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A COMBINATORIAL CONSTRUCTION OF SETS

WITH GOOD QUOTIENTS BY AN ACTION OF A

REDUCTIVE GROUP
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Abstract. The aim of this paper is to construct open sets with good quotients by
an action of a reductive group starting with a given family of sets with good quotients. In
particular, in the case of a smooth projective variety X with Pic(X) = Z, we show that
all open sets with good quotients that embed in a toric variety can be obtained from the
family of open sets with projective good quotients. Our method applies in particular to
the case of Grassmannians.

Introduction. Let X be an algebraic variety with an action of a reduc-
tive group G. One of the main problems of geometric invariant theory is to
describe all open G-invariant subsets U ⊂ X such that there exists a good
quotient U → U//G. In the case of X = Pn this problem was solved in [5].
We give in 1.10 and 2.5 a new formulation of the results obtained in [5] for
G = T a torus and show that open T -invariant sets with good quotients are
unions of collections of intersections of subsets with projective quotients.
Moreover, we emphasize the fact that, for any T -maximal subset of Pn, the
quotient space embeds in a toric variety. In the present paper we investigate
two possible ways of generalizing the results of [5].

First we assume that we are given a set of G-invariant open subvarieties
of X with good quotients by the action of G, and we describe a procedure
for constructing a larger class of G-invariant subsets of X that admit good
quotients (Theorem 2.6). The new sets obtained by our method are unions
of “good collections” of intersections of old ones. In this way we generalize
the results of [5] concerning existence of good quotients to the case of an
arbitrary reductive group G and any variety X.

Then we consider the action of a reductive group G on a projective
smooth variety with Pic(X) = Z and we study the problem of describing
all open G-invariant subsets of X admitting quotients that embed in a toric
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variety. We prove that any open G-invariant subset of X with this property
is a saturated subset of a union of a “good collection” of intersections of
open sets with projective quotients. In this way we generalize results of [5]
to the case of actions of reductive groups on smooth projective varieties with
Pic(X) = Z.
The outline of the paper is as follows. In Section 1 we recall useful ter-

minology, definitions and theorems concerning the theory of good quotients.
In particular, we give a new formulation of the results of [5] that will be
needed in what follows.
In Section 2 we consider an algebraic G-variety X with a given set of

subvarieties Vi, i ∈ J , with good quotients by G. We consider open sets that
are unions of finite intersections of sets Vi. We define a “good collection”
of such intersections and in Theorem 2.6 we prove that there exists a good
quotient of the union of any good collection.
In Section 3 we forget about the action of G and concentrate on algebraic

varieties with the following property: for any n points x1, . . . , xn ∈ X there
exists an affine open set U ⊂ X such that xi ∈ U for i = 1, . . . , n. We call
them An-varieties. Any quasiprojective variety is an An-variety for every
n ∈ N (see [7]). We obtain some results that are partially connected with
results obtained in [11]. In Theorem 3.5 we prove that in any algebraic
variety there are only finitely many maximal (with respect to inclusion)
open sets that are An.
In Section 4 we consider the following problem: describe all open, G-

invariant subsets of X that are maximal with respect to saturated inclusion
in the set of all subvarieties for which there exists a good An-quotient, and
we prove some preliminary facts.
In Section 5 we give the construction which provides all such open sub-

varieties in the case of a smooth projective variety X with Pic(X) = Z.
Finally, in Section 6 we still assume that X is smooth, projective with

Pic(X) = Z and we formulate corollaries of the results of Section 5. In
particular we notice in Corollary 6.2 that for any open T -invariant U ⊂ X,
maximal with respect to saturated inclusion in the set of all open subsets
with good A2-quotients, there exists an equivariant embedding X →֒ Pn and
a T -maximal V ⊂ Pn such that U = X ∩ V .

1. Notation and terminology. Let X be an algebraic variety with
an action of a reductive group G, both defined over the field of complex
numbers. We recall some useful facts and definitions from [5] and we fix the
notation and terminology that we shall use in the paper:

Definition 1.1. Let Y be an algebraic space (not necessarily an alge-
braic variety) with a trivial action of G. A G-morphism q : X → Y is said
to be a good quotient if the following conditions are satisfied:
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(i) q is affine,

(ii) OY = q∗(OX)
G.

If q : X → Y is a good quotient then the space Y is called a quotient space
of X by G and is denoted by X//G.

Example 1.2. Let X be an algebraic variety with an action of a reduc-
tive group G and let L be a G-linearized line bundle on X. In [8], Mumford
defined the set Xss(L) of semistable points. We recall that x ∈ Xss if and
only if there exists n ∈ N and a section s ∈ Γ (X,Ln) such that s(x) 6= 0
and {y ∈ X : s(y) 6= 0} is affine. Then Mumford proved (Theorem 1.13 of
[8]) that there exists a good quotient

Xss(L)→ Xss(L)//G

and the quotient space is quasiprojective. Moreover, for an ample line bundle
L, the quotient space is projective.

Definition 1.3. Let U be an open G-invariant subset of X. Then U is
G-saturated in X if, for any x ∈ U , the closures of the G-orbit G · x in U
and in X coincide.

