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GLOBAL WELL-POSEDNESS,
SCATTERING AND BLOW-UP FOR THE ENERGY-CRITICAL,

FOCUSING HARTREE EQUATION IN THE RADIAL CASE

BY

CHANGXING MIAO, GUIXIANG XU and LIFENG ZHAO (Beijing)

Abstract. We establish global existence and scattering for radial solutions to the
energy-critical focusing Hartree equation with energy and Ḣ1 norm less than those of the
ground state in R× Rd, d ≥ 5.

1. Introduction. We consider the following initial value problem

(1.1)
{
iut +∆u = f(u) in Rd × R, d ≥ 5,
u(0) = u0(x) in Rd,

where u(t, x) is a complex-valued function in space-time R × Rd and ∆ is
the Laplacian in Rd, f(u) = −(|x|−4 ∗ |u|2)u. It was introduced as a classical
model in [32]. In practice, we use the integral formulation of (1.1),

(1.2) u(t) = U(t)u0(x)− i
t�

0

U(t− s)f(u(s)) ds,

where U(t) = eit∆.
We are primarily interested in (1.1) since it is critical with respect to the

energy norm. That is, the scaling u 7→ uλ, where

(1.3) uλ(t, x) = λ(d−2)/2u(λ2t, λx), λ > 0,

maps a solution to (1.1) to another solution to (1.1), and u and uλ have the
same energy (2.2).

It is known that if the initial data u0(x) has finite energy, then (1.1)
is locally well-posed (see, for instance, [24]). That is, there exists a unique
local-in-time solution that lies in C0

t Ḣ
1
x ∩ L6

tL
6d/(3d−8)
x and the map from

the initial data to the solution is locally Lipschitz in these norms. If the
energy is small, it is known that the solution exists globally in time and
scattering occurs, that is, there exist solutions u± of the free Schrödinger
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equation (i∂t +∆)u± = 0 such that

‖u(t)− u±(t)‖Ḣ1
x
→ 0 as t→ ±∞.

However, for initial data with large energy, the local well-posedness argu-
ment does not extend to give global well-posedness, only under the conser-
vation of the energy (2.2), because the time of existence given by the local
theory depends on the profile of the data as well as on ‖u0‖Ḣ1

x
.

A large amount of work has been devoted to the theory of scattering for
the Hartree equation: see [4]–[9], [17], [23]–[26], [28] and [29]. In particular,
we have recently obtained global well-posedness in Ḣ1

x for the energy-critical,
defocusing Hartree equation in the case of large finite-energy initial data [25],
[26]. In this paper, we continue this investigation and establish a scattering
result for radial solutions to the energy-critical, focusing Hartree equation
for data with energy and Ḣ1 norm less than those of the ground state W (x).
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Fig. 1. A description of the solutions with radial data in the energy space, where “FT”
means finite time

The main result of this paper is the following global well-posedness and
blow up result for (1.1) in the energy space.

Theorem 1.1. Let d ≥ 5, let u0 ∈ Ḣ1(Rd) be radial and let u be the cor-
responding solution to (1.1) in Ḣ1(Rd) with maximal forward time interval
of existence [0, T ). Suppose E(u0) < E(W ).

(1) If ‖∇u0‖L2 < ‖∇W‖L2 , then T =∞ and u scatters in Ḣ1.
(2) If ‖∇u0‖L2 > ‖∇W‖L2 , then T < ∞, and thus, the solution blows

up in finite time.

Concerning the blow up result, we also have

Theorem 1.2. Let d ≥ 5, u0 ∈ Ḣ1(Rd) and let u be the corresponding
solution to (1.1) in Ḣ1(Rd) with maximal forward time interval of existence
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[0, T ). Suppose E(u0) < E(W ), ‖∇u0‖L2 > ‖∇W‖L2 and |x|u0 ∈ L2. Then
T <∞, i.e., the solution blows up in finite time.

Next, we introduce some notations. If X,Y are nonnegative quantities,
we use X . Y or X = O(Y ) to denote the estimate X ≤ CY for some C
which may depend on the critical energy Ecrit (see Section 4) but not on
any parameter such as η, and X ≈ Y to denote the estimate X . Y . X.
We use X � Y to mean X ≤ cY for some small constant c which is again
allowed to depend on Ecrit.

We use C � 1 to denote various large finite constants and 0 < c� 1 to
denote various small constants.

The Fourier transform on Rd is defined by

f̂(ξ) := (2π)−d/2
�

Rd

e−ix·ξf(x) dx,

giving rise to the fractional differentiation operators |∇|s, defined by

|̂∇|sf(ξ) := |ξ|sf̂(ξ).
These define the homogeneous Sobolev norms

‖f‖Ḣs
x

:= ‖ |∇|sf‖L2
x(Rd).

Let eit∆ be the free Schrödinger propagator. In the physical space this
is given by the formula

eit∆f(x) =
1

(4πit)2
�

Rd

ei|x−y|
2/4tf(y) dy,

while in the frequency space one can write this as

êit∆f(ξ) = e−it|ξ|
2
f̂(ξ).

In particular, the propagator preserves the above Sobolev norms and
obeys the dispersive estimate

(1.4) ‖eit∆f‖L∞x (Rd) . |t|−d/2‖f‖L1
x(Rd), ∀t 6= 0.

Let d ≥ 5. A pair (q, r) is L2-admissible if

2
q

= d

(
1
2
− 1
r

)
whenever 2 ≤ r ≤ 2d

d− 2
.

For a space-time slab I × Rd, we define the Strichartz norm Ṡ0(I) by

‖u‖Ṡ0(I) := sup
(q,r)L2-admissible

‖u‖Lq
tL

r
x(I×Rd).

and for some fixed number 0 < ε0 � 1, define Z1(I) by

‖u‖Z1(I) := sup
(q,r)∈Λ

‖u‖Lq
tL

r
x
,
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where

Λ =
{

(q, r) :
2
q

= d

(
1
2
− 1
r

)
− 1,

2d
d− 2

≤ r ≤ 2d
d− 4

− ε0
}
.

When d ≥ 5, the spaces (Ṡ0(I), ‖ · ‖Ṡ0(I)) and (Z1(I), ‖ · ‖Z1(I)) are
Banach spaces.

We will occasionally use subscripts to denote spatial derivatives and will
use the summation convention over repeated indices.

We work in the framework of [12], [13] and [16]. In Section 2, we recall
some useful facts. In Section 3, we obtain some variational estimates and
blow-up results (part (2) of Theorem 1.1 and Theorem 1.2). Finally, using a
concentration-compactness argument, we obtain the scattering result (part
(1) of Theorem 1.1) in Sections 4 and 5.

