INVARIANCE IDENTITY IN THE CLASS OF GENERALIZED QUASIARITHMETIC MEANS

BY
JANUSZ MATKOWSKI (Zielona Góra)

Abstract

An invariance formula in the class of generalized p-variable quasiarithmetic means is provided. An effective form of the limit of the sequence of iterates of mean-type mappings of this type is given. An application to determining functions which are invariant with respect to generalized quasiarithmetic mean-type mappings is presented.

1. Introduction. Let X, Y be sets and T a selfmap of X. A function $\Phi: X \rightarrow Y$ is called invariant with respect to T (briefly, T-invariant) if $\Phi \circ T=\Phi$. The problem of determining such functions occurs in iteration theory and fixed point theory [7]. Assuming, for instance, that (X, d) is a metric space, $T: X \rightarrow X$ is a continuous mapping such that the sequence $\left(T^{n}\right)_{n \in \mathbb{N}}$ of iterates of T is pointwise convergent then, obviously, the function $\Phi: X \rightarrow X$ defined by $\Phi(x):=\lim _{n \rightarrow \infty} T^{n}(x)$ is T-invariant.

Mean-type mappings, i.e. mappings of the form $\mathbf{M}=\left(M_{1}, \ldots, M_{p}\right)$, where the coordinate functions M_{1}, \ldots, M_{p} are p-variable means, form a broad class of maps for which this question is particularly interesting. This follows from the fact that, under some general weak conditions, the sequence $\left(\mathbf{M}^{n}\right)_{n \in \mathbb{N}}$ of iterates converges to a unique \mathbf{M}-invariant mean-type mapping \mathbf{K} of the same invariant coordinate mean K (Theorem 1) ([8], cf. also [5], [4). In general, given a mean-type mapping \mathbf{M}, it is either difficult or impossible to find the explicit form of M -invariant means and M -invariant functions.

In the case $p=2$, assuming $X=(0, \infty)^{2}, \mathbf{M}=(A, H)$ and $\mathbf{K}=(G, G)$, where A, G, H are the arithmetic, geometric and harmonic means, respectively, we have the identity $\mathbf{K} \circ \mathbf{M}=\mathbf{K}$, that is, $G \circ(A, H)=G$, an example of invariance that is equivalent to the classical Pythagorean harmony proportion

$$
\frac{A(x, y)}{G(x, y)}=\frac{G(x, y)}{H(x, y)}, \quad x, y>0
$$

[^0]This invariance identity allows one to deduce the nontrivial fact that

$$
\lim _{n \rightarrow \infty}(A, H)^{n}(x, y)=(G(x, y), G(x, y)), \quad x, y>0
$$

which appeared to be useful in [2].
In this note we present an invariance formula for a broad family of generalized quasiarithmetic mean-type mappings (Theorem 2(i)) that, besides invariant means, gives the explicit form of the limit of the sequence of iterates of mean-type mappings (Theorem 2(ii)). Applying this result we determine the form of a large class of functions that are invariant with respect to mean-type mappings.
2. Invariant generalized quasiarithmetic means. Fix an interval $I \subset \mathbb{R}$ and $p \in \mathbb{N}, p \geq 2$. Recall that a function $M: I^{p} \rightarrow I$ is called a p-variable mean if

$$
\min \left(x_{1}, \ldots, x_{p}\right) \leq M\left(x_{1}, \ldots, x_{p}\right) \leq \max \left(x_{1}, \ldots, x_{p}\right)
$$

for all $x_{1}, \ldots, x_{p} \in I$. The mean M is called strict if these inequalities are sharp for all $\left(x_{1}, \ldots, x_{p}\right) \in I^{p} \backslash \Delta_{p}$ where

$$
\Delta_{p}:=\left\{\left(x_{1}, \ldots, x_{p}\right) \in I^{p}: x_{1}=\cdots=x_{p}\right\} ;
$$

and symmetric if $M\left(x_{\sigma(1)}, \ldots, x_{\sigma(p)}\right)=M\left(x_{1}, \ldots, x_{p}\right)$ for all permutations σ of $\{1, \ldots, p\}$.

