1λ enλ, n ∈ N. For every n we denote by wn the

composite R-homomorphism

εnλ(M
n)

θn(M
n)

−−−−→ εn+1λ enλ(M
n)

εn+1λ (vn)
−−−−−→ εn+1λ (Mn+1),

where vn : e
n
λ(M

n) → Mn+1 is the Cn+1-homomorphism adjoint to un :
Mn →Mn+1

|Cn . We set

M ′ = lim (εnλ(M
n), wn)n∈N.

Note that for each n ∈ N there exists p = p(n) ≥ n such that M ′|Cn ≃
Mm

|Cn for all m ≥ p. Indeed, {un|Cn}m≥n is a sequence of monomorphisms
between finite-dimensional Cn-modules whose dimensions are bounded by
dimkM|Cn so it stabilizes at some p, and then

M ′|Cn ≃ lim (M
n
|Cn , un|Cn)m≥n ≃M

p
|Cn for m ≥ p.

Consequently, M ′|Cn is isomorphic to a direct summand of M|Cn for all

n ∈ N (Mp(n)
|Cn is a direct summand of M|Cn) and then by Proposition

7.3, M ′ ≃ M (M is indecomposable). It is now clear that Cm is a finite
(resp. finite connected) M -neighbourhood of C for all (resp. almost all)
m ≥ p(0).

Remark. If C is a finite full subcategory of R then for any finite full sub-
category V containing C there exists a finite connected M -neighbourhood
U of C such that V ⊂ U . Moreover, if additionally C and V are contained
in suppM then one can find U as above which is also sincere and contained
in suppM .

7.5. Proposition. Let M be in ModR. Then EndR(M)/J(EndR(M))
is isomorphic to k if and only if so is EndU (M

U )/J(EndU (M
U )) for some

finite M -neighbourhood U , where MU is as in Definition 5.2.

Proof. Fix anyM in IndR. Suppose that we are given a full subcategory
U of R (finite for simplicity) and an indecomposable direct summand MU

of M|U such that M
U is not isomorphic to a direct summand of M ′, where

M ′ is a (fixed) direct summand of M|U such that M|U =M
U ⊕M ′. Denote

by ̺ : EndR(M)→ EndU (M|U ) the homomorphism given by the restriction
functor eU• and by h11 the component of any h ∈ EndU (M|U ) in EndU (M

U ),
under the canonical identification

EndU (M|U ) =

(
HomU (M

U ,MU ) HomU (M
′,MU )

HomU (M
′,MU ) HomU (M

′,M ′)

)
.

Then the mapping f 7→ (̺(f))11 induces a k-algebra homomorphism

σ = σ(M,MU ) : EndR(M)→ EndU (M
U )/J(EndU (M

U ))

(in fact σ does not depend on M ′). Note that this holds in particular if U
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is an M -neighbourhood and MU satisfies the conditions of Definition 7.2.
Then σ induces a division k-algebra homomorphism (= embedding)

τ = τ(M,MU ) : EndR(M)/J(EndR(M))→ EndU (M
U )/J(EndU (M

U )),

since there exists x in U such that f(x) = f11(x) for all f ∈ EndR(M)
(cf. [6, Lemma 2.2]). Hence, one implication: EndR(M)/J(EndR(M)) ≃ k
provided EndU (M

U )/J(EndU (M
U )) ≃ k.

Assume now that EndR(M)/J(EndR(M)) ≃ k. Fix a family {Cn}n∈N

of finite full connected subcategories of R such that C0 = {x} for some

fixed x in suppM and Cn+1 is an M -neighbourhood of Cn containing Ĉn
for every n ∈ N. Note that by Theorem 7.2 and Remark 7.4 one can in-
ductively construct such a family. For simplicity set E = EndR(M) and
En = EndCn(Mn), where Mn =M|Cn , for every n ∈ N.

For all m,n ∈ N, m ≥ n, denote by ̺mn : Em → En the k-algebra homo-

morphism given by the restriction functor eCm,Cn• : MODCm → MODCn,
and by ̺n : Em → En the k-algebra homomorphism given by the restric-
tion functor eCn• : MODR → MODCn. Clearly, we have ̺

n
p̺

m
n = ̺mp and

̺n̺
m
n = ̺m for all m ≥ n ≥ p.