2. A review of the Cauchy problem. In this section, we will recall
some basic facts about the Cauchy problem

(2.1)
{
iut +∆u = f(u), (x, t) ∈ Rd × R, d ≥ 5,
u(t0) ∈ Ḣ1(Rd),

where f(u) = −(|x|−4∗|u|2)u. It is the Ḣ1 critical, focusing Hartree equation.
In the above notations, we have the following Strichartz inequalities:

Lemma 2.1 (Strichartz estimate [11], [31]). Let u be an Ṡ0 solution to
the Schrödinger equation (2.1). Then

‖u‖Ṡ0 . ‖u(t0)‖L2
x

+ ‖f(u)‖
Lq′

t L
r′
x (I×Rd)

for any t0 ∈ I and any admissible pair (q, r). The implicit constant is inde-
pendent of the choice of the interval I.

From Sobolev embedding, we have

Lemma 2.2. For any function u on I × Rd,

‖∇u‖L∞t L2
x

+ ‖∇u‖
L6

tL
6d/(3d−2)
x

+ ‖∇u‖
L3

tL
6d/(3d−4)
x

+‖u‖
L∞t L

2d/(d−2)
x

+ ‖u‖
L6

tL
6d/(3d−8)
x

. ‖∇u‖Ṡ0 ,

where all space-time norms are on I × Rd.

For convenience, we introduce two abbreviated notations. For a time
interval I, we set

‖u‖X(I) := ‖u‖
L6

t (I;L
6d/(3d−8)
x )

, ‖u‖Y (I) := ‖∇u‖
L6

t (I;L
6d/(3d−2)
x )

,

‖u‖W (I) := ‖∇u‖
L3

t (I;L
6d/(3d−4)
x )

.

We develop a local well-posedness and blow-up criterion for the Ḣ1-
critical Hartree equation. First, we have
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Proposition 2.1 (Local well-posedness [25]). Suppose ‖u(t0)‖Ḣ1 ≤ A,
and let I be a compact time interval that contains t0 such that

‖U(t− t0)u(t0)‖X(I) ≤ δ
for a sufficiently small absolute constant δ = δ(A) > 0. Then there exists a
unique solution u ∈ C0

t Ḣ
1
x to (2.1) on I × Rd such that

‖u‖W (I) <∞, ‖u‖X(I) ≤ 2δ.

Moreover , if u0,k → u0 in Ḣ1(Rd), the corresponding solutions uk tend to u
in C(I; Ḣ1(Rd)).

Remark 2.1. There exists δ̃ > 0 such that if ‖u(t0)‖Ḣ1 ≤ δ̃, the conclu-
sion of Proposition 2.1 applies to any interval I. In fact, by the Strichartz
estimates, we have

‖ei(t−t0)∆u(t0)‖X(I) ≤ C‖ei(t−t0)∆u(t0)‖Y (I) ≤ Cδ̃,
and the claim follows.

Remark 2.2. Given u0 ∈ Ḣ1, there exists I such that 0 ∈ I and the
hypothesis of Proposition 2.1 is satisfied on I. In fact, by the Strichartz
estimates, we have

‖eit∆u0‖Y (I) <∞,
and the claim follows from the Sobolev inequality and absolute continuity
theorem.

Remark 2.3 (Energy identity). By the standard limiting argument, if
u is the solution constructed in Proposition 2.1, then

(2.2) E(u(t)) =
1
2
‖∇u(t)‖2L2 −

1
4

� � 1
|x− y|4

|u(t, x)|2|u(t, y)|2 dx dy

is constant for t ∈ I.

Now let t0 ∈ I. We say that u ∈ C(I; Ḣ1(Rd)) ∩W (I) is a solution of
(2.1) if

u(t) = ei(t−t0)∆u0 − i
t�

t0

ei(t−s)∆f(u) ds

with f(u) = −(|x|−4 ∗ |u|2)u. Note that if u(1), u(2) are solutions of (2.1)
on I, and u(1)(t0) = u(2)(t0), then u(1) ≡ u(2) on I × Rd. In fact, let

A = sup
t∈I

max
i=1,2

‖u(i)(t)‖Ḣ1

and partition I into a finite collection of subintervals Ij . If j0 is such that
t0 ∈ Ij0 , then the uniqueness of the fixed point in the proof of Proposition
2.1, combined with Remark 2.2, gives an interval Ĩ 3 t0 such that u(1)(t) =
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u(2)(t) for t ∈ Ĩ. A continuation argument now easily gives u(1)(t) = u(2)(t)
for t ∈ I.

Definition 2.1. The above analysis allows us to define the maximal
interval (t0 − T−(u0), t0 + T+(u0)), with T±(u0) > 0, where the solution
is defined. If T1 < t0 + T+(u0), T2 > t0 − T−(u0), T2 < t0 < T1, then u
solves (2.1) in [T2, T1]× Rd, so that u ∈ C([T2, T1], Ḣ1(Rd)) ∩X([T2, T1]) ∩
W ([T2, T1]).

Proposition 2.2 (Blow-up criterion [25]). If T+(u0) <∞, then

‖u‖X(t0,t0+T+(u0)) =∞.
A corresponding result holds for T−(u0).

Definition 2.2. Let v0 ∈ Ḣ1, v(t) = eit∆v0 and let tn be a sequence
with limn→∞ tn = t ∈ [−∞,∞]. We say that u(t, x) is a nonlinear profile
associated with (v0, {tn}) if there exists an interval I with t ∈ I (if t = ±∞
then I = [a,∞) or (−∞, a]) such that u is a solution of (2.1) in I and

lim
n→∞

‖u(tn, ·)− v(tn, ·)‖Ḣ1 = 0.

Remark 2.4. As in [12], there always exists a unique nonlinear profile
u(t) associated to (v0, {tn}), with maximal interval I.

Lastly, in order to meet our needs in Lemma 4.2, we give a stability
theory, which is somewhat different from that in [26], but the proofs are
similar in essence.

Proposition 2.3 (Long-time perturbations). Let I be a compact inter-
val , and let ũ be a function on I × Rd which obeys the bounds

(2.3) ‖ũ‖X(I) ≤M
and

(2.4) ‖ũ‖L∞t (I;Ḣ1
x) ≤ E

for some M,E > 0. Suppose also that ũ is a near-solution to (2.1) in the
sense that it solves

(2.5) (i∂t +∆)ũ = −(|x|−4 ∗ |ũ|2)ũ+ e

for some function e. Let t0 ∈ I, and let u(t0) be close to ũ(t0) in the sense
that

‖u(t0)− ũ(t0)‖Ḣ1
x
≤ E′

for some E′ > 0. Assume also that we have the smallness conditions

‖ei(t−t0)∆(u(t0)− ũ(t0))‖Z1(I) ≤ ε,(2.6)
‖e‖

L
3/2
t (I;Ḣ

1,6d/(3d+4)
x )

≤ ε(2.7)

for some 0 < ε < ε1, where ε1 is some constant ε1 = ε1(E,E′,M) > 0.
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Then there exists a solution u to (2.1) on I×Rd with the specified initial
data u(t0) at t0, and

‖u‖Z1(I) ≤ C(M,E,E′).

