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FKN THEOREM ON THE BIASED CUBE

BY

PIOTR NAYAR (Warszawa)

Abstract. We consider Boolean functions defined on the discrete cube {−γ, γ−1}n
equipped with a product probability measure µ⊗n, where µ = βδ−γ + αδγ−1 and γ =√
α/β. This normalization ensures that the coordinate functions (xi)i=1,...,n are orthonor-

mal in L2({−γ, γ−1}n, µ⊗n). We prove that if the spectrum of a Boolean function is con-
centrated on the first two Fourier levels, then the function is close to a certain function of
one variable. Our theorem strengthens the non-symmetric FKN Theorem due to Jendrej,
Oleszkiewicz and Wojtaszczyk.

Moreover, in the symmetric case α = β = 1/2 we prove that if a [−1, 1]-valued function
defined on the discrete cube is close to a certain affine function, then it is also close to a
[−1, 1]-valued affine function.

1. Introduction and notation. Let α, β > 0 with α + β = 1 and
α ∈ (0, 1/2). We consider the discrete cube {−γ, γ−1}n equipped with the
L2 structure given by the product probability measure µn = µ⊗n, where
µ = βδ−γ + αδγ−1 and γ =

√
α/β. For f, g : {−γ, γ−1}n → R let us define

the expectation E f =
	
f dµn, the standard scalar product 〈f, g〉 = E fg

and the induced norm ‖f‖ =
√
〈f, f〉. We also define the Lp norm, ‖f‖p =

(E |f |p)1/p.
Let [n] = {1, . . . , n}. For T ⊆ [n] and x = (x1, . . . , xn) let wT (x) =∏

i∈T xi and w∅ ≡ 1. Note that we have Exi = 0 and Exixj = δij .
It follows that (wT )T⊆[n] is an orthonormal basis of L2({−γ, γ−1}n, µn).

Therefore, every function f : {−γ, γ−1}n → R admits a unique expan-
sion f =

∑
T⊆[n] aTwT . The functions wT are sometimes called the Walsh–

Fourier functions. If a function f is {−1, 1}-valued then it is called Boolean.
The Fourier analysis of Boolean functions plays an important role in

many areas of research, including learning theory, social choice, complexity
theory and random graphs (see e.g. [O1] and [O2]). One of the most impor-
tant analytic tools in this theory is the so-called hypercontractive Bonami–
Beckner–Gross inequality (see [Bo], [Be], [G1] and [G2] for a survey on this
topic). This inequality has been used in the celebrated papers by J. Kahn,
G. Kalai and N. Linial [KKL] and E. Friedgut [F]. It can be stated as follows.
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Take α = β = 1/2 and q ∈ [1, 2]. Then we have

(1)
∥∥∥ ∑
T⊆[n]

(q − 1)|T |/2aTwT

∥∥∥
2
≤
∥∥∥ ∑
T⊆[n]

aTwT

∥∥∥
q

for every choice of aT ∈ R. This inequality has been generalized in [Ol1] to
the non-symmetric case. Namely, the following inequality holds true:

(2)
∥∥∥ ∑
T⊆[n]

cq(α, β)|T |aTwT

∥∥∥
2
≤
∥∥∥ ∑
T⊆[n]

aTwT

∥∥∥
q
,

where

cq(α, β) =

√
β2−2/q − α2−2/q

αβ(α−2/q − β−2/q)
.

One can easily check that (1) is a special case of (2), namely
√
q − 1 =

limε→0 cq(1/2− ε, 1/2 + ε). Moreover, it is easy to see that cq(α, β) ∈ [0, 1].
In [FKN] the authors proved the following result, which is now called

the FKN Theorem. Suppose that α = β = 1/2 and we have a Boolean
function f whose Fourier spectrum is concentrated on the first two levels,
say

∑
|T |>1 a

2
T < ε2. Then f is Cε-close in the L2 norm to the constant

function or to one of the functions ±xi. Here and in what follows, C is a
universal constant that may vary from one line to another. The authors gave
two proofs of this theorem. One of them contained an omission which was
fixed by G. Kindler and S. Safra in their unpublished paper [KS] (see also [K]).