We show (cf. [12, 4.2]) that, for each n∈N, there exists m = m(n) ≥
n such that fn ∈ En can be extended to an R-endomorphism of M (i.e.
fn ∈ Im ̺n) if and only if fn can be extended to an Cn-endomorphism of
Mn (i.e. fn ∈ Im ̺m), briefly that Im ̺n = Im ̺mn . Recall that, for every
i ∈ N, the decreasing sequence {Im ̺ji}j≥i of k-subalgebras of Ei stabilizes
at some m = m(i), since dimk Ei is finite. Consequently, for fi ∈ Ei, fi =

̺mi (fm) for some fm ∈ Em if and only if for every j ≥ i, fi = ̺ji (fj)

for some fj ∈ Ej . Suppose now that we are given fn ∈ Im ̺
m(n)
n . Then

there exists fm(n1) ∈ Em(n1) such that ̺
m(n1)
n (fm(n1)) = fn, where n1 =

max(m(n), n+ 1). Consequently, we have fn1 = ̺
m(n1)
n1 (fm(n1)) ∈ Im ̺

m(n1)
n1

and fn = ̺n1n (fn1). Repeating this procedure we can inductively construct
f ∈ E such that ̺n(f) = fn.

For every n ≥ 1, we fix a module Mn = MCn in indCn satisfying
the conditions of Definition 7.2 and a Cn-submodule M

′
n of Mn such that

Mn =M
n ⊕M ′n. For simplicity set E = E/J(E) and E

n = E/J(E), where
En = EndCn(M

n), for n ≥ 1. Note that each Cn (regarded as a subcategory
of Cm) is anM

m-neighbourhood (of Cn−1) form ≥ n, and that each En can
be identified, under the canonical embedding h 7→

(
h
0
0
0

)
, with a k-subspace

of En.

For simplicity we denote by τmn the homomorphism τ(MCm ,MCn) :
Em → En for all m ≥ n, and by τn the homomorphism τ(M,MCn) :
E → En. Note that
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τmn (fm + J(E
m)) = ̺mn (fm)11 + J(E

n)

for fm ∈ Em ⊆ Em, and

τn(f + J(E)) = ̺n(f)11 + J(E
n)

for f ∈ E. Just as for ̺’s we have

τnp τ
m
n = τ

m
p and τmn τm = τn

for all m ≥ n ≥ p. The first formula follows from ̺mp (fm)11 = ̺
n
p (̺

m
n (fm)11)

for fm ∈ Em ⊆ Em (M
′
n|Cp

= 0 and ̺np (̺
m
n (fm)) = k̺np (̺

m
n (fm)11) if

n > p), the second from ̺n(f)11 = ̺mn (̺m(f)11)11 for f ∈ E (M
′
m|Cn

= 0

and ̺mn (̺m(f)11) = ̺mn (̺m(f)) if m > n). Consequently, we can assume
that all τmn ’s and τn’s are now inclusions in the following infinite decreasing
sequence of finite-dimensional division k-algebras:

E1 ⊇ . . . ⊇ En ⊇ En+1 ⊇ . . . ⊇ E = k.

Then there exists p ∈ N such that Ei = Ep for all i ≥ p. We show that
Ep = E. For every fp ∈ Ep, we have fp+J(Ep) = τmp (fm+J(E

m)) for some
fm ∈ Em ⊆ Em, where m = m(p). Consequently, fp − ̺mp (fm)11 ∈ J(E

p)
and ̺mp (fm) ∈ Im ̺p; therefore fp − ̺p(f)11 ∈ J(Ep) for some f ∈ E. In

this way we have shown that τp is surjective, E
p ≃ E ≃ k, and Cp is an

M -neighbourhood with the required property.

Remark. (a) If U is an M -neighbourhood (not necessarily finite) such
that EndU (M

U )/J(EndU (M
U )) ≃ k, then each V containing U is an M -

neighbourhood (see Remark 7.2(c)) such that for any MV satisfying the
conditions of Definition 7.2, EndV (M

V )/J(EndV (M
V )) ≃ k.

(b) EndR(M)/J(EndR(M)) ≃ k if and only if there exists a (finite)
M -neighbourhood U such that EndV (M

V )/J(EndV (M
V )) ≃ k for any V

containing U , where MV satisfies the conditions of Definition 7.2.

As a consequence of the above considerations we obtain the following
result which is essential for the proof of Theorem 7.1.

Corollary. If EndR(M)/J(EndR(M)) ≃ k, then for any finite full
subcategory C of suppM , there exists a sincere M -neighbourhood U of C,
contained in suppM , such that EndU (M

U )/J(EndU (M
U )) ≃ k, where MU

is as in Definition 7.2.