Let $M_{i}: I^{p} \rightarrow I, i=1, \ldots, p$, be some means. A mean $K: I^{p} \rightarrow I$ is called invariant with respect to the mean-type mapping $\mathrm{M}: I^{p} \rightarrow I^{p}$, $\mathbf{M}:=\left(M_{1}, \ldots, M_{p}\right)$, (briefly M-invariant) if

$$
K \circ\left(M_{1}, \ldots, M_{p}\right)=K .
$$

From [5, Theorem 1] and [8, Theorem 3], we have
Theorem 1. If $M_{i}: I^{p} \rightarrow I$ for $i=1, \ldots, p$ are continuous means and

$$
\max \left(M_{1}(\mathbf{x}), \ldots, M_{p}(\mathbf{x})\right)-\min \left(M_{1}(\mathbf{x}), \ldots, M_{p}(\mathbf{x})\right)<\max (\mathbf{x})-\min (\mathbf{x})
$$

for all $\mathbf{x}=\left(x_{1}, \ldots, x_{p}\right) \in I^{p} \backslash \Delta_{p}$, then the sequence of iterates of the mean-type mapping $\mathbf{M}=\left(M_{1}, \ldots, M_{p}\right)$ converges to a mean-type mapping $\mathbf{K}=(K, \ldots, K)$, where $K: I^{p} \rightarrow I$ is a continuous and \mathbf{M}-invariant mean, i.e. $K \circ \mathbf{M}=K$; moreover, the \mathbf{M}-invariant mean is unique.

Set

$$
A(x, y)=\frac{x+y}{2}, \quad H(x, y)=\frac{2 x y}{x+y}, \quad G(x, y)=\sqrt{x y}, \quad x, y>0 .
$$

Remark 1. Since $G \circ(A, H)=G$, the geometric mean G is (A, H) invariant. From Theorem 1 we conclude that the sequence $\left((A, H)^{n}\right)_{n \in \mathbb{N}}$ of iterates of the mean-type mapping (A, H) converges and

$$
\lim _{n \rightarrow \infty}(A, H)^{n}=(G, G)
$$

This remark shows that the knowledge of the M-invariant mean and the invariance formula

$$
G \circ(A, H)=G
$$

can be very useful. However, it is known that in the class of quasiarithmetic means, this invariance formula is rather exceptional (cf. [3, [1]).

It turns out that, in this respect, a natural extension of the notion of quasiarithmetic means significantly improves the situation.

To see this consider the following fact easy to verify:
Remark 2 (6). Let $p \in \mathbb{N}, p \geq 2$. If $f_{1}, \ldots, f_{p}: I \rightarrow \mathbb{R}$ are continuous increasing functions such that $f_{1}+\cdots+f_{p}$ is strictly increasing, then the function $A^{\left[f_{1}, \ldots, f_{p}\right]}: I^{p} \rightarrow I$ defined by

$$
\begin{aligned}
& A^{\left[f_{1}, \ldots, f_{p}\right]}\left(x_{1}, \ldots, x_{p}\right):=\left(f_{1}+\cdots+f_{p}\right)^{-1}\left(f_{1}\left(x_{1}\right)+\cdots+f_{p}\left(x_{p}\right)\right), \\
& x_{1}, \ldots, x_{p} \in I,
\end{aligned}
$$

is a p-variable strict mean. (This remark remains true on replacing "increasing" by "decreasing".)