Remark 1.4. Assume that U is G-saturated in X and there exists a
good quotient q : X → X//G. Then there exists a good quotient U → U//G
and the induced morphism U//G→ X//G is an open embedding.

Definition 1.5. An openG-invariant subset U inX is calledG-maximal
if there exists a good quotient U → U//G and if U is maximal in X with
respect to saturated inclusion in the family of all open G-invariant subsets
of X that admit good quotients with respect to the action of G.

According to Lemma 7.14 of [5], any open G-invariant subset of Pn with
a quasiprojective good quotient is contained as a G-saturated subset in
(Pn)ss(L) for some G-linearized ample line bundle L. Open subsets of Pn

with projective good quotients by an action of an algebraic torus have a nice
combinatorial description (see Example 1.9).

Let X = Pn with homogeneous coordinates (x0, . . . , xn) and G = T be
an algebraic torus acting on X with characters χ0, . . . , χn in homogeneous
coordinates, i.e. for any t ∈ T and x = (x0, . . . , xn) ∈ Pn let

t · (x0, . . . , xn) = (χ0(t)x0, . . . , χn(t)xn).

Let X(T ) be the Z-module of characters of T and consider the real vector
space XR(T ) = X(T ) ⊗Z R.

Definition 1.6. Let T act on Pn as above. For any set {χi1 , . . . , χik} ⊂
{χi : i = 1, . . . , n} the polytope conv{χi1 , . . . , χik} ⊂ XR(T ) is called a
distinguished polytope. For any x = (x0, . . . , xn) ∈ Pn we define the convex
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polytope

P (x) = conv{χi : xi 6= 0}.

For any set U ⊂ X we define the combinatorial closure C(U):

x ∈ C(U)⇔ ∃y ∈ U such that P (x) = P (y).

A set U ⊂ Pn is called combinatorially defined (or combinatorially closed)
if C(U) = U .

If P is a distinguished polytope, then there exists x ∈ Pn such that
P = P (x).

Definition 1.7. For any collection ∆ of distinguished polytopes let

U(∆) = {x ∈ Pn : P (x) ∈ ∆}.

In particular U(P ) = {x ∈ Pn : P (x) = P}.

A set U ⊂ Pn is combinatorially defined if and only if there exists a
collection ∆ of distinguished polytopes such that U = U(∆). Corollary 5.7
of [5] implies the following:

Proposition 1.8. Let ∆ = {P1, . . . , Pk} be a collection of distinguished
polytopes. Then U(∆) is open if and only if for any i = 1, . . . , k and any
distinguished polytope Q,

Pi ⊂ Q⇒ Q ∈ ∆.

Example 1.9. Let p ∈ conv{χ0, . . . , χn} ⊂ XR(T ). Then

U(p) := {x ∈ Pn : p ∈ P (x)}

has a good projective quotient and every open subset with a projective
good quotient is obtained in this way. This follows from Example 7.12 and
Proposition 7.13 of [5]. Therefore, for any p ∈ conv{χ0, . . . , χn}, there exists
a T -linearization of L = O(m) (for somem ∈ N) such that (Pn)ss(L) = U(p)
and for any linearization of O(m) = L there exists p ∈ XR(T ) such that
(Pn)ss(L) = U(p). Notice that p is (in general) not uniquely defined by the
choice of a linearization.

Remark 1.10. Let P be a distinguished polytope and ∆(P ) be the col-
lection of all distinguished polytopes containing P as a subset:

Q ∈ ∆(P )⇔ P ⊂ Q.

Then U(∆(P )) is open and there exists a finite set {p1, . . . , pr} such that

U(∆(P )) =

r⋂

i=1

U(pi).
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It follows that there exist T -linearized ample line bundles L1, . . . ,Lr on Pn

such that

U(∆(P )) =

r⋂

i=1

(Pn)ss(Li).

Moreover, if U = U(∆), ∆ = {P1, . . . , Pk}, is an open, combinatorially
defined subset of Pn then

U =
k⋃

i=1

U(∆(Pi)).

Therefore, every open combinatorially defined subset of Pn is a finite union
of intersections of sets of semistable points corresponding to linearizations
of O(m).

A description of those combinatorially defined open subsets of Pn that
have good quotients was given in [5].

Definition 1.11. Let ∆ = {P1, . . . , Pk} be a collection of distinguished
polytopes. ∆ is a good collection if it satisfies the following conditions:

(i) Pi ∩ Pj 6= ∅ for every i, j = 1, . . . , k,
(ii) if F is a face Pi and F ⊂ Pi ∩ Pj then F ∈ ∆,
(iii) for any i = 1, . . . , k and a distinguished polytope Q,

Pi ⊂ Q⇒ Q ∈ ∆.

Theorem 1.12 (Thm. 7.8 of [5]). Assume that an algebraic torus acts
on Pn as above. Let U(∆), ∆ = {P1, . . . , Pk}, be a combinatorially defined
open subset of Pn. Then there exists a good quotient of U by T if and only
if ∆ is a good collection of distinguished polytopes.