The FKN Theorem was originally devised for applications in discrete
combinatorics and social choice theory. It is useful in the proof of the robust
version of Arrow’s famous theorem on Condorcet’s voting paradox (see [A]
and [KG]). It was also applied in theoretical computer science, e.g., it is
useful in analyzing the Long Code Test in the proof of the PCP theorem
by I. Dinur [D]. Also the FKN Theorem in the biased case is worthy of
attention, e.g., p-biased long code was used by I. Dinur and S. Safra in their
PCP proof of NP-hardness of approximation of the Vertex Cover problem
(see [DS]).

In [JOW] the authors gave a proof of the following version of the FKN
Theorem.

Theorem 1 ([JOW, Theorems 5.3 and 5.8]). Let f =
∑

T aTwT be
the Walsh–Fourier expansion of a function f : {−1, 1}n → {−1, 1} and
let ρ = (

∑
|T |>1 a

2
T )1/2. Then there exists B ⊆ [n] with |B| ≤ 1 such that∑

|T |≤1, T 6=B a
2
T ≤ Cρ4 ln(2/ρ) and |aB|2 ≥ 1−ρ2−Cρ4 ln(2/ρ). In particular,

(3) distL2(f, wB) ≤ ρ+ Cρ2 ln(2/ρ).

Moreover, in the non-symmetric case, f : {−γ, γ−1}n → {−1, 1}, there
exists k ∈ [n] such that ‖f − (a∅ + a{k}w{k})‖ ≤ 8

√
ρ.
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The inequality (3) is sharp, up to a universal constant. In the proof the
inequality (1) has been used. However, in the non-symmetric case one can
ask for a better bound involving the bias parameter α. In this note we use
inequality (2) to prove such an extension of the FKN Theorem:

Theorem 2. Let f =
∑

T aTwT be the Walsh–Fourier expansion of a

function f : {−γ, γ−1}n → {−1, 1} and let ρ = (
∑
|T |>1 a

2
T )1/2. Then there

exists k ∈ [n] such that for ρ ln(e2/ρ) < 3
210e4

α we have

‖f − (a∅ + a{k}w{k})‖ ≤ 2ρ,(4)

‖f − sgn(a∅ + a{k}w{k})‖ ≤ 4ρ.(5)

In this paper we use the {−1, 1}-valued function sgn(x) = −1(−∞,0)(x)+
1[0,∞)(x).

Our proof of Theorem 2, which is given in Section 2, is an application of
the ideas used in the proof of Theorem 5.3 in [JOW]. Our inequality is closely
related to the inequality of A. Rubinstein [R, Corollary 10]. Rubinstein’s
inequality states that for every function f : {−γ, γ−1}n → {−1, 1} with∑
|T |>1 a

2
T = ρ2 we have

(6) ‖f − (a∅ + a{k}w{k})‖ ≤
Kρ

(1− a2∅)1/2
, K = 13104.

However, our inequality (4) is a better bound in the regime ρ ln(e/ρ) < c0α.
To see this consider the case when f0 = sgn(a∅ + a{k}w{k}) is constant and

equal to ε ∈ {−1, 1}. Then from (5) we have ‖f−ε‖2 ≤ 16ρ2. It follows that
1 − a2∅ = ‖f − E f‖2 ≤ ‖f − ε‖2 ≤ 16ρ2. Thus, the right hand side of (6)
is greater than K/4, which gives no information. In the case when f0 is not
constant we have |E f0| = |1− 2α|. Thus,∣∣|a∅| − |1− 2α|

∣∣ =
∣∣|E f | − |E f0|∣∣ ≤ |E(f − f0)| ≤ ‖f − f0‖ ≤ 4ρ.

It follows that 1− a2∅ ≤ 2(1− |a∅|) ≤ 2(2α+ 4ρ) ≤ 12α. Therefore, the right

hand side in the Rubinstein bound is in this case Kρ/
√

12α, which is much
greater than ρ when α→ 0.