Moreover ,
‖∇u‖S0(I) ≤ C(M,E,E′).

Remark 2.5. Under the assumptions (2.3) and (2.7), the assumption
(2.4) is equivalent to

‖∇ũ(t0)‖L2 ≤ E.
Remark 2.6. The long time perturbation theorem in [26] yields the

following continuity fact, which will be used later: Let ũ0 ∈ Ḣ1 with ‖ũ0‖Ḣ1

≤ A, and let ũ be the solution of (2.1) with maximal interval of existence
(T−(ũ0), T+(ũ0)). Let u0,n → ũ0 in Ḣ1, and let un be the corresponding
solution of (2.1), with maximal interval of existence (T−(u0,n), T+(u0,n)).
Then

T−(ũ0) ≥ lim sup
n→∞

T−(u0,n), T+(ũ0) ≤ lim inf
n→∞

T+(u0,n),

and for each t ∈ (T−(ũ0), T+(ũ0)), un(t)→ ũ(t) in Ḣ1.

3. Some variational estimates and blow-up result. Let W (x) be
the ground state, i.e. the positive radial Ḣ1 solution to the elliptic equation

(3.1) ∆W + (|x|−4 ∗ |W |2)W = 0.

The existence and uniqueness of W have been established in [18] and [21].
By invariance of the equation, for θ0 ∈ [−π, π], λ0 > 0, x0 ∈ Rd,

Wθ0,x0,λ0(x) = λ
−(d−2)/2
0 eiθ0W

(
x− x0

λ0

)
is still a solution. Now let Cd be the best constant in the Sobolev inequality
in dimension d. That is,

(3.2) ∀u ∈ Ḣ1, ‖(|x|−4 ∗ |u|2)|u|2‖1/4
L1 ≤ Cd‖∇u‖L2 .

In addition, using the concentration-compactness argument [10], [19], [20],
[27], we can obtain the following characterization of W :

If ‖(|x|−4 ∗ |u|2)|u|2‖1/4
L1 = Cd‖∇u‖L2 and u 6= 0, then there exists

(θ0, λ0, x0) such that u = Wθ0,x0,λ0 .
From the above, we have

‖(|x|−4 ∗ |W |2)|W |2‖L1 = C4
d

( �
|∇W |2 dx

)2
.

On the other hand, from (3.1), we obtain

‖(|x|−4 ∗ |W |2)|W |2‖L1 =
�
|∇W |2 dx.
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Hence,

‖∇W‖2L2 =
1
C4
d

, E(W ) =
(

1
2
− 1

4

)
‖∇W‖2L2 =

1
4C4

d

.

Lemma 3.1. Assume that

‖∇u‖L2 < ‖∇W‖L2 .

Assume moreover that E(u) ≤ (1 − δ0)E(W ) for some δ0 > 0. Set δ =
δ
1/2
0 > 0. Then

�
|∇u|2 dx−

� � |u(x)|2|u(y)|2

|x− y|4
dx dy ≥ δ

2

�
|∇u|2 dx,

�
|∇u|2 dx ≤ (1− δ)

�
|∇W |2 dx, E(u) ≥ 0.

Proof. Define

a =
�
|∇u|2 dx and f(x) =

1
2
x− 1

4
C4
dx

2.

From (3.2), we have

(3.3) (1− δ0)E(W ) ≥ E(u) ≥ 1
2

�
|∇u|2 dx− 1

4
C4
d

( �
|∇u|2 dx

)2
= f(a).

Note that

f ′(x) =
1
2
− 1

2
C4
dx.

This implies that

f ′(x) = 0 ⇔ x =
1
C4
d

=
�
|∇W (x)|2dx.

On the other hand,

f ′(x) > 0 for x < 1/C4
d ,

f(0) = 0, f

(
1
C4
d

)
=

1
4C4

d

= E(W ).

Together with (3.3) and the fact that a = ‖∇u‖2L2 ∈ [0, 1/C4
d), these imply

that

‖∇u‖2L2 = a ≤ (1− δ) 1
C4
d

= (1− δ)
�
|∇W |2 dx, δ = δ

1/2
0 ,

E(u) ≥ f(a) ≥ 0.

Now define
g(x) = x− C4

dx
2.
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From (3.2), we also have
�
|∇u|2 dx−

� � |u(x)|2|u(y)|2

|x− y|4
dx dy ≥

�
|∇u|2 dx− C4

d

( �
|∇u|2 dx

)2
(3.4)

= g(a).

Note that

g(x) = 0 ⇔ x = 0 or x =
1
C4
d

,

g′(0) = 1, g′(1/C4
d) = −1, g′′(x) = −2C4

d < 0.

Hence, we obtain

g(x) ≥ 1
2

min(x, 1/C4
d − x) for 0 ≤ x ≤ 1/C4

d .

Since ‖∇u‖2L2 = a ∈ [0, (1− δ)/C4
d ], the above inequality implies that

(LHS) of (3.4) ≥ g(a) ≥ 1
2

min(a, 1/C4
d − a) ≥ 1

2
min(a, δa) =

δ

2
a.

This completes the proof.

Corollary 3.1. Assume that u ∈ Ḣ1(Rd) and ‖∇u‖L2 < ‖∇W‖L2.
Then E(u) ≥ 0.

Proof. If E(u) < E(W ), the conclusion follows from Lemma 3.1. If
E(u) ≥ E(W ) = 1/4C4

d , it is clear.

Proposition 3.1 (Lower bound on the convexity of the variance). Let
u be a solution of (2.1) with t0 = 0, u(0) = u0 such that for δ0 > 0,�

|∇u0|2 dx <
�
|∇W |2 dx, E(u0) < (1− δ0)E(W ).

Let I 3 0 be the maximal interval of existence given by Definition 2.1. Let
δ = δ

1/2
0 be as in Lemma 3.1. Then for each t ∈ I,

�
|∇u(t)|2 dx−

� � |u(t)|2|u(t)|2

|x− y|4
dx dy ≥ δ

2

�
|∇u(t)|2 dx,

�
|∇u(t)|2 dx ≤ (1− δ)

�
|∇W |2 dx, E(u(t)) ≥ 0.