By Theorem A of [5] any T -maximal subset of Pn is combinatorially
defined, thus Theorem 1.12 implies that all T -maximal subsets of Pn will be
of the form U(∆) for some good collection ∆.
By the results of [5], every variety obtained as the quotient space of

an open subset of Pn by an action of an algebraic torus, can be embedded
in a toric variety. More exactly, let α : T → Aut(Pn) ∼= PGL(n) be a
homomorphism determined by the action of T on Pn and let S denote any
maximal torus in PGL(n) containing α(T ). Then Pn is a toric variety with
respect to the action of S and we have:

Proposition 1.13 (Corollary 6.1 of [5]). Let U be a combinatorially
defined open subset of Pn. Then U is a toric variety (with respect to the
action of S). In particular U is S-invariant. If moreover U//T exists, then
the quotient space is a toric variety with respect to the (induced) action of
a quotient of S. In particular , if U ⊂ Pn is T -maximal , then both U and
U//T are toric varieties.
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In this paper we shall use as an important tool the following

Theorem 1.14 (Theorem C of [6]). Let a reductive group G act on an
algebraic variety X. Assume that , for any two points x, y ∈ X, there exists
an open G-invariant neighborhood Vx,y of x and y such that there exists a
good quotient Vx,y → Vx,y//G. Then there exists a good quotient X → X//G.
If all quotient spaces Vx,y//G are algebraic varieties, then X//G is also an
algebraic variety.

2. Good collections of cells. In this section we generalize the notion
of a good collection of distinguished polytopes (previously defined in the case
of an action of an algebraic torus on Pn) to a good collection of intersections
of open sets with good quotients in the case of an action of a reductive group
G on an algebraic variety X. In particular, we prove that there exists a good
quotient of the union of open sets of any good collection (2.6).

Definition 2.1. Let J be a set and, for any i ∈ J , let Ui be an open
subset of X. Elements of J (and often the sets Ui, i ∈ J ) will be called
vertices. Any finite subset I ⊂ J will be called a cell with vertices in J . For
any cell I ⊂ J let

U(I) =
⋂

i∈I

Ui

and, for any collection Π of cells, let

U(Π) =
⋃

I∈Π

U(I).

For any cell I, the set U(I) is open.

From now on (with the exception of Section 3) we shall assume that all
open sets Ui, i ∈ J , are G-invariant.

Definition 2.2. A boundary vertex of a cell I is any i ∈ I such that U(I)
is not G-saturated in Ui. The boundary δ(I) of I is the set of all boundary
vertices of I.

Example 2.3. Consider an action of an algebraic torus T on Pn as in
Example 1.9. We define an elementary polytope to be a convex polytope Q
in XR(T ) satisfying the following conditions:

(i) Q is an intersection of distinguished polytopes;

(ii) for any distinguished polytope P ,

P ∩Q◦ 6= ∅ ⇒ Q ⊂ P

where Q◦ denotes the relative interior of the polytope Q. Notice that, for any
p ∈ conv{χ0, . . . , χn}, there exists exactly one elementary polytope (denoted
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by) Q(p) such that p ∈ Q. Moreover, for any p1, p2 ∈ conv{χ0, . . . , χn},

U(p1) = U(p2)⇔ Q(p1) = Q(p2).

It follows from Example 1.9 that there is a one-to-one correspondence be-
tween elementary polytopes and sets of semistable points (corresponding to
various linearizations of ample line bundles on Pn). The set of semistable
points corresponding to an elementary polytope Q will be denoted by S(Q).
Let J be the set indexing the collection of all elementary polytopes in

XR(T ) and, for any i ∈ J , let Qi be the corresponding elementary polytope.
Let U(i) = S(Qi).
Assume now that a subset I ⊂ J is a cell with vertices in J (see 2.1).

Then
U(I) =

⋂

i∈I

S(Qi),

hence
x ∈ U(I)⇔ ∀i ∈ I, Qi ⊂ P (x).

Let now x = (x0, . . . , xn) ∈ Pn and let I(x) be the cell defined by

I(x) = {i ∈ J : Qi ⊂ P (x)}.

It follows from 5.13–5.15 of [5] that the boundary of the cell I(x) consists of
all vertices corresponding to elementary polytopes contained in the bound-
ary of P (x).

Definition 2.4. Let J be a set and, for i ∈ J , let Ui be a G-invariant
open subset of X such that there exists a good quotient Ui → Ui//G. Con-
sider a collection Π = {I1, . . . , Is} of cells with vertices in J . The collection
Π is good if, for any cells Ii, Ij ∈ Π, the following two conditions are satisfied:

Ii ∩ Ij 6= ∅,(1)

Ii ∩ Ij ⊂ δ(Ii)⇒ Ii ∩ Ij ∈ Π.(2)

Example 2.5. Consider as before an action of T on Pn. Let J be a set
of elementary polytopes as in 2.3. As noticed in 1.10, for any distinguished
polytope P , there exists a finite set {p1, . . . , pr} such that

U(∆(P )) =

r⋂

i=1

U(pi).

Hence there exists a finite set {Q1, . . . , Qr} of elementary polytopes such
that

U(∆(P )) =
r⋂

i=1

S(Qi).

