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EXISTENCE AND CONSTRUCTION OF TWO-DIMENSIONAL
INVARIANT SUBSPACES FOR PAIRS OF ROTATIONS

BY

ERNST DIETERICH (Uppsala)

Abstract. By a rotation in a Euclidean space V of even dimension we mean an
orthogonal linear operator on V which is an orthogonal direct sum of rotations in 2-
dimensional linear subspaces of V by a common angle α ∈ [0, π]. We present a criterion
for the existence of a 2-dimensional subspace of V which is invariant under a given pair
of rotations, in terms of the vanishing of a determinant associated with that pair. This
criterion is constructive, whenever it is satisfied. It is also used to prove that every pair
of rotations in V has a 2-dimensional invariant subspace if and only if the dimension of V
is congruent to 2 modulo 4.

1. Statement of the main result. We agree that 0 ∈ N. For all m ∈ N
we denote by Rm×m the set of all real m×m-matrices, and by Im ∈ Rm×m

the identity matrix. For all α ∈ R and m ∈ N we use moreover the matrix
notation

Rα =

(
cosα − sinα
sinα cosα

)
and Im ⊗Rα =


Rα

. . .

Rα

 ∈ R2m×2m.

Let V be a Euclidean space of even dimension. By a rotation in V we
mean an orthogonal linear operator σ ∈ O(V ) whose matrix in some or-
thonormal basis of V is Im⊗Rα for some α ∈ [0, π]. Given any pair (σ, τ) of
rotations in V , we call a linear subspace W ⊂ V invariant under (σ, τ), or
briefly (σ, τ)-invariant, if both inclusions σ(W ) ⊂ W and τ(W ) ⊂ W hold.
In that case, σ(W ) = W and τ(W ) = W . Moreover, (σ, τ) induces a pair
(σW , τW ) of linear operators on W . If {σ, τ} 6⊂ {IV ,−IV }, where IV denotes
the identity operator on V , then dimW is even and (σW , τW ) is a pair of
rotations in W .

In [2], it is asked whether every pair of rotations in a 6-dimensional Eu-
clidean space has a 2-dimensional invariant subspace. An affirmative answer
plays in fact a crucial role in the classification of the 8-dimensional absolute-
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valued algebras with a non-zero central idempotent or a one-sided unity.
Since these are (non-associative) real division algebras, their classification
contributes substantially to the problem of classifying all finite-dimensional
real division algebras, an old and hard problem which, originating from the
work of Hamilton, Graves and Cayley, to date is still only partially solved
and recently has attracted renewed interest (e.g. [3]–[9], [11]–[14]).

More than just establishing the desired affirmative answer to the above-
mentioned question about 6-dimensional Euclidean spaces, the main result
of the present article asserts the following.

Theorem 1.1. Let V be a Euclidean space of even dimension. Then
every pair of rotations in V has a 2-dimensional invariant subspace if and
only if the dimension of V is congruent to 2 modulo 4.

As an immediate consequence we obtain the following decomposability
criterion for pairs of orthogonal matrices.

Corollary 1.2. Let A,B ∈ O(n) be real orthogonal n × n-matrices,
satisfying

n ≡ 2 (mod 4), StAS = Im ⊗Rα and T tBT = Im ⊗Rβ
for certain S, T ∈ O(n) and α, β ∈ [0, π]. Then there exists a real orthogonal
matrix U ∈ O(n) such that

U tAU =

(
A1

A2

)
, U tBU =

(
B1

B2

)
for certain A1, B1 ∈ O(2) and A2, B2 ∈ O(n− 2).

Proof. In terms of the notation introduced in Section 2, the hypothesis
on A and B means that A and B are rotations in En, where dim En ≡
2 (mod 4). By Theorem 1.1 there exists a 2-dimensional subspace P ⊂
En which is invariant under (A,B). It follows that P⊥ also is invariant
under (A,B). Hence for every choice of orthonormal bases (u1, u2) in P and
(u3, . . . , un) in P⊥, the matrix U ∈ O(n) whose column series is (u1, . . . , un)
will do.

Corollary 1.2 can be reformulated in terms of modules over the free asso-
ciative algebra Λ = R〈X,Y 〉, as follows. Every pair (σ, τ) of linear operators
on a real vector space V endows V with the structure of a left Λ-module
V = V (σ, τ), given by Xv = σ(v) and Y v = τ(v) for all v ∈ V .