Proof. We use a continuity argument. Define

Ω = {t ∈ I : ‖∇u(t)‖L2 < ‖∇W‖L2 , E(u(t)) < (1− δ0)E(W )}.
It suffices to prove that Ω is both open and closed.

First, we see that t0 ∈ Ω. Second, Ω is open because of u ∈ C0
t (I, Ḣ1)

and the conservation of energy. Lastly, to prove that Ω is also closed, pick
any tn ∈ Ω and T ∈ I with tn → T . Then

‖∇u(tn)‖L2 < ‖∇W‖L2 , E(u(tn)) < (1− δ0)E(W ).
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From Lemma 3.1, we obtain

‖∇u(tn)‖2L2 < (1− δ)‖∇W‖2L2 .

Using the fact that u ∈ C0
t (I, Ḣ1) and the conservation of energy again, we

have

‖∇u(T )‖2L2 ≤ (1− δ)‖∇W‖2L2 , E(u(T )) = E(u(tn)) < (1− δ0)E(W ).

This implies that T ∈ Ω and completes the proof.

Corollary 3.2 (Comparability of gradient and energy). Let u, u0 be as
in Proposition 3.1. Then for all t ∈ I,

E(u(t)) ≈
�
|∇u(t)|2 dx ≈

�
|∇u0|2 dx

with comparability constants which depend only on δ0.

Proof. From Proposition 3.1, we have
1
2

�
|∇u(t)|2 dx ≥ E(u(t))

=
1
4

�
|∇u(t)|2 dx+

1
4

( �
|∇u(t, x)|2 dx−

� � |u(t, x)|2|u(t, y)|2

|x− y|4
dx dy

)
≥ 2 + δ

8

�
|∇u(t)|2 dx ∀t ∈ I.

This together with the conservation of energy implies the claim.

In order to obtain blow up results, we first give the (local) virial identity,
which we can verify by direct computations.

Lemma 3.2. Let ϕ ∈ C∞0 (Rd), V (x) = |x|−4, t ∈ [0, T+(u0)). Then

(1)
d

dt

�
|u|2ϕdx = 2 Im

�
u∇u∇ϕdx,

(2)
d2

dt2

�
|u|2ϕdx = −

�
∆∆ϕ|u|2 dx+ 4 Re

�
ϕjkujuk dx

−Re
� �

(∇ϕ(x)−∇ϕ(y))∇V (x− y)|u(y)|2|u(x)|2 dx dy.

Proposition 3.2. Assume that u0 ∈ Ḣ1(Rd) and

E(u0) < E(W ),
�
|∇u0|2 dx >

�
|∇W |2 dx.

If |x|u0 ∈ L2 or u0 is radial , then the maximal interval I of existence must
be finite.

Proof. Indeed, we can choose a suitable small number δ0 > 0 such that

E(u0) < (1− δ0)E(W ),
�
|∇u0|2 dx >

�
|∇W |2 dx.
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Arguing as in Lemma 3.1, we find that there exists δ̃ such that
�
|∇u0|2 dx > (1 + δ̃)

�
|∇W |2 dx =

1 + δ̃

C4
d

.

This shows that
�
|∇u0|2 dx−

� � |u0(x)|2|u0(y)|2

|x− y|4
dx dy = 4E(u0)−

�
|∇u0|2 dx

< 4(1− δ0)E(W )− 1 + δ̃

C4
d

=
1− δ0
C4
d

− 1 + δ̃

C4
d

= −δ0 + δ̃

C4
d

< 0.

Now define

Ω = {t ∈ I : ‖∇u(t)‖L2 > ‖∇W‖L2 , E(u(t)) < (1− δ0)E(W )}.
Using the continuity argument and arguing as in Proposition 3.1, we obtain
Ω = I. Arguing as in Lemma 3.1 again, we have

‖∇u(t)‖2L2 > (1 + δ̃)‖∇W‖2L2 .

Then
�
|∇u(t, x)|2 dx−

� � |u(t, x)|2|u(t, y)|2

|x− y|4
dx dy = −δ0 + δ̃

C4
d

< 0, ∀t ∈ I.

If |x|u0 ∈ L2, then from Lemma 3.2, we have

d2

dt2

�
|x|2|u(t, x)|2 dx = 8

( �
|∇u(t, x)|2 dx−

� � |u(t, x)|2|u(t, y)|2

|x− y|4
dx dy

)
< 0.

This implies that I must be finite.
If u0 is radial, then using the local virial identity [2], [3] and [30], we can

also deduce the same result.

4. Existence and compactness of a critical element. Let us con-
sider the statement

(SC) For all u0 ∈ Ḣ1(Rd) with ‖∇u0‖L2 < ‖∇W‖L2 , E(u0) < E(W ), if
u is the corresponding solution to (2.1), with maximal interval of
existence I, then I = (−∞,∞) and ‖u‖X(R) <∞.

We say that (SC)(u0) holds if whenever ‖∇u0‖L2 < ‖∇W‖L2 , E(u0) <
E(W ), and u is the corresponding solution to (2.1) with maximal interval
of existence I, then I = (−∞,∞) and ‖u‖X(R) <∞.

Note that, because of Remark 2.1, if ‖u0‖Ḣ1 ≤ δ̃, then (SC)(u0) holds.
Thus, in light of Corollary 3.2, there exists η0 > 0 such that if u0 is as in
(SC) and E(u0) < η0, then (SC)(u0) holds. Moreover, E(u0) ≥ 0 in light of
Proposition 3.1. Thus, there exists a number Ec with η0 ≤ Ec ≤ E(W ) such
that if u0 is radial with ‖∇u0‖L2 < ‖∇W‖L2 , E(u0) < Ec, then (SC)(u0)
holds, and Ec is optimal with this property. If Ec ≥ E(W ), then the first
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part of Theorem 1.1 is true. For the rest of this section, we will assume
that Ec < E(W ) and ultimately deduce a contradiction in Section 5. By
definition of Ec, we have

(C.1) If u0 is radial and ‖∇u0‖L2 < ‖∇W‖L2 , E(u0) < Ec, then (SC)(u0)
holds.

(C.2) There exists a sequence of radial solutions un to (2.1) with corre-
sponding initial data un,0 such that ‖∇un,0‖L2 < ‖∇W‖L2 ,
E(un,0) ↘ Ec as n → ∞, and (SC)(un,0) does not hold for any
n.

The goal of this section is to use the above sequence un,0 to prove the
existence of an Ḣ1 radial solution uc to (2.1) with initial data uc,0 such
that ‖∇uc,0‖L2 < ‖∇W‖L2 , E(uc,0) = Ec and (SC)(uc,0) does not hold
(see Proposition 4.1). Moreover, we will show that this critical solution has
a compactness property up to symmetries of this equation (see Proposi-
tion 4.2).