It follows that to any distinguished polytope P , there corresponds a cell
IP = {Qi : Qi ⊂ P} with vertices in J such that U(∆(P )) = U(IP ). Let
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∆ be a collection of distinguished polytopes. It can be deduced from 2.3
that ∆ is a good collection of distinguished polytopes iff the corresponding
collection of cells (with vertices in the set of elementary polytopes) is good.

Theorem 2.6. Let J be a set and for any i ∈ J let Ui be an open
G-invariant subset of X such that there exists a good quotient Ui → Ui//G.
Then for any good collection Π of cells with vertices in J there exists a good
quotient U(Π)→ U(Π)//G. Moreover if , for any i ∈ J , the quotient space
Ui//G is an algebraic variety then U(Π)//G is also an algebraic variety.

Proof. For any cell Ii ∈ Π the set U(Ii) is a finite intersection of open
sets with good quotients. It follows from Proposition 1.1 of [4] that there
exists a good quotient U(Ii)→ U(Ii)//G. Assume that

x, y ∈ U(Π) =
⋃

I∈Π

U(I).

Let x ∈ U(I1) and y ∈ U(I2). Then x, y ∈ U(I1) ∪ U(I2). We shall prove
that there exists a good quotient

U(I1) ∪ U(I2)→ (U(I1) ∪ U(I2))//G.

Assume first that I1 ∩ I2 * δ(Ii) for i = 1, 2. Then there exist vertices
j1, j2 ∈ I1 ∩ I2 such that j1 6∈ δ(I1) and j2 6∈ δ(I2). In this case for i = 1, 2
the set U(Ii) is a saturated subset of Uj1 ∩ Uj2 . Hence, U(I1) ∪ U(I2) is
G-saturated in Uj1 ∩ Uj2 and by 1.4 there exists a good quotient

U(I1) ∪ U(I2)→ (U(I1) ∪ U(I2))//G.

Consider now the case I1 ∩ I2 ⊂ δ(I1). According to condition (2) of 2.4,

J = I1 ∩ I2 ∈ Π,

hence, U(J) ⊂ U(Π), U(J)→ U(J)//G exists and x, y ∈ U(J).
We have proved that for any two points x, y ∈ U(Π) there exists an open

G-invariant neighborhood Vx,y of x, y in U(Π) such that there exists a good
quotient Vx,y → Vx,y//G. We use Theorem 1.14 to infer that there exists a
good quotient U(Π)→ U(Π)//G.

Lemma 2.7. Let X, G and J be as in 2.6, and let Π be a good collection
of cells with vertices in J . Assume that I ∈ Π and I is minimal in Π. Then
U(I) is G-saturated in U(Π).

Proof. Assume that I ∈ Π and I is minimal in Π. Suppose that U(I)
is not saturated in U(Π). Then there exist x ∈ U(I), y ∈ U(Π) such that
y ∈ G · x and y /∈ U(I). Let I1 ∈ Π be a cell such that y ∈ U(I1). Then
y ∈ Uj for any j ∈ I1. It follows that I ∩ I1 ⊂ δ(I). We have assumed that
Π is a good collection of cells and therefore ∅ 6= I ∩ I1 ∈ Π and, since I is
minimal, it follows that I=I∩I1. Hence y∈U(I), giving a contradiction.
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Corollary 2.8. For any good collection Π of cells with vertices in J ,
there exists a subcollection Π ′ ⊂ Π such that U(Π ′) = U(Π) and , for any
I ∈ Π ′, the set U(I) is saturated in U(Π ′) = U(Π).

Proof. Indeed, define Π ′ to be the set of minimal cells in Π. Obviously
U(Π ′) ⊂ U(Π). For any I ∈ Π, there exists J ∈ Π ′ such that J ⊂ I, hence
U(I) ⊂ U(J) and therefore U(Π) = U(Π ′). The statement follows from
Lemma 2.7.

3. An-varieties. In this section we consider a class of algebraic varieties
satisfying some additional condition. This class is larger than the class of
projective varieties.

Definition 3.1. Let X be an algebraic variety. We say that X is an
An-variety if, for any x1, . . . , xn ∈ X, there exists an open affine U ⊂ X
such that x1, . . . , xn ∈ U . If X is an An-variety for every n ∈ N then we say
that X is an A∞-variety.

Thus, any algebraic variety is an A1-variety. In [10] Włodarczyk proved
that a normal variety X is an A2-variety if and only if it can be embedded
in a toric variety.

Any quasiprojective variety is an A∞-variety and under some assump-
tions the converse is true. For smooth varieties this was proved by Kleiman
[7] and, for a certain class of normal varieties, by Włodarczyk [11].

Theorem 3.2 ([11], Theorem B). Let X ′ be a normal variety for which
there exists an open embedding X ′ ⊂ X in a complete normal variety X such
that (Div(X)/Car(X))⊗Q is of finite dimension. Then X ′ is quasiprojective
iff any finite subset is contained in some open affine subset.

Theorem 3.3 ([11], Theorem A). Let X be a complete normal variety
such that (Div(X)/Car(X))⊗Q is finite-dimensional. Then X contains only
finitely many maximal (in the sense of inclusion) open quasiprojective sets.

We prove that any algebraic variety contains only finitely many maximal
open An-subsets.