Proof. Note that EndV (X)≃EndsuppX(X|suppX) for anyX in modV .

7.6. It is clear that in order to prove Theorem 7.1 it suffices to show the
following result.

Theorem. Let R be a locally bounded k-category and G be a group
of k-linear automorphisms acting freely on R. Suppose that R admits an
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infinite G-atom B such that EndR(B)/J(EndR(B)) ≃ k and B̃ 6≃ B. Then
R is wild.

Before the proof, fix B in ModR (not necessarily a G-atom). Then the

R-module B̃ = eSλ(B|S) (S = suppB and S̃ = supp B̃ as in 4.1) is given by

B̃(x) = B|S ⊗R(x,−)|S =
⊕

y∈obS

B(y)⊗k R(x, y)/Ix for x ∈ obR,

where Ix = Ix(B|S , R(x,−)|S) is the k-subspace of
⊕

y∈obS B(y)⊗k R(x, y)
generated by the set Nx of all non-zero elements of the form ns,b,r =
B(s)(b)⊗ r− b⊗ sr, s ∈ S(y, z), r ∈ R(x, y), b ∈ B(z), y, z ∈ obS (cf. 1.5).

Now it is clear that S̃ ⊂ Ŝ. Note that for any subcategory S′ containing

{̂x}∩S, Ix can be regarded as a k-subspace of
⊕

y∈obS′ B(y)⊗kR(x, y). To
understand Ix properly we consider the subcategory

Sx =
̂

({̂x} ∩ S) ∩ S

of S, which is usually strictly larger than {̂x}∩S. Observe that y, z ∈ obSx
provided ny,z,r 6= 0.

Lemma. Let x be a fixed object in R \ S. Then

eR
′,S′

λ (B|S′)(x) = e
R,S
λ (B|S)(x)

for any full subcategories R′, S′ of R such that x ∈ obR′ and Sx ⊂ S′ ⊂
S ∩R′.

Proof. We can identify
⊕

y∈obS′ B|S′(y)⊗kR
′(x, y) and

⊕
y∈obS B(y)⊗k

R(x, y), since {̂x} ∩ S ⊂ S′. Moreover, by the assumptions, the sets Nx
and N ′x of k-generators of Ix = Ix(B|S , R(x,−)) and I

′
x = Ix(B|S′ , R

′(x,−))
respectively, coincide (under the above identification). Consequently, Ix = I

′
x

and eR
′,S′

λ (B|S′)(x) = e
R,S
λ (B|S)(x).

7.7. Proof of Theorem 7.6. Suppose that B is an infinite G-atom such
that B 6≃ B̃, equivalently S  S̃ (we keep the notation from 7.6). Fix an

object x in S̃ \S and a finite connected subcategory Rx containing Sx ∪{x}
(Sx is finite since R is locally bounded). Since GB is an infinite group acting
freely on R, we can inductively construct g1 = e, g2, . . . , g5 ∈ GB such that
the subcategories {giRx}i=1,...,5 are pairwise orthogonal. Fix a finite sincere

B-neighbourhood U0 of C =
⋃5
i=1 giRx ∩ S contained in S, for which the

module B0 = BU0 in indU0 satisfying the conditions of Definition 7.2 has
the property EndU (B)/J(EndU (B)) ≃ k (it exists by Corollary 7.5). For

simplicity set U = U0 ∪
⋃5
i=1 giRx and Ui = giRx \ U0, i = 1, . . . , 5; then

U = U0∨(U1⊔ . . .⊔U5). Moreover, e
U,U0
λ (B0)(gix) 6= 0 for every i = 1, . . . , 5.
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Indeed, by Lemma 7.6 and Definition 7.2,

B̃(x) = eR,Cλ (B|C)(x) = e
R,U0
λ (B0|C)(x) = e

U,U0
λ (B0|U0)(x)

(the cases gi 6= e follow analogously since GB ⊂ GB̃).
Observe that in this situation the finite-dimensional k-algebra A = A(U)

can be viewed as a matrix algebra with A0 =A(U0), A
′ =A(U1 ⊔ . . . ⊔ U5)

≃ A(U1) × . . . × A(U5), and that the A0-module Z corresponding to the
U -module B0 under the standard equivalence modA0 ≃ modU0 satisfies
the assumptions of Theorem 6.3 (the A-module Z̃ = eλ(Z) corresponds to

eU,U0λ (B0) via modA ≃ modU). Consequently, A and R are wild.
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