In Section 3 we consider the case γ = 1 and we deal with the problem con-
cerning [−1, 1]-valued functions defined on the cube {−1, 1}n with uniform
product probability measure. A function f : {−1, 1}n → R is called affine if
f(x) = a0 +

∑n
i=1 aixi, where a0, a1, . . . , an ∈ R and x = (x1, . . . , xn). We

will denote the set of all affine functions by A. Moreover, let A[−1,1] ⊆ A
stand for the set of all affine functions satisfying |f(x)| ≤ 1 for every
x ∈ {−1, 1}n. Note that f ∈ A[−1,1] if and only if

∑n
i=0 |ai| ≤ 1. The

function f(x) = xi will be denoted by ri, i = 1, . . . , n. Let us also notice
that if f is [−1, 1]-valued then |aT | = |EwT f | ≤ E |wT f | ≤ 1.
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In [JOW] the authors gave the following example. Take g : {−1, 1}n
→ R given by g(x) = s−1n−1/2

∑n
i=1 xi. Note that g ∈ A. Define φ(x) =

−1(−∞,−1)(x)+x1[−1,1](x)+1(1,∞)(x) and take f = φ◦g. Clearly, f is [−1, 1]-
valued but may not be affine. The authors proved that limn→∞ distL2(f,A) =

O(e−s
2/4) and limn→∞ distL2(f,A[−1,1]) = Θ(s−1).

Here we prove that this is the worst case as far as the dependence of
these two quantities is concerned. Namely, we have the following theorem,
which is the analogue of (3) in the case of [−1, 1]-valued functions.

Theorem 3. Let f : {−1, 1}n → [−1, 1] and define ρ = distL2(f,A).
Then

distL2(f,A[−1,1]) ≤
18√

ln(1/ρ)
.

2. Proof of Theorem 2. We begin with a simple lemma.

Lemma 1. Let 0 < α < β < 1 with α+ β = 1 and let γ ∈ (0, 1]. Then

α−2+γ − β−2+γ

βγ − αγ
≤ 2− γ

γ

α−2+γ

βγ
.

Proof. Let x ∈ (0, 1) and µ ≥ 1. From the mean value theorem we have
1−xµ
1−x ≤ µ. Applying this with µ = 2−γ

γ and x = (α/β)γ yields an equivalent
version of the statement.

Proof of Theorem 2. Let k be given by Theorem 1, h = f− (a∅+a{k}xk)

and h̃ = f − sgn(a∅ + a{k}xk). Moreover, let δ = ‖h‖. It follows that δ ≤ 1.
Note that for every u ∈ R and ε ∈ {−1, 1} we have |u − sgn(u)| ≤ |u − ε|.
Therefore,

(7) |ε− sgn(u)| ≤ |ε− u|+ |u− sgn(u)| ≤ 2|u− ε|.

It follows that |h̃| ≤ 2|h|. Thus, using the fact that h̃ is {−2, 0, 2}-valued,
we have

P(h̃ 6= 0) =
1

4
‖h̃‖2 ≤ ‖h‖2 = δ2.

Consider the expansion h̃ =
∑

T ãTwT . Clearly, ãT = aT for T 6= ∅, {k}.
Using (2) we obtain

4δ4/q ≥ 4P(h̃ 6= 0)2/q = ‖h̃‖2q =
∥∥∥∑
T

ãTwT

∥∥∥2
q
≥
∥∥∥∑
T

cq(α, β)|T |ãTwT

∥∥∥2
2

=
∑
T

cq(α, β)2|T |ã2T ≥ cq(α, β)2
∑
|T |≤1

ã2T ,

where q ∈ [1, 2]. Using Lemma 1 with γ = 2− 2/q we obtain
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∑
|T |≤1, T 6=∅,{k}

ã2T ≤
∑
|T |≤1

ã2T ≤
4δ4/q

cq(α, β)2
= 4δ4/qαβ

α−2/q − β−2/q

β2−2/q − α2−2/q

≤ 4δ4/q

q − 1

(
α

β

)1−2/q
.

Take 1/q = 1 − 1/ln(e2/δ) ∈ [1/2, 1]. Note that (α/β)1−2/q ≤ α1−2/q

≤ α−1. It follows that∑
|T |≤1, T 6=∅,{k}

ã2T ≤ 4δ4α−1e
4 ln(1/δ)

ln(e2/δ) ln(e2/δ) ≤ 4e4δ4α−1 ln(e2/δ).

From Theorem 1 we have ρ ≤ δ ≤ 8
√
ρ. Thus,

4e4δ4α−1 ln(e2/δ) ≤ 28e4α−1δ2ρ ln(e2/ρ) ≤ 3

4
δ2.