Lemma 3.4. LetM⊂Xn=X×. . .×X be defined as follows: (x1, . . . , xn)
∈ M if and only if there exists an affine U ⊂ X such that xi ∈ U for
i = 1, . . . , n. Then M is open.

Proof. M =
⋃
U × . . .× U where U runs over the set of all affine open

subsets of X.

Theorem 3.5. Let X be an algebraic variety. For every n ∈ N, the num-
ber of open maximal An-subvarieties of X is finite.
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Proof. First, assume X is complete. Let M ⊂ Xn be as in Lemma 3.4.
Then Y = Xn −M and Z(n) = pr1(Y ) are complete. Let Y = Y1 ∪ . . .∪ Yk
be the decomposition into irreducible components and let Zi = pr1(Yi).

Then Z(n) =
⋃k
i=1 Zi. Let U be any open An-subset of X. Equivalently,

U ⊂ X is open and Un ∩ Y = ∅. Consider the set K = {i : U ∩ Zi = ∅}.
Then S(U) = X −

⋃
i∈K Zi is open. We prove that S(U) is an An-variety.

Suppose that there exist x1, . . . , xn ∈ S(U) such that (x1, . . . , xn) ∈ Y . Let
(x1, . . . , xn) ∈ Yj0 for some j0 ∈ {1, . . . k}. Let pi be the projection onto the
ith factor. Then pi(Yj0) = Zi0 for some i0 ∈ {1, . . . , k}. Since Zi0 ∩ S(U) 6=
∅, it follows that U ∩ Zi0 6= ∅. Therefore, for every i = 1, . . . , n we have
p−1i (U)∩ Yj0 6= ∅. It follows that Y ∩U

n 6= ∅, contradicting the assumption
that U is an An-variety. It follows that any maximal An-set is obtained by
removing from X a finite collection of closed subsets. Hence there are only
finitely many maximal open An-subsets of any complete variety X.
Let now X be arbitrary and let X →֒ X ′ be an open embedding in a

complete algebraic variety. Let U1, . . . , Uk be the collection of all maximal
open An-subsets of X

′. Any open An-subvariety of X is contained in X ∩Ui
for some i = 1, . . . , k. But, for any i, X ∩ Ui is an An-variety. Hence, the
number of maximal An-subvarieties of X is finite.

Theorems 3.2, 3.3 and 3.5 suggest the following

Conjecture 3.6. Let X be an algebraic normal variety. Then X con-
tains only finitely many maximal (in the sense of inclusion) open A∞-
subsets.

4. Sets with An-quotients. Let X be an algebraic variety with an
action of a reductive group G. We shall prove that there are only finitely
many open subsets that are maximal with respect to saturated inclusion in
the family of all subsets with an An-variety as a quotient space. The problem
of finiteness of the set of G-maximal subsets was considered in [1].

Theorem 4.1 (Main Theorem of [1]). Let X be a normal variety with
an action of a reductive group G. Then the number of G-maximal subsets
of X is finite.

As an easy corollary we get (see Introduction of [1])

Corollary 4.2. Let X and G be as in 4.1. Then there are only finitely
many maximal (with respect to saturated inclusion) subsets with a variety
as a quotient.

Definition 4.3. Let U ⊂ X be an open G-invariant subset with a good
quotient. Assume that the quotient space U//G is an An- or an A∞-variety
or is quasiprojective. We shall say that U is (G,n)-maximal (resp. (G,∞)-
maximal , qp-G-maximal) if U is maximal with respect to saturated inclusion
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in the set of all G-invariant open subsets of X that have a good An-quotient
(resp. A∞-quotient, quasiprojective quotient).

Theorem 4.4. Let X be a complex normal variety with an action of a
reductive group G. Then, for any n ∈ N, the number of (G,n)-maximal
subsets of X is finite.

Proof. According to 4.1 there are a finite number of G-maximal subsets
of X. Any (G,n)-maximal subvariety of X is contained as a saturated subset
in a G-maximal set. Theorem 3.5 implies that, for any G-maximal set U ⊂
X, the number of maximal An-subsets in the quotient space U//G is finite.
This completes the proof.

Proposition 4.5. Assume that X is a G-variety and let U be a G-
invariant open subset of X such that there exists a good A2-quotient. Then
there exists a good collection Π = {I1, . . . , Im} of cells with vertices in the
set J of G-invariant affine subsets Uj , j ∈ J , of X such that U = U(Π).
Moreover , for any cell Ij ∈ Π and any i ∈ Ij , the set U(Ij) is saturated
in Ui.

Proof. Let q : U → U//G be the quotient morphism and assume that
U//G is an A2-variety. Choose a finite covering of the quotient space U//G
by affine open subsets

U//G =W1 ∪ . . . ∪Wn

such that, for any two points x, y ∈ U//G, there exists an index i such
that x, y ∈ Wi. Such a finite covering may be chosen in the following way:
since U//G is an A2-variety, it follows that for any two points x, y ∈ U//G
there exists an open affine neighborhoodWx,y of x, y in U//G. Then (x, y) ∈
Wx,y × Wx,y ⊂ U//G × U//G. Therefore U//G × U//G is covered by open
sets W ×W where W is an affine open subset of U//G. We choose a finite
covering Wi ×Wi, i = 1, . . . , n. Then the collection Wi, i = 1, . . . , n, is a
covering of U//G with the desired property.