Taking $f_{i}=w_{i} f$, where $f: I \rightarrow \mathbb{R}$ is continuous and strictly monotonic, and $w_{i} \in(0,1), i=1, \ldots, p$, are such that $w_{1}+\cdots+w_{p}=1$, we obtain

$$
A^{\left[f_{1}, \ldots, f_{p}\right]}\left(x_{1}, \ldots, x_{p}\right)=f^{-1}\left(w_{1} f\left(x_{1}\right)+\cdots+w_{p} f\left(x_{p}\right)\right), \quad x_{1}, \ldots, x_{p} \in I .
$$

Therefore $A^{\left[f_{1}, \ldots, f_{p}\right]}$ is called a generalized weighted quasiarithmetic mean with generators f_{1}, \ldots, f_{p} (cf. [6]). If $A^{\left[f_{1}, \ldots, f_{p}\right]}$ is symmetric then it is quasiarithmetic.

For $p=2$, setting $f=f_{1}$ and $g=f_{2}$, we get

$$
A^{[f, g]}(x, y):=(f+g)^{-1}(f(x)+g(y)), \quad x, y \in I .
$$

Example 1. Since $f, g:(-\pi / 2, \pi / 2) \rightarrow \mathbb{R}, f(x)=\sin x, g(x)=x-$ $\sin x$, are continuous and strictly increasing, the function

$$
A^{[f, g]}(x, y)=\sin x+y-\sin y, \quad x, y \in(-\pi / 2, \pi / 2),
$$

is a generalized weighted quasiarithmetic mean.
The following result provides another invariance formula in the class of generalized quasiarithmetic means.

Theorem 2. Let $I \subset \mathbb{R}$ be an interval and $p \in \mathbb{N}, p \geq 2$. Suppose that $f_{1}, \ldots, f_{2 p-1}: I \rightarrow \mathbb{R}$ are continuous increasing and such that

$$
F_{i}:=\sum_{j=i}^{p+i-1} f_{j} \quad \text { is strictly increasing for } i \in\{1, \ldots, p\} .
$$

Then
(i) the mean $A^{\left[F_{1}, \ldots, F_{p}\right]}$ is invariant with respect to the mean-type map$\operatorname{ping}\left(A^{\left[f_{1}, \ldots, f_{p}\right]}, A^{\left[f_{2}, \ldots, f_{p+1}\right]}, \ldots, A^{\left[f_{p}, \ldots, f_{2 p-1}\right]}\right)$, that is,

$$
A^{\left[F_{1}, \ldots, F_{p}\right]} \circ\left(A^{\left[f_{1}, \ldots, f_{p}\right]}, A^{\left[f_{2}, \ldots, f_{p+1}\right]}, \ldots, A^{\left[f_{p}, \ldots, f_{2 p-1}\right]}\right)=A^{\left[F_{1}, \ldots, F_{p}\right]}
$$

(ii) the sequence $\left(\left(A^{\left[f_{1}, \ldots, f_{p}\right]}, A^{\left[f_{2}, \ldots, f_{p+1}\right]}, \ldots, A^{\left[f_{p}, \ldots, f_{2 p-1}\right]}\right)^{n}\right)_{n \in \mathbb{N}}$ of iterates converges in I^{p}, and

$$
\lim _{n \rightarrow \infty}\left(A^{\left[f_{1}, \ldots, f_{p}\right]}, A^{\left[f_{2}, \ldots, f_{p+1}\right]}, \ldots, A^{\left[f_{p}, \ldots, f_{2 p-1}\right]}\right)^{n}=\left(A^{\left[F_{1}, \ldots, F_{p}\right]}, \ldots, A^{\left[F_{1}, \ldots, F_{p}\right]}\right)
$$