Corollary 1.3. For every pair (σ, τ) of rotations in a Euclidean space
V of dimension n ≡ 2 (mod 4), the left Λ-module V = V (σ, τ) decomposes
orthogonally , V = P ⊕ P⊥, into a 2-dimensional Λ-submodule P and its
associated (n− 2)-dimensional Λ-submodule P⊥. If in addition n ≥ 6, then
the Λ-module V (σ, τ) is not indecomposable.
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If one instead considers pairs (σ, τ) of rotations in a Euclidean space
V of dimension n ≡ 0 (mod 4), then the situation is more delicate. The
Λ-module V = V (σ, τ) may or may not decompose as in Corollary 1.3.
Precise information about what happens is given in Proposition 2.3.

In representation theory, the free associative algebra Λ = R〈X,Y 〉 is
known as the most prominent example of a wild algebra. Here the term
“wild” signifies, among other phenomena, that for every finitely generated
real associative algebra Γ , the category modf Γ of finite-dimensional left Γ -
modules admits a full and faithful embedding modf Γ ↪→ modf Λ (see [1]).
Thus modf Λ abounds with indecomposable objects. These are however far
from being classified, and constructive approaches to the decomposition of
objects in modf Λ are very rare. Seen against this background and taking into
account that V (σ, τ) forms an (n2−n+2)-parameter family of Λ-modules as
(σ, τ) ranges through all pairs of rotations in V (the dimension of the real
Lie group O(n) being (n2 − n)/2), and that the decomposition statement
of Corollary 1.3 is constructive (cf. Section 2), Corollary 1.3 appears less
innocuous than it may seem.

Let us also mention that Corollary 1.3 reveals but a special instance of a
more general, yet presently poorly known and only little understood inter-
relation between the classification theory of (non-associative) real division
algebras and the module theory over certain real associative algebras. This
topic will be treated in greater generality in the forthcoming article [10].

Finally, it should be pointed out that Proposition 3.1 below is a state-
ment on the Lie algebra o(n) of the real Lie group O(n) which, to our
knowledge, was not previously known within that classical theory. The
present note thus comprises aspects of such diverse algebraic theories as
(non-associative) real division algebras, modules over wild real associative
algebras, and real Lie algebras. All of these aspects emerge naturally from
the originally posed problem on the 6-dimensional Euclidean space, and they
merge naturally into its solution, the proof of Theorem 1.1.

2. A determinant criterion for the existence of two-dimensional
invariant subspaces. For the remainder of this article, n = 2m is an
even natural number, V is any Euclidean space of dimension n, and En
is the particular Euclidean space Rn equipped with the standard scalar
product 〈v, w〉 = vtw. Every matrix M ∈ Rn×n determines a linear operator
M : En → En, M(v) = Mv. In our context, the matrix

I = Im ⊗Rπ/2 =


0 −1
1 0 . . .

0 −1
1 0

 ∈ Rn×n
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is of special importance. For brevity we set %α = Im ⊗Rα for all α ∈ [0, π],

and ι = I = %π/2. In this notation, the rotations in En are precisely the
linear operators of the form S%αS

−1, where S ∈ O(n) and α ∈ [0, π]. The
notation [a, b] = ab− ba is used for elements a, b in HomR(V, V ) or in Rn×n.
By sp(v, w) we mean the R-linear span of elements v, w ∈ En.

If α ∈ {0, π} then %α = ±IEn , and hence every linear subspace of En is
%α-invariant. In the generic situation where 0 < α < π, the 2-dimensional
invariant subspaces for single rotations in En are described in the following
lemma.

Lemma 2.1. Let P ⊂ En be a 2-dimensional linear subspace.

(i) For each v ∈ En \ {0}, sp(v, Iv) is 2-dimensional and ι-invariant.
Conversely , if P is ι-invariant , then P = sp(v, Iv) for each v ∈
P \ {0}.

(ii) For each α ∈ ]0, π[, P is ι-invariant if and only if P is %α-invariant.
(iii) For each α ∈ ]0, π[ and S ∈ O(n), P is %α-invariant if and only if

S(P ) is S%αS−1-invariant.

Proof. (i) For each v∈En\{0}, the vectors v and Iv are non-proportional
since I has no real eigenvalue. Thus dim sp(v, Iv) = 2. Moreover, we note
that ι(sp(v, Iv)) = sp(Iv,−v) = sp(v, Iv). Conversely, if P is ι-invariant and
v ∈ P \ {0}, then sp(v, Iv) ⊂ P and dim sp(v, Iv) = 2, so sp(v, Iv) = P .

(ii) follows immediately from the identities

%α = (cosα)IEn + (sinα)ι and ι = −cosα
sinα

IEn +
1

sinα
%α.

(iii) Clearly, %α(P ) = P if and only if S%αS−1S(P ) = S(P ).

Passing now to pairs of rotations, we begin with an easy necessary cri-
terion for the existence of a 2-dimensional invariant subspace.

Lemma 2.2. If a pair (σ, τ) of rotations in V has a 2-dimensional in-
variant subspace, then the linear operator [σ, τ ] is not invertible.