For any x ∈ U//G, let S(x) = {i : x ∈ Wi}. Choose a finite set of points
x1, . . . , xl ∈ U//G such that the sets

Vi =
⋂

j∈S(xi)

Wj

form a covering of U//G. Let J = {1, . . . , n}. Then for any j ∈ J the set
Uj = q

−1(Wj) is an affine G-invariant subset of U . Let Π be a collection of
cells S(xi), i = 1, . . . , l, with vertices in J . Then

(3) U(S(xi)) =
⋂

j∈S(xi)

Uj = q
−1
( ⋂

j∈S(xi)

Wj

)
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is saturated in Uj for any j ∈ S(xi). It is easy to see that Π is a good collec-
tion of cells. In fact (3) implies the condition (2) of 2.4 since the boundary
of any cell in Π is empty, and condition (1) is satisfied by the choice of the
covering {Wi : i = 1, . . . , n}. Obviously U(Π) = U.

Proposition 4.6. Let X be a G-variety and let Π be a good collection
of cells with vertices in J and assume that , for every k ∈ J , Uk//G is an
A2-variety. Then U(Π)//G is an A2-variety.

Proof. According to Corollary 2.8 we can assume without loss of gen-
erality that all cells of Π are minimal in Π, hence, for any cell I ∈ Π,
the set U(I) is G-saturated in U(Π). Notice that then, for any I1, I2 ∈ Π,
there exists a vertex k ∈ J such that U(I1) ∪ U(I2) is contained as a sat-
urated subset in Uk. Hence (U(I1) ∪ U(I2))//G exists and is an A2-variety.
Let x, y ∈ U(Π). There exist I1, I2 ∈ Π such that x ∈ U(I1), y ∈ U(I2).
Then (U(I1) ∪ U(I2))//G is an open A2-neighborhood of x and y. Thus the
points x, y are contained in an open affine subset of U(Π)//G.

Definition 4.7. Let Π be a collection of cells with vertices in the set
J . The collection Π is n-good if it is good and, for any cells I1, . . . , In ∈ Π,
the intersection

⋂n
i=1 Ii is not empty.

Proposition 4.8. Let G act on X and let U be a subset of X such that
there exists a good An-quotient. Then there exists an n-good collection Π of
cells with vertices in the set of affine G-sets such that U = U(Π).

Proof. We proceed exactly as in the proof of Proposition 4.5.

5. The case of Pic(X) = Z. In this section we assume that X is pro-
jective, smooth and Pic(X) = Z and we use the combinatorial construction
described in Section 2 to build all (G, 2)-maximal subsets of X. We use sets
with projective quotients as “building blocks”.

First notice that there are finitely many open subsets with projective
quotient:

Proposition 5.1 (see Example 5.1 of [1]). Let X be a normal projective
variety and G be a reductive group acting on X. There exist only finitely
many sets of semistable points corresponding to all G-linearized ample line
bundles on X.

This implies the following

Corollary 5.2. Let X be a projective smooth variety with an action of
a reductive group G and suppose that Pic(X) = Z. Then the number of open
subsets with projective quotients is finite.
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Proof. In this case any open subset with a projective quotient space is
the set of semistable points of some G-linearized ample line bundle. This is
a consequence of the following

Lemma 5.3 (Lemma 7.14 of [5]). Let G be a reductive group acting on a
projective smooth variety X with Pic(X) = Z. Let U be a G-invariant open
subset of X such that there exists a good quotient U → U//G and U//G is
quasiprojective. Then there exists a G-linearized ample line bundle L on X
such that U is contained in Xss(L) as a saturated subset.

Hence the number of open subsets ofX with projective quotients is finite.
We shall need the following lemma:

Lemma 5.4. Let X be an algebraic variety with an action of a reductive
group G and assume that U1, . . . , Uk are G-invariant open subsets in X
such that , for j = 1, . . . , k, there exists a good quotient Uj//G and it is

quasiprojective. Then there exists a good quotient of U =
⋂k
j=1 Uj and it is

quasiprojective.

Proof. We shall prove that there exists a G-linearized line bundle L on
U such that U = U ss(L). According to 1.13 of [8], for i = 1, . . . , k, there
exists a G-linearized line bundle Li on Ui such that Ui = (Ui)

ss(Li). Let
x ∈ U and let si ∈ Γ (Ui,Li) be a G-invariant section with affine support
such that si(x) 6= 0. (Maybe we have to choose si as a section of some
tensor power of Li.) Let L

′ = L1|U ⊗ . . . ⊗ Lk|U . Then the support of
s1|U · . . . · sk|U ∈ Γ (U,L

′) is the intersection of the supports of si, hence is
affine and contains x. It follows that U = U ss(L′), hence there exists a good
quotient U → U//G and U//G is quasiprojective.

Definition 5.5. Let Jss be the indexing set for the collection of all open
G-invariant subsets of X with projective quotients. For i ∈ Jss, let Vi be
the corresponding open subset. For any U ⊂ X let

Iss(U) = {i ∈ Jss : U ⊂ Vi} and Css(U) =
⋂

i∈Iss(U)

Vi.