Note that a2∅ + a2{k} = 1− δ2. We deduce

1− ρ2 =
∑
|T |≤1

a2T = a2∅ + a2{k} +
∑

|T |≤1, T 6=∅,{k}

ã2T ≤ 1− δ2 +
3

4
δ2 = 1− 1

4
δ2.

Therefore, δ ≤ 2ρ.
The inequality (5) follows from (7).

Remark. The condition ρ ln(e2/ρ) ≤ 1
29e4

α cannot be significantly im-
proved. Indeed, if we take f : {−γ, γ−1}2 → {−1, 1} given by

f(x1, x2) = 2(β −
√
βαx1)(β −

√
βαx2)− 1

(see [JOW, remark after the proof of Theorem 5.8], then we obtain ρ =
2αβ ≤ 2α and δ = 2β3/2α1/2. Thus, δ =

√
2ρβ ≥

√
ρ/2.

One can easily see that if we replace our assumption ρ ln(e2/ρ) ≤ 1
29e4

α

by a slightly stronger condition, say ρ ln2(e2/ρ) ≤ α, then we obtain δ ≤
ρ + o(ρ), which means that

∑
|T |≤1, T 6=∅,{k} a

2
T = o(ρ2) and a2∅ + a2{k} ≥

1− ρ2 − o(ρ2).

3. Proof of Theorem 3. We need the following lemma due to P. Hit-
czenko, S. Kwapień and K. Oleszkiewicz.

Lemma 2 ([HK, Theorem 1] and [Ol2, Theorem 1]). Let a1 ≥ · · · ≥ an
≥ 0 and define S : {−1, 1}n → R by S =

∑n
i=1 airi. Then for t ≥ 1 we have

(8) P(|S| ≥ ‖S‖) > 1

10
and

(9) ‖S‖t ≥
1

4

√
t
(∑
i>t

a2i

)1/2
.
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Proof of Theorem 3. Step 1. If f =
∑

T aTwT then distL2(f,A) =
‖f − S‖, where S =

∑
|T |≤1 aTwT . For every u ∈ [−1, 1] we have |x − u| ≥

|x− φ(x)| for all x ∈ R. Taking x = S and u = f we obtain

E (|S| − 1)2+ = ‖S − φ(S)‖2 ≤ ‖S − f‖2 ≤ ρ2.

For all g ∈ A[−1,1] we have

‖g − f‖ ≤ ‖g − S‖ + ‖S − f‖ ≤ ‖g − S‖ + ρ.

Therefore,

(10) distL2(f,A[−1,1]) ≤ distL2(S,A[−1,1]) + ρ.

It suffices to prove that E(|S| − 1)2+ ≤ ρ2 implies an appropriate bound on
distL2(S,A[−1,1]), whenever S = a0 +

∑n
i=1 airi, where a0, a1, . . . , an ∈ R.

Step 2. Suppose that for all n ≥ 1 we can prove that E(|S| − 1)2+ ≤ ρ2
implies distL2(S,A[−1,1]) ≤M for some M > 0, assuming that a0 = 0. Then

we can deal with the case a0 6= 0 as follows. Define S̃ : {−1, 1} × {−1, 1}n
→ R by S̃ = a0x0 +

∑n
i=1 aixi. Clearly, E(|S̃| − 1)2+ = E(|S| − 1)2+ ≤ ρ2. We

can find a [−1, 1]-valued function S̃0 = b0x0 +
∑n

i=1 bixi such that ‖S̃ − S̃0‖
≤M . Take S0 = b0 +

∑n
i=1 bixi. Now it suffices to observe that the function

S0 is [−1, 1]-valued and ‖S̃ − S̃0‖ = ‖S − S0‖.

Step 3. Set S =
∑n

i=1 airi. Without loss of generality we can assume

that 1 ≥ a1 ≥ · · · ≥ an ≥ 0. Let τ = max{t ≥ 1 :
∑t

i=1 ai ≤ 1}. Clearly,
τ ≥ 1. If f is already in A[−1,1] then there is nothing to prove. Therefore we
can assume that τ < n. We can also assume that ρ ≤ 1/3, since otherwise
we have

distL2(f,A[−1,1]) ≤ distL2(f, 0) = ‖f‖ ≤ 1 ≤ 18√
ln(1/ρ)

.