Before stating and proving Proposition 4.1, we introduce some useful
preliminaries in the spirit of the results of Keraani [14]. First we give the
profile decomposition lemma.

Lemma 4.1 (Profile decomposition). Let vn,0 be a radial uniformly
bounded sequence in Ḣ1, i.e. ‖∇vn,0‖L2 ≤ A. Assume that ‖eit∆vn,0‖X(R) ≥
δ > 0, where δ = δ(d) is as in Proposition 2.1. Then for each J , there exists
a subsequence of vn,0, also denoted vn,0, and

• for each 1 ≤ j ≤ J , there exists a radial profile V0,j in Ḣ1,
• for each 1 ≤ j ≤ J , there exists a sequence of (λj,n, tj,n) with

(4.1)
λj,n
λj′,n

+
λj′,n
λj,n

+
|tj,n − tj′,n|

λ2
j,n

→∞ as n→∞ for j 6= j′,

• there exists a sequence of radial remainders wJn in Ḣ1,

such that

(4.2) vn,0(x) =
J∑
j=1

1

λ
(d−2)/2
j,n

V l
j

(
− tj,n
λ2
j,n

,
x

λj,n

)
+ wJn(x)

with

(4.3) V l
j (t, x) = eit∆V0,j(x), ‖V0,1‖Ḣ1 ≥ α0(A) > 0,

(4.4) ‖∇vn,0‖2L2 =
J∑
j=1

‖∇V0,j‖2L2 + ‖∇wJn‖2L2 + on(1),

(4.5) E(vn,0) =
J∑
j=1

E

(
V l
j

(
− tj,n
λ2
j,n

))
+ E(wJn) + on(1),
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(4.6) lim
J→∞

[ lim
n→∞

‖eit∆wJn‖Lq(R,Lr)] = 0

whenever
2
q

= d

(
1
2
− 1
r

)
− 1,

2d
d− 2

≤ r < 2d
d− 4

.

Proof. Here we only give the proof of the energy asymptotic Pythagorean
expansion (4.5), the rest is standard (see [14]).

By the asymptotic Pythagorean expansion of kinetic energy, it suffices
to show that� � 1

|x− y|4
|vn,0(x)|2|vn,0(y)|2 dx dy

=
J∑
j=1

� � 1
|x− y|4

∣∣∣∣V l
j

(
− tj,n
λ2
j,n

, x

)∣∣∣∣2∣∣∣∣V l
j

(
− tj,n
λ2
j,n

, y

)∣∣∣∣2 dx dy
+
� � 1
|x− y|4

|wJn(x)|2|wJn(y)|2 dx dy + on(1), ∀J ≥ 1.

We first claim that if J ≥ 1 is fixed, the orthogonality condition (4.1)
implies that

(4.7)
� � 1
|x− y|4

∣∣∣∣ J∑
j=1

1

λ
(d−2)/2
j,n

V l
j

(
− tj,n
λ2
j,n

,
x

λj,n

)∣∣∣∣2

×
∣∣∣∣ J∑
j=1

1

λ
(d−2)/2
j,n

V l
j

(
− tj,n
λ2
j,n

,
y

λj,n

)∣∣∣∣2 dx dy
=

J∑
j=1

� � 1
|x− y|4

∣∣∣∣V l
j

(
− tj,n
λ2
j,n

, x

)∣∣∣∣2∣∣∣∣V l
j

(
− tj,n
λ2
j,n

, y

)∣∣∣∣2 dx dy + on(1).

By reindexing, we can arrange that there is J0 ≤ J such that

(1) if 1 ≤ j ≤ J0, then |tj,n/λ2
j,n| ≤ C in n;

(2) if J0 + 1 ≤ j ≤ J , then |tj,n/λ2
j,n| → ∞ as n→∞.

By passing to a subsequence and adjusting the profile V0,j , we may assume
that

∀1 ≤ j ≤ J0, tj,n/λ
2
j,n = 0.

From case (2), we have

(4.8) lim
n→∞

� � 1
|x− y|4

∣∣∣∣V l
j

(
− tj,n
λ2
j,n

, x

)∣∣∣∣2∣∣∣∣V l
j

(
− tj,n
λ2
j,n

, y

)∣∣∣∣2 dx dy = 0,

∀J0 + 1 ≤ j ≤ J.
Indeed, using the Hardy inequality and the decay estimates for the free
Schrödinger equation (similarly to Lemma 4.1 in [5] and Corollary 2.3.7
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in [1]), we have for J0 + 1 ≤ j ≤ J ,
� � 1
|x− y|4

∣∣∣∣V l
j

(
− tj,n
λ2
j,n

, x

)∣∣∣∣2∣∣∣∣V l
j

(
− tj,n
λ2
j,n

, y

)∣∣∣∣2 dx dy
.

∥∥∥∥V l
j

(
− tj,n
λ2
j,n

)∥∥∥∥4

L2d/(d−2)

→ 0 as n→∞.

By (4.1), if 1 ≤ j < k ≤ J0, we have

(4.9)
λj,n
λk,n

+
λk,n
λj,n

→∞ as n→∞.

This implies that

(4.10)
� � 1
|x− y|4

∣∣∣∣ J0∑
j=1

1

λ
(d−2)/2
j,n

V0,j

(
x

λj,n

)∣∣∣∣2
×
∣∣∣∣ J0∑
j=1

1

λ
(d−2)/2
j,n

V0,j

(
y

λj,n

)∣∣∣∣2 dx dy
=

J0∑
j=1

� � 1
|x− y|4

|V0,j(x)|2|V0,j(y)|2 dx dy + on(1).

Hence, from (4.8) and (4.10), we obtain
� � 1
|x− y|4

∣∣∣∣ J∑
j=1

1

λ
(d−2)/2
j,n

V l
j

(
− tj,n
λ2
j,n

,
x

λj,n

)∣∣∣∣2
×
∣∣∣∣ J∑
j=1

1

λ
(d−2)/2
j,n

V l
j

(
− tj,n
λ2
j,n

,
y

λj,n

)∣∣∣∣2 dx dy
=

� � 1
|x− y|4

∣∣∣∣ J0∑
j=1

1

λ
(d−2)/2
j,n

V l
j

(
− tj,n
λ2
j,n

,
x

λj,n

)

+
J∑

j=J0+1

1

λ
(d−2)/2
j,n

V l
j

(
− tj,n
λ2
j,n

,
x

λj,n

)∣∣∣∣2∣∣∣∣ J0∑
j=1

1

λ
(d−2)/2
j,n

V l
j

(
− tj,n
λ2
j,n

,
y

λj,n

)