Proof. Let P ⊂ V be a 2-dimensional (σ, τ)-invariant subspace. Then
(σ, τ) induces a pair (σP , τP ) of rotations in P . Moreover, P being 2-dimen-
sional, σP and τP commute. Hence P ⊂ ker[σ, τ ], and so [σ, τ ] is not invert-
ible.

From the previous two lemmas we now derive a necessary and sufficient
criterion for the existence of a 2-dimensional invariant subspace, in terms
of the vanishing of a determinant associated with the pair of rotations in
question.

Proposition 2.3. For every pair (σ, τ) = (S%αS−1, T%βT
−1) of rota-

tions in En, with S, T ∈ O(n) and 0 < α, β < π, the following statements
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are equivalent :

(i) The pair (σ, τ) has a 2-dimensional invariant subspace.
(ii) The identity det[I, StTIT tS] = 0 holds true.

Proof. (i)⇒(ii). Let P ⊂ En be a 2-dimensional (σ, τ)-invariant sub-
space. Set U=StT . Repeated application of Lemma 2.1 shows that S−1(P ) is
(%α, U%βU−1)-invariant, and thus even (ι, UιU−1)-invariant. By Lemma 2.2,
the linear operator [ι, UιU−1] = [I, UIU t] is not invertible. Equivalently, the
matrix [I, StTIT tS] is not invertible.

(ii)⇒(i). If we set U = StT , hypothesis (ii) states that det[I, UIU t] = 0.
On the other hand, the matrix identities

[I, UIU t] = IUIU t − UIU tI + (UIU t)2 − I2 = (UIU t + I)(UIU t − I)

= (UI + IU)U t(UI − IU)U t

hold true. Accordingly, det(UI + εIU) = 0 for some ε ∈ {1,−1}. Hence
there exists a v ∈ En \ {0} such that UIv + εIUv = 0. Setting w = Uv, we
obtain U(sp(v, Iv)) = sp(Uv,UIv) = sp(Uv, IUv) = sp(w, Iw). Application
of Lemma 2.1 to the end terms of the latter chain of identities shows that
sp(w, Iw) is 2-dimensional and (%α, U%βU−1)-invariant. Hence

S(sp(w, Iw)) = sp(Tv, SIStTv)

is 2-dimensional and (S%αS−1, T%βT
−1)-invariant, i.e. (σ, τ)-invariant.

Note that the proof of Proposition 2.3 actually contains a method of con-
structing 2-dimensional invariant subspaces for pairs of rotations, provided
they exist. Indeed, if (σ, τ) has a 2-dimensional invariant subspace, then the
matrix StTI + εIStT is not invertible for some ε ∈ {1,−1}, and for every
v ∈ ker(StTI + εIStT ) \ {0} the 2-dimensional subspace sp(Tv, SIStTv) is
invariant under (σ, τ).

Corollary 2.4. For any Euclidean space V of even dimension n, the
following statements are equivalent :

(i) Every pair of rotations in V has a 2-dimensional invariant subspace.
(ii) Every pair of rotations in En has a 2-dimensional invariant sub-

space.
(iii) The identity det[I, UIU t] = 0 holds for all U ∈ O(n).

Proof. (i)⇔(ii) holds because V and En are isomorphic Euclidean spaces.
(ii)⇒(iii). For every U ∈ O(n), the linear operator UIU t is a rotation

in En. By hypothesis (ii) and Lemma 2.2, the linear operator [I, UIU t] is
not invertible. Equivalently, the matrix [I, UIU t] is not invertible.

(iii)⇒(ii). Hypothesis (iii) ensures that n ≥ 2. (Indeed, if n = 0, then
I = U = [I, UIU t] = I0, the unique matrix in R0×0. Since I0 corresponds
to the identity operator on R0 = {0}, one defines det I0 = 1.) Let (σ, τ) =
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(S%αS−1, T%βT
−1) be any pair of rotations in En. If α ∈ {0, π} or β ∈ {0, π},

then (σ, τ) clearly has a 2-dimensional invariant subspace. If 0 < α, β < π,
then Proposition 2.3 guarantees the existence of a 2-dimensional (σ, τ)-
invariant subspace, because det[I, StTIT tS] = 0 holds by hypothesis (iii).

3. Proof of the main result. The following proposition tells us for
which even natural number n the identity det[I, A] = 0 holds for all skew-
symmetric matrices A ∈ Rn×n. Thus it is a statement on the Lie algebra
o(n) of the real Lie group O(n), which seems to be of independent interest.

Proposition 3.1. Let n be an even natural number.

(i) If n ≡ 0 (mod 4), then there exists a permutation matrix P ∈ O(n)
such that det[I, PIP t] = 2n.