Proof. (i) Applying in turn the definition of the generalized quasiarithmetic mean $A^{\left[F_{1}, \ldots, F_{p}\right]}$, the definition of $F_{i}:=\sum_{j=i}^{p+i-1} f_{j}$, the commutativity of addition, and again the definition of F_{i}, we have

$$
\begin{aligned}
&\left(\sum_{j=1}^{p} F_{j}\right) \circ A^{\left[F_{1}, \ldots, F_{p}\right]} \circ\left(A^{\left[f_{1}, \ldots, f_{p}\right]}, \ldots, A^{\left[f_{p}, \ldots, f_{2 p-1}\right]}\right)\left(x_{1}, \ldots, x_{p}\right) \\
&= F_{1}\left(A^{\left[f_{1}, \ldots, f_{p}\right]}\left(x_{1}, \ldots, x_{p}\right)\right)+\cdots+F_{p}\left(A^{\left[f_{p}, \ldots, f_{2 p-1}\right]}\left(x_{1}, \ldots, x_{p}\right)\right) \\
&= {\left[f_{1}\left(x_{1}\right)+\cdots+f_{p}\left(x_{p}\right)\right]+\left[f_{2}\left(x_{1}\right)+\cdots+f_{p+1}\left(x_{p}\right)\right] } \\
& \quad+\cdots+\left[f_{p}\left(x_{1}\right)+\cdots+f_{2 p-1}\left(x_{p}\right)\right] \\
&= {\left[f_{1}\left(x_{1}\right)+\cdots+f_{p}\left(x_{1}\right)\right]+\left[f_{2}\left(x_{2}\right)+\cdots+f_{p+1}\left(x_{2}\right)\right] } \\
&+\cdots+\left[f_{p}\left(x_{p}\right)+\cdots+f_{2 p-1}\left(x_{p}\right)\right] \\
&= F_{1}\left(x_{1}\right)+F_{2}\left(x_{2}\right)+\cdots+F_{p}\left(x_{p}\right)=\sum_{j=1}^{p} F_{j}\left(x_{j}\right)
\end{aligned}
$$

for all $x_{1}, \ldots, x_{p} \in I$. Hence, again by the definition of $A^{\left[F_{1}, \ldots, F_{p}\right]}$, we obtain

$$
A^{\left[F_{1}, \ldots, F_{p}\right]} \circ\left(A^{\left[f_{1}, \ldots, f_{p}\right]}, \ldots, A^{\left[f_{p}, \ldots, f_{2 p-1}\right]}\right)\left(x_{1}, \ldots, x_{p}\right)=A^{\left[F_{1}, \ldots, F_{p}\right]}\left(x_{1}, \ldots, x_{p}\right)
$$

for all $x_{1}, \ldots, x_{p} \in I$.
Result (ii) follows from (i) and Theorem 1.
Taking $f_{i}=f_{p+i}$ for $i=1, \ldots, p-1$, we get
Corollary 3. Let $I \subset \mathbb{R}$ be an interval and $p \in \mathbb{N}, p \geq 2$. Suppose that $f_{1}, \ldots, f_{p}: I \rightarrow \mathbb{R}$ are continuous increasing and such that

$$
F:=\sum_{j=1}^{p} f_{j} \quad \text { is strictly increasing }
$$

Then
(i) the quasiarithmetic mean $A^{[F]}$ is invariant with respect to the cyclic mean-type mapping

$$
\left(A^{\left[f_{1}, \ldots, f_{p}\right]}, A^{\left[f_{2}, \ldots, f_{p}, f_{1}\right]}, A^{\left[f_{3}, \ldots, f_{p}, f_{1}, f_{2}\right]}, \ldots, A^{\left[f_{p}, f_{1}, \ldots, f_{p-1}\right]}\right)
$$

that is,

$$
A^{[F]} \circ\left(A^{\left[f_{1}, \ldots, f_{p}\right]}, A^{\left[f_{2}, \ldots, f_{p}, f_{1}\right]}, \ldots, A^{\left[f_{p}, f_{1}, \ldots, f_{p-1}\right]}\right)=A^{[F]} ;
$$