+
J∑

j=J0+1

1

λ
(d−2)/2
j,n

V l
j

(
− tj,n
λ2
j,n

,
y

λj,n

)∣∣∣∣2 dx dy
=

� � 1
|x− y|4

∣∣∣∣ J0∑
j=1

1

λ
(d−2)/2
j,n

V0,j

(
x

λj,n

)
+

J∑
j=J0+1

1

λ
(d−2)/2
j,n

V l
j

(
− tj,n
λ2
j,n

,
x

λj,n

)∣∣∣∣2

×
∣∣∣∣ J0∑
j=1

1

λ
(d−2)/2
j,n

V0,j

(
y

λj,n

)
+

J∑
j=J0+1

1

λ
(d−2)/2
j,n

V l
j

(
− tj,n
λ2
j,n

,
y

λj,n

)∣∣∣∣2 dx dy
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=
� � 1
|x− y|4

∣∣∣∣ J0∑
j=1

1

λ
(d−2)/2
j,n

V0,j

(
x

λj,n

)∣∣∣∣2∣∣∣∣ J0∑
j=1

1

λ
(d−2)/2
j,n

V0,j

(
y

λj,n

)∣∣∣∣2 dx dy
+

J∑
j=J0+1

� � 1
|x− y|4

∣∣∣∣V l
j

(
− tj,n
λ2
j,n

, x

)∣∣∣∣2∣∣∣∣V l
j

(
− tj,n
λ2
j,n

, y

)∣∣∣∣2 dx dy + on(1)

=
J∑
j=1

� � 1
|x− y|4

∣∣∣∣V l
j

(
− tj,n
λ2
j,n

, x

)∣∣∣∣2∣∣∣∣V l
j

(
− tj,n
λ2
j,n

, y

)∣∣∣∣2 dx dy + on(1),

which yields (4.7).
Second, we claim that

(4.11) lim
n→∞

‖wJn(x)‖
L

2d/(d−2)
x

= 0 as J →∞.

Indeed, we have

‖wJn(x)‖
L

2d/(d−2)
x

. ‖eit∆wJn(x)‖
L∞t (R;L

2d/(d−2)
x )

,

which together with (4.6) implies the claim.
Note that (4.11) implies that {wJn} is uniformly bounded in L2d/(d−2)(Rd);

the uniform boundedness of {vn,0} in Ḣ1(Rd) also implies uniform bound-
edness in L2d/(d−2)(Rd). Thus we can choose J1 ≥ J and N1 such that for
n ≥ N1, we have

(4.12)
∣∣∣∣ � � |vn,0(x)|2|vn,0(y)|2

|x− y|4
dx dy

−
� � |vn,0(x)− wJ1

n (x)|2|vn,0(y)− wJ1
n (y)|2

|x− y|4
dx dy

∣∣∣∣
+
∣∣∣∣ � � |wJn(x)− wJ1

n (x)|2|wJn(y)− wJ1
n (y)|2

|x− y|4
dx dy

−
� � |wJn(x)|2|wJn(y)|2

|x− y|4
dx dy

∣∣∣∣
≤ C(sup

n
‖vn,0(x)‖3

L2d/(d−2) + sup
n
‖wJn(x)‖3

L2d/(d−2))‖wJ1
n (x)‖L2d/(d−2)

+ C‖wJ1
n (x)‖4

L2d/(d−2) ≤ ε.

By (4.7), there exists N2 ≥ N1 such that for n ≥ N2,

(4.13)
∣∣∣∣ � � |vn,0(x)− wJ1

n (x)|2|vn,0(y)− wJ1
n (y)|2

|x− y|4
dx dy

−
J1∑
j=1

� � |V l
j (−tj,n/λ2

j,n, x)|2|V l
j (−tj,n/λ2

j,n, y)|2

|x− y|4
dx dy

∣∣∣∣ ≤ ε.
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Using (4.2), we have

wJn(x)− wJ1
n (x) =

J1∑
j=J+1

1

λ
(d−2)/2
j,n

V l
j

(
− tj,n
λ2
j,n

,
x

λj,n

)
.

By (4.7), there exists N3 ≥ N2 such that for n ≥ N3,∣∣∣∣ � � |wJn(x)− wJ1
n (x)|2|wJn(y)− wJ1

n (y)|2

|x− y|4
dx dy

−
J1∑

j=J+1

� � |V l
j (−tj,n/λ2

j,n, x)|2|V l
j (−tj,n/λ2

j,n, y)|2

|x− y|4
dx dy

∣∣∣∣ ≤ ε.
Combining the above inequality with (4.12), (4.13), we deduce that for
n ≥ N3,∣∣∣∣ � � |vn,0(x)|2|vn,0(y)|2

|x− y|4
dx dy

−
J∑
j=1

� � |V l
j (−tj,n/λ2

j,n, x)|2|V l
j (−tj,n/λ2

j,n, y)|2

|x− y|4
dx dy

−
� � |wJn(x)|2|wJn(y)|2

|x− y|4
dx dy

∣∣∣∣
=
∣∣∣∣ � � |vn,0(x)|2|vn,0(y)|2

|x− y|4
dx dy

−
� � |vn,0(x)− wJ1

n (x)|2|vn,0(y)− wJ1
n (y)|2

|x− y|4
dx dy

+
� � |vn,0(x)− wJ1

n (x)|2|vn,0(y)− wJ1
n (y)|2

|x− y|4
dx dy

−
J1∑
j=1

� � |V l
j (−tj,n/λ2

j,n, x)|2|V l
j (−tj,n/λ2

j,n, y)|2

|x− y|4
dx dy

+
� � |wJn(x)− wJ1

n (x)|2|wJn(y)− wJ1
n (y)|2

|x− y|4
dx dy

−
� � |wJn(x)|2|wJn(y)|2

|x− y|4
dx dy

+
J1∑

j=J+1

� � |V l
j (−tj,n/λ2

j,n, x)|2|V l
j (−tj,n/λ2

j,n, y)|2

|x− y|4
dx dy

−
� � |wJn(x)− wJ1

n (x)|2|wJn(y)− wJ1
n (y)|2

|x− y|4
dx dy

∣∣∣∣
≤ 3ε,

which completes the proof.
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Lemma 4.2. Let {z0,n} ∈ Ḣ1 be radial with

‖∇z0,n‖L2 < ‖∇W‖L2 , E(z0,n)→ Ec,

and with ‖eit∆z0,n‖X(R) ≥ δ > 0, where δ = δ(‖∇W‖L2) is as in Proposi-
tion 2.1. Let V0,j be as in Lemma 4.1. Assume that either

(4.14) lim inf
n→∞

E

(
V l

1

(
− t1,n
λ2

1,n

))
< Ec,

or after passing to a subsequence,

(4.15) lim inf
n→∞

E

(
V l

1

(
− t1,n
λ2

1,n

))
= Ec

with s1,n = −t1,n/λ2
1,n → s∗ ∈ [−∞,∞], and if U1 is the nonlinear profile

associated to (V0,1, {s1,n}), then the maximal interval of existence of U1 is
I = (−∞,∞) and ‖U1‖X(R) <∞.