(ii) If n ≡ 2 (mod 4), then det[I, A] = 0 for all skew-symmetric matrices
A ∈ Rn×n.

Proof. (i) Let n = 2m = 4`, where ` ∈ N. Set

D =

 1
. . .

1

 ∈ Rm×m, J = Jn =

(
−D

D

)
∈ Rn×n.

Calculation of IJ and JI respectively shows that

IJ = Jm ⊗ E = −JI, where E =

(
−1 0

0 1

)
.

Hence

det[I, J ] = det(IJ − JI) = det(2IJ) = 2n(det I)(det J) = 2n.

To accomplish the proof of (i), it suffices to exhibit for each ` ∈ N a per-
mutation matrix P` ∈ O(n) with P`IP

t
` = J . We do this by induction on

` ∈ N.
If ` = 0, then I = J = I0, the unique matrix in R0×0. Hence P0 = I0

satisfies P0IP
t
0 = J ∈ R0×0. If ` = 1, then

P1 =


1 0 0 0
0 0 1 0

0 0 0 1
0 1 0 0


is a permutation matrix in O(4) such that P1IP

t
1 = J ∈ R4×4. If ` ≥ 1 and
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P` ∈ O(n) is a permutation matrix with P`IP
t
` = J ∈ Rn×n, then

P`+1 =


1 0 0 0
0 0 1 0

P`

0 0 0 1
0 1 0 0


is a permutation matrix in O(n+4) such that P`+1IP

t
`+1 = J ∈ R(n+4)×(n+4).

(ii) Let n = 2m = 4` + 2, where ` ∈ N, set m = {1, . . . ,m}, and let
A ∈ Rn×n be skew-symmetric. Since I is skew-symmetric, so is B = [I, A].
We view B as an m ×m-matrix of 2 × 2-blocks Brs. Denoting the entries
of A by aij , we obtain for all (r, s) ∈ m2 the identities

Brs =

(
0 −1
1 0

)(
a2r−1,2s−1 a2r−1,2s

a2r,2s−1 a2r,2s

)

−

(
a2r−1,2s−1 a2r−1,2s

a2r,2s−1 a2r,2s

)(
0 −1
1 0

)
=

(
−crs brs

brs crs

)
,

where (
brs

crs

)
=

(
a2r−1,2s−1 − a2r,2s

a2r−1,2s + a2r,2s−1

)
.

Since B is skew-symmetric and all Brs are symmetric, we conclude that
Bsr = −Brs for all (r, s) ∈ m2. Now we permute the columns of B by trans-
posing each subsequent pair of columns that forms a block-column. Thus we
arrive at

C = BP, where P = Im ⊗

(
0 1
1 0

)
.

By construction, the 2× 2-blocks of C are

Crs =

(
brs −crs
crs brs

)
,

and they satisfy Csr = −Crs for all (r, s) ∈ m2. Therefore, the matrix C
admits the following complex interpretation.

Let Z ∈ Cm×m be the complex matrix with entries zrs = brs+crsi. Then
Z is skew-symmetric and m = 2`+ 1 is odd, so detZ = 0. Equivalently, the
C-linear map Z : Cm → Cm, Z(z) = Zz, is not invertible. Viewed as an
R-linear map, Z is all the same non-invertible. Equivalently, the matrix M
of the R-linear map Z : Cm → Cm, Z(z) = Zz, in the standard basis of the
real vector space Cm is not invertible. Note, however, that M = C.



210 E. DIETERICH

Summarizing, we have found that [I, A] = B = BP 2 = CP = MP ,
where M is not invertible. So det[I, A] = (detM)(detP ) = 0.

Finally, our main result, Theorem 1.1, falls out as a trivial consequence
of Corollary 2.4 and Proposition 3.1.

Proof of Theorem 1.1. Let V be a Euclidean space of even dimension n.
If every pair of rotations in V has a 2-dimensional invariant subspace,

then Corollary 2.4 implies that det[I, UIU t] = 0 for all U ∈ O(n). Proposi-
tion 3.1(i) implies further that n 6≡ 0 (mod 4). Hence n ≡ 2 (mod 4).

Conversely, if n ≡ 2 (mod 4), then det[I, A] = 0 holds for all skew-
symmetric matrices A ∈ Rn×n, by Proposition 3.1(ii). In particular, the
identity det[I, UIU t] = 0 holds for all U ∈ O(n). Hence every pair of rota-
tions in V has a 2-dimensional invariant subspace, by Corollary 2.4.

Remark. An alternative approach to Theorem 1.1 can be found in the
recent article [6].
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[12] E. Dieterich and J. Öhman, On the classification of 4-dimensional quadratic division
algebras over square-ordered fields, J. London Math. Soc. 65 (2002), 285–302.
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