Notice that, according to 5.2, Jss is finite.

Lemma 5.6. Assume X is a projective smooth G-variety with Pic(X)
= Z. Let U ⊂ X be an open G-invariant subvariety such that there exists a
good quotient U → U//G and the quotient space is quasiprojective. Then

(i) Iss(U) 6= ∅,
(ii) the set Iss(U) is finite,
(iii) there exists a good quotient Css(U)→ Css(U)//G,
(iv) the quotient space Css(U)//G is quasiprojective,
(v) U is a saturated subset of Css(U).



98 J. ŚWIĘCICKA

Proof. The first statement follows from Lemma 5.3. The second one is
a consequence of Proposition 5.1. Statements (iii) and (iv) follow from 5.4.
Finally notice that by (iv) and 5.3 there exists i ∈ Iss(U) such that U is a
saturated subset of Vi, hence U is saturated in Css(U) ⊂ Vi.

Theorem 5.7. Let X be a projective smooth algebraic variety with
Pic(X) = Z. Assume that U is (G, 2)-maximal. Then there exists a good
collection Π̃ of cells with vertices in Jss such that U = U(Π̃).

Proof. Assume that U ⊂ X has a good quotient and the quotient space
is an A2-variety. By Proposition 4.5 we can find a finite collection J of
G-invariant affine sets Uj , j ∈ J , and a good collection of cells Π =
{I1, . . . , Im} with vertices in J such that U = U(Π). Therefore U =⋃m
i=1 U(Ii). Moreover we can choose Π in such a way that for any i =
1, . . . ,m the set U(Ii) is saturated in Uj for every j ∈ Ii. For any cell Ii let

Ĩi = Iss(U(Ii)).

We claim that Π̃ = {Ĩi : i = 1, . . . ,m} is a good collection of cells with
vertices in Jss.
We have to prove that, for any i, j = 1, . . . ,m,

∅ 6= Ĩi ∩ Ĩj * δ(Ii).

Consider cells Ii1 , Ii2 ∈ Π and the corresponding cells Ĩi1 , Ĩi2 ∈ Π̃. Let
W1 = U(Ii1) and W2 = U(Ii2). By the assumptions on Π, the intersection
Ii1 ∩ Ii2 is nonempty and W1,W2 are saturated in the affine set Uj for
any j ∈ Ii1 ∩ Ii2 . Let V = W1 ∪W2. Then V is a saturated subset of the
affine variety Uj . According to [8], Thm. 1.1, there exists a good quotient
Uj → Uj//T and it is an affine variety. Therefore there exists a good quotient
V//T and it is quasiaffine. By 5.6(v) we see that Uj is saturated in Css(Uj).
According to 5.4, Css(Uj) has a quasiprojective good quotient, hence, by
5.3, there exists k ∈ Jss such that Css(Uj) is a saturated subset of Vk. It

follows that V is a saturated subset of Vk, hence k ∈ Ĩi1 ∩ Ĩi2 , but k is not

contained in δ(Ĩij ) for j = 1, 2. This shows that Π̃ is a good collection of
cells.

We now prove that U is a saturated subset of U(Π̃). Let x ∈ U and

y ∈ G · x ⊂ U(Π̃) and assume that x ∈ W1 = U(Ii1) and y ∈ W2 = U(Ĩi2).
As before we can find l ∈ Jss such that W1, W2 are saturated subsets of Vl,
hence y ∈W1 ⊂ U . This ends the proof of Theorem 5.7.

Remark 5.8. Assume that, as before, X is a projective smooth G-var-
iety with Pic(X) = Z and U is (G, k)-maximal for k > 1. Then using the
same method as above we can find a k-good collectionΠ of cells with vertices
in Jss such that U = U(Π).
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6. Corollaries and examples. In this section (as before) we assume
that X is projective smooth with Pic(X) = Z.

Example 6.1. Let T be an algebraic torus acting on Pn and let U be a
T -maximal set. It follows from 1.12 and 2.5 that there exists a good collection
Π of cells with vertices in the set of elementary polytopes (see Example 2.3)
such that U = U(Π). This result follows immediately from Theorem 5.7.
In fact, by Corollary 2.5 of [9] (see 1.13) the quotient space U//T is a toric
variety, hence an A2-variety.

Proposition 6.2. Assume that there is an action of an algebraic torus
T on X where X is projective and smooth with Pic(X) = Z. Let U be
a (T, 2)-maximal subset of X. Then there exists an equivariant embedding
ι : X →֒ Pn and a T -maximal set W ⊂ Pn such that ι(U) =W ∩ ι(X).

Proof. Let Π̃ be a good collection of cells with vertices in Jss such that
U = U(Π̃). The existence of Π̃ follows from Theorem 5.7. We embed X in
Pn in such a way that, for any j ∈ Jss, Vj is the intersection of X with a
T -invariant set in Pn with a projective quotient. We shall identify X with
ι(X). We define a collection ∆ of distinguished polytopes in XR(T ) (see 1.6)
in the following way: a distinguished polytope P belongs to ∆ if there exists
x ∈ X such that P (x) ⊂ P .