Then, after passing to a subsequence, for n large, if zn is the solution of
(2.1) with data at t = 0 equal to z0,n, then (SC)(z0,n) holds.

Proof. The proof is similar to that of Lemma 4.9 in [12].
Along with the proof in [12], we can obtain a critical element, which has

minimal energy and compactness property modulo scaling symmetry in Ḣ1.

Proposition 4.1 (Existence of a minimal energy blow-up solution).
There exists a radial solution uc of (2.1) in Ḣ1 with data uc,0 and maximal
interval of existence I such that

‖∇uc,0‖L2 < ‖∇W‖L2 , E(uc,0) = Ec, ‖uc‖X(I) =∞.
Proposition 4.2 (Precompactness of the flow of the critical solution).

Let uc be as in Proposition 4.1, and with ‖uc‖X(I+) =∞, where I+ = (0,∞)
∩ I. Then for t ∈ I+, there exists λ(t) ∈ R+ such that K is precompact in
Ḣ1 where

K =
{
v(t, x) : v(t, x) =

1
λ(t)(d−2)/2

uc

(
t,

x

λ(t)

)
, t ∈ I+

}
.

Remark 4.1. We refer to λ(t) as the frequency scale function for the
solution uc because λ(t) measures the frequency scale of the solution at
time t and 1/λ(t) measures the spatial scale.

5. Rigidity theorem. In this section, we will prove the main theorem.

Theorem 5.1. Assume that u0 ∈ Ḣ1 is radial and satisfies

E(u0) < E(W ), ‖∇u0‖L2 < ‖∇W‖L2 .

Let u be the solution of (2.1) with maximal interval of existence (−T−(u0),
T+(u0)). Assume that there exists λ(t) > 0, for t ∈ [0, T+(u0)), with the
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property that

K =
{
v(t, x) =

1
λ(t)(d−2)/2

u

(
t,

x

λ(t)

)
: t ∈ [0, T+(u0))

}
is precompact in Ḣ1. Then T+(u0) =∞ and u0 ≡ 0.

We start out with a special case of the strengthened form of Theorem 5.1.

Proposition 5.1. Assume that u, v, λ(t) are as in Theorem 5.1, and
that λ(t) ≥ A0 > 0. Then the conclusion of Theorem 5.1 holds.

First we collect some useful facts:

Lemma 5.1. Let u, v be as in Theorem 5.1.

(1) Let δ0 > 0 be such that E(u0) ≤ (1 − δ0)E(W ). Then there exists
δ > 0 such that for all t ∈ [0, T+(u0)),

(5.1)

�
|∇u(t)|2 dx ≤ (1− δ)

�
|∇W |2 dx,

�
|∇u(t, x)|2 dx−

� � |u(t, x)|2|u(t, y)|2

|x− y|4
dx dy ≥ δ

2

�
|∇u|2 dx,

�
|∇u(t)|2 dx ≈ E(u(t)) = E(u0) ≈

�
|∇u0|2 dx.

(2) For all t ∈ [0, T+(u0)),

‖v(t, x)‖2
L2∗ ≤ C1

�
|∇v(t, x)|2 dx ≤ C2

�
|∇W (x)|2 dx.

(3) For each ε, there exists R(ε) > 0 such that for t ∈ [0, T+(u0)),

(5.2)
�

|x|>R(ε)

(
|∇v(t, x)|2 + |v(t, x)|2∗ +

|v(t, x)|2

|x|2

)
dx

+
� �

Ω

|v(t, x)|2|v(t, y)|2

|x− y|4
dx dy ≤ ε,

where

Ω = {(x, y) ∈ Rd×Rd : |x| > R(ε)}∪{(x, y) ∈ Rd×Rd : |y| > R(ε)}.

Proof. From the property of K, we can easily verify the above facts.

Proof of Proposition 5.1. We split the proof into two cases, the finite
time blow up for u and the infinite time of existence for u.

Case 1: T+(u0) < +∞. This case corresponds to the finite time blow
up case. The proof is similar to [12].

Case 2: T+(u0) = +∞. This case corresponds to a stationary solution or
double low to high frequency cascade case (which means that the frequency
scale function λ(t) goes to infinity as t→∞, see [16]).
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From u(t, x) = λ(t)(d−2)/2v(t, λ(t)x) and Lemma 5.1, we infer that for
each ε > 0, there exists R(ε) > 0 such that

(5.3)
�

|x|>R(ε)

|u(t, x)|2

|x|2
dx+

�

|x|>R(ε)

|∇u(t, x)|2 dx

+
� �

Ω

|u(t, x)|2|u(t, y)|2

|x− y|4
dx dy ≤ ε,

where Ω is as in Lemma 5.1.
On the other hand, from Lemma 5.1 and (5.3), there exists R such that,

for all t ∈ [0,∞),

(5.4) 8
�

|x|≤R

|∇u(t, x)|2 dx− 8
� �

Ω1

|u(t, x)|2|u(t, y)|2

|x− y|4
dx dy

≥ Cδ0
�
|∇u0(x)|2 dx,

where

Ω1 = {(x, y) ∈ Rd × Rd : |x| ≤ R, |y| ≤ R}.

Now let ϕ ∈ C∞0 (Rd) be radial, and

ϕ(x) =
{
|x|2 for |x| ≤ 1,
0 for |x| ≥ 2.

Set

ϕR(x) = R2ϕ(x/R), zR(t) =
�
ϕR(x)|u(t, x)|2 dx, t ∈ [0, T+(u0)).

We then have

(5.5)
|z′R(t)| ≤ CR2

�
|∇u0|2 dx for t > 0,

z′′R(t) ≥ Cδ0
�
|∇u0|2 dx for R large enough, t > 0.

In fact, from Lemmas 5.1 and 3.2, we have

|z′R(t)| ≤ 2R
�
|u(t, x)∇u(t, x)∇ϕ(x/R)| dx

≤ CR
�

|x|≤2R

|u| |∇u| dx ≤ CR2‖∇u(t, x)‖L2

∥∥∥∥ |u||x|
∥∥∥∥
L2

≤ CR2
�
|∇u0|2 dx.