(ii) the sequence $\left(\left(A^{\left[f_{1}, \ldots, f_{p}\right]}, A^{\left[f_{2}, \ldots, f_{p}, f_{1}\right]}, \ldots, A^{\left[f_{p}, f_{1}, \ldots, f_{p-1}\right]}\right)^{n}\right)_{n \in \mathbb{N}}$ of iterates converges in I^{p}, and

$$
\lim _{n \rightarrow \infty}\left(A^{\left[f_{1}, \ldots, f_{p}\right]}, A^{\left[f_{2}, \ldots, f_{p}, f_{1}\right]}, \ldots, A^{\left[f_{p}, f_{1}, \ldots, f_{p-1}\right]}\right)^{n}=\left(A^{[F]}, \ldots, A^{[F]}\right)
$$

Here the invariant mean $A^{[F]}$, being quasiarithmetic, is symmetric, though the coordinates of the mean-type mapping are nonsymmetric.

It turns out that the converse holds true. Namely, we have the following obvious

REmARK 3. Let the assumptions of Theorem 2 be satisfied. If the invariant mean $A^{\left[F_{1}, \ldots, F_{p}\right]}$ is quasiarithmetic, then $f_{i}=f_{p+i}$ for $i=1, \ldots, p-1$.

Taking $p=2$ in Theorem 2, and setting $f_{1}=f, f_{2}=g, f_{3}=h$, we obtain

Corollary 4. Let $I \subset \mathbb{R}$ be an interval. Suppose that the functions $f, g, h: I \rightarrow \mathbb{R}$ are continuous increasing and such that $f+g$ and $g+h$ are strictly increasing. Then
(i) the mean $A^{[f+g, g+h]}$ is invariant with respect to the mean-type map$\operatorname{ping}\left(A^{[f, g]}, A^{[g, h]}\right)$, that is,

$$
A^{[f+g, g+h]} \circ\left(A^{[f, g]}, A^{[g, h]}\right)=A^{[f+g, g+h]} ;
$$

(ii) the sequence $\left(\left(A^{[f, g]}, A^{[g, h]}\right)^{n}\right)_{n \in \mathbb{N}}$ of iterates converges in I^{2}, and

$$
\lim _{n \rightarrow \infty}\left(A^{[f, g]}, A^{[g, h]}\right)^{n}=\left(A^{[f+g, g+h]}, A^{[f+g, g+h]}\right) .
$$

Example 2. The functions $f, g, h:(0, \infty) \rightarrow \mathbb{R}$,

$$
f(x)=\sqrt{x}-\log (1+x), \quad g(x)=\log (1+x), \quad h(x)=\sqrt{x}-\log (1+x)
$$

are continuous and strictly increasing in $I=(0, \infty)$. Thus, for all $x, y \in I$,

$$
\begin{gathered}
A^{[f, g]}(x, y)=\left(\sqrt{x}+\log \frac{y+1}{x+1}\right)^{2}, \quad A^{[g, h]}(x, y)=\left(\sqrt{y}+\log \frac{x+1}{y+1}\right)^{2} \\
A^{[f+g, g+h]}(x, y)=\left(\frac{\sqrt{x}+\sqrt{y}}{2}\right)^{2}
\end{gathered}
$$

By Corollary 4, the mean $A^{[f+g, g+h]}$ is $\left(A^{[f, g]}, A^{[g, h]}\right)$-invariant, the sequence $\left(\left(A^{[f, g]}, A^{[g, h]}\right)^{n}\right)_{n \in \mathbb{N}}$ of iterates converges, and

$$
\lim _{n \rightarrow \infty}\left(A^{[f, g]}, A^{[g, h]}\right)^{n}=\left(A^{[f+g, g+h]}, A^{[f+g, g+h]}\right)
$$