Let A =
{
|S| ≥ 1

2‖S‖t
}

. For t ≥ 1 we have

E |S|t = E |S|t1A + E |S|t1Ac ≤
√
E |S|2t

√
P(A) +

1

2t
E |S|t.

Since by the Khinchin inequality we have (E |S|2t)1/2t ≤
√

2t−1
t−1 (E |S|t)1/t,

we arrive at

P
(
|S| ≥ 1

2
‖S‖t

)
≥
(

1− 1

2t

)2 (E |S|t)2

E |S|2t
≥ 1

4

(E |S|t)2

E |S|2t
≥ 1

4

(
t− 1

2t− 1

)t
.

By the Chebyshev inequality we obtain

(11) P(|S| ≥ 1 + ε) ≤
E (|S| − 1)2+

ε2
≤ ρ2

ε2
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for all ε > 0. Let t ≥ 1 and assume that ‖S‖t > 2. Take ε = 1
2‖S‖t − 1 > 0.

We get
1

4

(
t− 1

2t− 1

)t
≤
(
|S| ≥ 1

2
‖S‖t

)
≤ ρ2(

1
2‖S‖t − 1

)2 .
It follows that

‖S‖t ≤ 2 + 4ρ

(
2t− 1

t− 1

)t/2
,

which is also true in the case ‖S‖t ≤ 2. From inequality (9) we obtain

(12)
1

4

√
t
(∑
i>t

a2i

)1/2
≤ ‖S‖t ≤ 2 + 4ρ

(
2t− 1

t− 1

)t/2
.

Step 4. We consider the case τ ≥ 2
ln 3 ln(1/ρ) ≥ 1. Let us now take

t = 2
ln 3 ln(1/ρ) ≥ 2 > 1 and define

S1 =
∑

i≤ 2
ln 3

ln(1/ρ)

airi.

Notice that ∑
i≤ 2

ln 3
ln(1/ρ)

ai ≤
∑
i≤τ

ai ≤ 1.

Thus, S1 ∈ A[−1,1]. Moreover, since t ≥ 2, we have ρ
(
2t−1
t−1
)t/2 ≤ ρ3t/2 = 1

and therefore by (12) we deduce

distL2(S,A[−1,1]) ≤ ‖S − S1‖ =
( ∑
i> 2

ln 3
ln(1/ρ)

a2i

)1/2
≤ 24√

2
ln 3 ln(1/ρ)

.

In this case (10) yields

distL2(f,A[−1,1]) ≤
24√

2
ln 3 ln(1/ρ)

+ ρ ≤ 18√
ln(1/ρ)

.

Step 5. We deal with the case τ < 2
ln 3 ln(1/ρ). Set

S2 =
∑
i≥τ+2

airi.

From inequality (8) we have

P
(
|S| ≥

∑
i≤τ+1

ai + ‖S2‖
)
≥ 1

2τ+1
P(|S2| ≥ ‖S2‖) ≥

1

2τ+1
· 1

10
≥ 1

20
ρ

2 ln 2
ln 3 .

Note that
∑

i≤τ+1 ai > 1. Therefore, from inequality (11) we obtain

P
(
|S| ≥

∑
i≤τ+1

ai + ‖S2‖
)
≤ ρ2

(
∑

i≤τ+1 ai + ‖S2‖ − 1)2
.
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It follows that ∑
i≤τ+1

ai + ‖S2‖ − 1 ≤
√

20 ρ1−
ln 2
ln 3 .

Take S1 =
∑τ

i=1 airi + (1 − (a1 + · · · + aτ ))rτ+1. Clearly, S1 ∈ A[−1,1].
Moreover,

‖S − S1‖ =
(
(1− (a1 + · · ·+ aτ )− aτ+1)

2 + ‖S2‖2
)1/2

≤ |a1 + · · ·+ aτ + aτ+1 − 1|+ ‖S2‖ ≤
√

20 ρ1−
ln 2
ln 3 .

Therefore, from (10) we have

distL2(f,A[−1,1]) ≤
√

20ρ1−
ln 2
ln 3 + ρ ≤ 18√

ln(1/ρ)
.

Remark. If we perform our calculation with ln(2.03) instead of ln 3 we
will obtain the conclusion with a constant 14.5 instead of 18.
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