We prove that ∆ is a good collection of polytopes (see 1.11). For any
p ∈ XR(T ), let U(p) be as in 1.9. Then U(p)//T is projective. For any
x, y ∈ U , there exists an open T -invariant neighborhood Ux,y of x, y in U and
a point p0 ∈ XR(T ) such that Ux,y is a saturated subset in U(p0)∩X. Then
U(p0) ∩X is a closed subset in U(p0), therefore Ux,y is saturated in U(p0).
Hence, by 1.9, P (x1)∩P (x2) 6= ∅. Assume now that F = P (x1)∩P (x2) is a
face of P (x1). Then p0 ∈ F . There exists z ∈ T · x ⊂ X such that P (z) = F .
Then z ∈ U(p0) ∩X. It follows that z ∈ Ux,y. Hence P (z) = F ∈ ∆. This
proves that ∆ is a good collection of distinguished polytopes. Then (by 1.12)
there exists a good quotient U(∆)→ U(∆)//T and hence U(∆) is contained
in a T -maximal subset W of Pn as a saturated subset. As in the proof of
Corollary 1.13, the quotient space W//T is a toric variety. Therefore, there
exists a good quotient of X ∩W by T and the quotient space is a closed
subset of a toric variety, hence the quotient space is an A2-variety. Now,
U(∆) is saturated inW and U = U(∆)∩X, hence U is saturated inW ∩X.
Since U is (T, 2)-maximal, U =W ∩X.

Corollary 6.3. Let a reductive group G act on a smooth projective
variety X with Pic(X) = Z. Let T be a fixed maximal torus of G.

(I) Let V be a (T, 2)-maximal subset of X and U =
⋂
g∈G g · V . Then

U is open, G-invariant and there exists a good quotient U//G.
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(II) For any (G, 2)-maximal set U there exists a (T, 2)-maximal set V
containing U as a T -saturated subset and , for any such V , the quotient set
U//G is an A2-maximal subset of (

⋂
g∈G g · V )//G.

Proof. According to Corollary 6.2 we can embed X in Pn in such a way
that V =W ∩X, where W is a T -maximal set in Pn. By Theorem C of [5]
the set

W1 =
⋂

g∈G

g ·W

is open and there exists a good quotient W1//G. Then U = W1 ∩ X and
therefore there exists a good quotient U//G. This ends the proof of (I).

There is a good quotient qG : V → V//G, hence by Proposition 2.1
of [3] there exists a good quotient qT : V → V//T . For any two points x, y
∈ V there exists an affine open subset W in V//G such that qG(x), qG(y)
∈ W . The quotient morphism qG is affine, hence q

−1
G (W ) ⊂ V is affine

and G-saturated (in V ). It follows that Vx,y = q
−1
G (W ) is T -saturated in

V . Hence the quotient space Vx,y//T is an affine neighborhood of qT (x),
qT (y). It follows that V//T is an A2-variety. Now (II) follows immediately
from (I).

Example 6.4. We give an example of an open subset U of a smooth
projective T -variety X with Pic(X) = Z such that U → U//T exists and
is complete but the quotient space is not an A2-variety. It follows from 4.6
that U is not defined by a good collection of cells with vertices in Jss. Let
X be the Grassmann variety X = G(2, 4) of planes in A4 with the action of
a one-dimensional torus T induced by the action of T on A4 given by the
matrix

t→




1 0 0 0
0 t 0 0
0 0 t2 0
0 0 0 t3


 .

It was noticed in Remark 1.6 of [2] that in this case there exist open subsets
with good quotients by the torus T such that the quotient spaces are com-
plete but not projective. In fact, we can embed X in the projective space
P (
∧2
A4) with T acting by

t 7→ diag(t, t2, t3, t3, t4, t5).

There are six fixed points of T on X: p1 = e1 ∧ e2, p2 = e1 ∧ e3,
p3 = e1 ∧ e4, p4 = e2 ∧ e3, p5 = e2 ∧ e4, p6 = e3 ∧ e4 and the partial
order on this set is given by the diagram
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p1
↓
p2

ւ ց
p3 p4
ց ւ
p5
↓
p6

Let A− = {p1, p2, p3}, A+ = {p4, p5, p6} and

U = {x ∈ X : lim
t→0
t · x ∈ A−, lim

t→∞
t · x ∈ A+}.

Then there exists a good quotient q : U → U//T and it is complete but
not projective. Moreover T acts on U with closed orbits. Consider points
x1, x2 ∈ P

4 corresponding to the planes lin(e1, e2+e4) and lin(e2, e1+e3) re-
spectively. Then x1, x2 ∈ U but there is no affine T -invariant neighborhood
of x1 and x2 in U . To see this, assume that there exists an affine T -invariant
open V ⊂ X such that x1, x2 ∈ V ⊂ U . Since Pic(X) = Z and X is smooth,
by Lemma 5.3, V would be a saturated subset of Xss(L) for some linearized
ample line bundle L. There is only one set of semistable points which con-
tains x1, x2 and the orbits T ·xi are not closed in this set, contradicting the
assumption that V is saturated in Xss(L). It follows that there is no affine
neighborhood of q(x1), q(x2) in U//T , hence the quotient space U//T is not
an A2-variety and, therefore, cannot be embedded in a toric variety.
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