For $p=3$, setting $f_{1}=c, f_{2}=d, f_{3}=f, f_{4}=g, f_{5}=h$, we obtain

Corollary 5. Let $I \subset \mathbb{R}$ be an interval. Suppose that $c, d, f, g, h:$ $I \rightarrow \mathbb{R}$ are continuous increasing and such that $c+d+f, d+f+g$ and $f+g+h$ are strictly increasing. Then
(i) the mean $A^{[c+d+f, d+f+g, f+g+h]}$ is invariant with respect to the meantype mapping $\left(A^{[c, d, f]}, A^{[d, f, g]}, A^{[f, g, h]}\right)$, that is,
$A^{[c+d+f, d+f+g, f+g+h]} \circ\left(A^{[c, d, f]}, A^{[d, f, g]}, A^{[f, g, h]}\right)=A^{[c+d+f, d+f+g, f+g+h]} ;$
(ii) the sequence $\left(\left(A^{[c, d, f]}, A^{[d, f, g]}, A^{[f, g, h]}\right)^{n}\right)_{n \in \mathbb{N}}$ of iterates converges in I^{3}, and

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(A^{[c, d, f]}, A^{[d, f, g]}, A^{[f, g, h]}\right)^{n} \\
& \quad=\left(A^{[c+d+f, d+f+g, f+g+h]}, A^{[c+d+f, d+f+g, f+g+h]}, A^{[c+d+f, d+f+g, f+g+h]}\right)
\end{aligned}
$$

3. Invariant functions. In this section we prove

Theorem 6. Let $I \subset \mathbb{R}$ be an interval and $p \in \mathbb{N}$, $p \geq 2$. Suppose that $f_{1}, \ldots, f_{2 p-1}: I \rightarrow \mathbb{R}$ are continuous increasing and such that

$$
F_{i}:=\sum_{j=i}^{p+i-1} f_{j} \quad \text { is strictly increasing for } i \in\{1, \ldots, p\}
$$

Assume that a function $\Phi: I^{p} \rightarrow \mathbb{R}$ is continuous on the diagonal Δ_{p}. Then Φ is $\left(A^{\left[f_{1}, \ldots, f_{p}\right]}, A^{\left[f_{2}, \ldots, f_{p+1}\right]}, \ldots, A^{\left[f_{p}, \ldots, f_{2 p-1}\right]}\right)$-invariant, i.e.

$$
\Phi\left(A^{\left[f_{1}, \ldots, f_{p}\right]}, A^{\left[f_{2}, \ldots, f_{p+1}\right]}, \ldots, A^{\left[f_{p}, \ldots, f_{2 p-1}\right]}\right)=\Phi
$$

if and only if there is a continuous single variable function $\varphi: I \rightarrow \mathbb{R}$ such that

$$
\Phi=\varphi \circ A^{\left[F_{1}, \ldots, F_{p}\right]} .
$$

Proof. If a function Φ is $\left(A^{\left[f_{1}, \ldots, f_{p}\right]}, A^{\left[f_{2}, \ldots, f_{p+1}\right]}, \ldots, A^{\left[f_{p}, \ldots, f_{2 p-1}\right]}\right)$-invariant, then, by induction,

$$
\Phi\left(x_{1}, \ldots, x_{p}\right)=\Phi\left(\left(A^{\left[f_{1}, \ldots, f_{p}\right]}, A^{\left[f_{2}, \ldots, f_{p+1}\right]}, \ldots, A^{\left[f_{p}, \ldots, f_{2 p-1}\right]}\right)^{n}\left(x_{1}, \ldots, x_{p}\right)\right)
$$

for all $n \in \mathbb{N}$ and $x_{1}, \ldots, x_{p} \in I$. From Theorem 2(ii), letting $n \rightarrow \infty$, and making use of the continuity of Φ on Δ_{p}, we obtain

$$
\Phi\left(x_{1}, \ldots, x_{p}\right)=\Phi\left(\left(A^{\left[F_{1}, \ldots, F_{p}\right]}, \ldots, A^{\left[F_{1}, \ldots, F_{p}\right]}\right)\left(x_{1}, \ldots, x_{p}\right)\right), \quad x_{1}, \ldots, x_{p} \in I
$$

Hence, setting $\varphi(x):=\Phi(x, \ldots, x), x \in I$, we get

$$
\Phi\left(x_{1}, \ldots, x_{p}\right)=\varphi\left(A^{\left[F_{1}, \ldots, F_{p}\right]}\left(x_{1}, \ldots, x_{p}\right)\right), \quad x_{1}, \ldots, x_{p} \in I
$$

Since the converse implication is easy to verify, the proof is complete.