On the other hand, from Lemma 3.2, (5.3) and (5.4), we have, for sufficiently
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large R,

z′′R(t) = −
�
∆∆ϕ

(
x

R

)
|u|2

R2
dx+ 4 Re

�
ϕjkujuk dx

− 4 Re
� �

(aj(x)− aj(y))
xj − yj
|x− y|6

|u(t, x)|2|u(t, y)|2 dx dy

≈ 8
�

|x|≤R

|∇u(t, x)|2 dx− 8
� �

Ω1

|u(t, x)|2|u(t, y)|2

|x− y|4
dx dy

+O

( �

|x|≈R

|u(t, x)|2

R2
dx+

�

|x|≈R

|∇u(t, x)|2 dx

+
� �

Ω2

|u(t, x)|2|u(t, y)|2

|x− y|4
dx dy

)
≥ Cδ0

�
|∇u0|2 dx,

where
Ω1 = {(x, y) ∈ Rd × Rd : |x| ≤ R, |y| ≤ R};
Ω2 = {(x, y) ∈ Rd × Rd : |x| ∼ R} ∪ {(x, y) ∈ Rd × Rd : |y| ∼ R}.

From (5.5), we have

Cδ0t
�
|∇u0|2 dx ≤ |z′R(t)− z′R(0)| ≤ 2CR2

�
|∇u0|2 dx.

We have a contradiction for t large unless u0 ≡ 0.

Proof of Theorem 5.1. It is analogous to the proofs in [12], [22]. Assume
that u0 6≡ 0. Then

(5.6)
�
|∇u0|2 dx > 0.

From Lemma 5.1, we have

E(u0) ≥ Cδ0
�
|∇u0|2 dx > 0.

Because of Proposition 5.1, we only need to consider the case where there
exists {tn}∞n=1, tn ≥ 0, such that λ(tn)→ 0. We claim that

tn → T+(u0).

Indeed, if tn → t0 ∈ [0, T+(u0)), then for all R > 0 we have
�

|x|>R

|v(tn, x)|2∗ dx =
�

|x|>R

∣∣∣∣ 1
λ(tn)(d−2)/2

u

(
tn,

x

λ(tn)

)∣∣∣∣2∗ dx
=

�

|x|>R/λ(tn)

|u(tn, x)|2∗ dx.
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Since u ∈ C0
t ([0, T+(u0)); Ḣ1), we have�

|x|>R

|v(t0, x)|2∗ dx = 0, ∀R > 0.

This contradicts the fact that�
|∇v(t0, x)|2 dx =

�
|∇u(t0, x)|2 dx > 0.

Now, after possibly redefining {tn}∞n=1, we can assume that

(5.7) λ(tn) ≤ 2 inf
t∈[0,tn]

λ(t).

From the hypothesis, we have

wn(x) =
1

λ(tn)(d−2)/2
u

(
tn,

x

λ(tn)

)
→ w0 in Ḣ1.

By Proposition 3.1, we have�
|∇wn(x)|2 dx =

�
|∇u(tn, x)|2 dx < (1− δ)

�
|∇W (x)|2 dx,

E(wn) = E(u(tn)) = E(u0) < E(W ).
Hence, we obtain�

|∇w0|2 dx ≤ (1− δ)
�
|∇W (x)|2 dx, 0 < E(w0) = E(u0) < E(W ).

Thus w0 6≡ 0. Let us now consider solutions wn(τ, x), w0(τ, x) of (2.1) with
data wn(x), w0(x) at τ = 0, defined in maximal intervals τ ∈ (−T−(wn), 0]
and τ ∈ (−T−(w0), 0], respectively.

)(τ
n

w

)(
0

τw

)
)(

(
2 n

n

t
t

v +
λ

τ

)(tu

ntt = 0=τ 0=τ
)(

n
tu )(xw

n )(
0

xw

ττ
n

n

t
t

+
2

)(λ
τ

)(
n

tv

)(
0

wT−−

•
)(

n
wT−−

•

•

• • •

• • •

Fig. 2. A description of the normalization on λ(t)

Since wn → w0 in Ḣ1, we see from Remark 2.6 that

(5.8)
lim inf
n→∞

T−(wn) ≥ T−(w0),

wn(τ, x)→ w0(τ, x) in Ḣ1, ∀τ ∈ (−T−(w0), 0].
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By the uniqueness of solution of (2.1), we have

wn(τ, x) =
1

λ(tn)(d−2)/2
u

(
τ

λ(tn)2
+ tn,

x

λ(tn)

)
for

τ

λ(tn)2
+ tn ≥ 0.

Now we claim that

(5.9) lim inf
n→∞

tnλ(tn)2 ≥ T−(w0).

Indeed, if not, then lim infn→∞ tnλ(tn)2 = τ0 < T−(w0), and from (5.8) we
have, as n→∞,

wn(−tnλ(tn)2, x) =
1

λ(tn)(d−2)/2
u0

(
x

λ(tn)

)
→ w0(−τ0, x) in Ḣ1.

Note that from λ(tn)→ 0, we have, as n→∞,

1
λ(tn)(d−2)/2

u0

(
x

λ(tn)

)
⇀ 0 in Ḣ1,

and thus we obtain w0(−τ0) ≡ 0, which yields a contradiction.
From (5.9), we see that for fixed τ ∈ (−T−(w0), 0] and sufficiently large n,

0 ≤ τ

λ(tn)2
+ tn ≤ tn,

v(τ/λ(tn)2 + tn, x) and λ(τ/λ(tn)2 + tn) are defined, and we have

v

(
τ

λ(tn)2
+ tn, x

)
=

1
λ(τ/λ(tn)2 + tn)(d−2)/2

u

(
τ

λ(tn)2
+ tn,

x

λ(τ/λ(tn)2 + tn)

)
=

1

λ̃n(τ)(d−2)/2
wn

(
τ,

x

λ̃n(τ)

)
,

where

λ̃n(τ) =
λ(τ/λ(tn)2 + tn)

λ(tn)
≥ 1

2

by (5.7). After passing to a subsequence, we can assume that

λ̃n(τ)→ λ̃0(τ) ∈ [1/2,∞].

Hence,

v

(
τ

λ(tn)2
+ tn, x

)
→ 1

λ̃0(τ)(d−2)/2
w0

(
τ,

x

λ̃0(τ)

)
= v0(τ, x) ∈ K.

Now we claim that
λ̃0(τ) <∞.
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If not, then from
1

λ̃n(τ)(d−2)/2
wn

(
τ,

x

λ̃n(τ)

)
→ 1

λ0(τ)(d−2)/2
w0

(
τ,

x

λ0(τ)

)
= v0(τ, x),

we have w0(τ) = 0, which yields a contradiction.
So w0(τ), v0(τ) and λ̃0(τ) satisfy the conditions of Proposition 5.1, and

we deduce that w0 ≡ 0, which yields a contradiction. This completes the
proof.
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