For $p=2$ setting $f_{1}=f, f_{2}=g, f_{3}=h$, we hence get
Corollary 7. Let $I \subset \mathbb{R}$ be an interval. Suppose that $f, g, h: I \rightarrow \mathbb{R}$ are continuous, increasing and such that $f+g$ and $g+h$ are strictly increasing. Assume that $\Phi: I^{p} \rightarrow \mathbb{R}$ is continuous on the diagonal Δ_{2}. Then Φ is $\left(A^{[f, g]}, A^{[g, h]}\right)$-invariant, i.e.

$$
\Phi \circ\left(A^{[f, g]}, A^{[g, h]}\right)=\Phi,
$$

if and only if there is a continuous single variable function $\varphi: I \rightarrow \mathbb{R}$ such that

$$
\Phi=\varphi \circ A^{[f+g, g+h]} .
$$

Take $f, g, h: I \rightarrow \mathbb{R}$ as in Example 2. Applying Corollary 7 we obtain
EXAMPLE 3. Assume that a two-variable function $\Phi: I^{2} \rightarrow \mathbb{R}$ is continuous at every point of the diagonal Δ_{2}. Then Φ satisfies the functional equation

$$
\Phi\left(\left(\sqrt{x}+\log \frac{y+1}{x+1}\right)^{2},\left(\sqrt{y}+\log \frac{x+1}{y+1}\right)^{2}\right)=\Phi(x, y), \quad x, y \in I
$$

if and only if

$$
\Phi(x, y)=\varphi\left(\left(\frac{\sqrt{x}+\sqrt{y}}{2}\right)^{2}\right), \quad x, y \in I
$$

where $\varphi: I \rightarrow \mathbb{R}$ is a continuous function.
Acknowledgements. The author is indebted to the referee for his valuable comments.

REFERENCES

[1] Z. Daróczy and Zs. Páles, Gauss-composition of means and the solution of the Mat-kowski-Sutô problem, Publ. Math. Debrecen 61 (2002), 157-218.
[2] P. Kahlig and J. Matkowski, Elliptic means and their generalizations, Anzeiger Österr. Akad. Wiss. Math. Natur. Kl. 139 (2003), 7-15.
[3] J. Matkowski, Invariant and complementary quasiarithmetic means, Aequationes Math. 57 (1999), 87-107.
[4] J. Matkowski, Iterations of mean-type mappings and invariant means, Ann. Math. Siles. 13 (1999), 211-226.
[5] J. Matkowski, Iterations of the mean-type mappings, in: Iteration Theory (ECIT'08), A. N. Sharkovsky and I. M. Sushko (eds.), Grazer Math. Ber. 354 (2009), 158-179.
[6] J. Matkowski, Generalized weighted quasiarithmetic means, Aequationes Math. 79 (2010), 203-212.
[7] J. Matkowski, Fixed points and iterations of mean-type mappings, Cent. Eur. J. Math. 10 (2012), 2215-2228.
[8] J. Matkowski, Iterations of the mean-type mappings and uniqueness of invariant means, Ann. Univ. Sci. Budapest. Sect. Comput. 41 (2013), 145-158.

Janusz Matkowski
Faculty of Mathematics, Informatics and Econometrics
University of Zielona Góra
65-516 Zielona Góra, Poland
E-mail: J.Matkowski@wmie.uz.zgora.pl

Received 1 April 2014; revised 1 September 2014

[^0]: 2010 Mathematics Subject Classification: Primary 26A17, 26E60, 39B22.
 Key words and phrases: mean, generalized quasiarithmetic mean, mean-type mapping, iteration, invariant mean, invariant function, functional equation.

