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SPECTRAL DISTRIBUTION OF THE FREE JACOBI PROCESS
ASSOCIATED WITH ONE PROJECTION

BY

NIZAR DEMNI and TAOUFIK HMIDI (Rennes)

Abstract. Given an orthogonal projection P and a free unitary Brownian motion
Y = (Yt)t≥0 in a W ?-non commutative probability space such that Y and P are ?-free
in Voiculescu’s sense, we study the spectral distribution νt of Jt = PYtPY

?
t P in the

compressed space. To this end, we focus on the spectral distribution µt of the unitary
operator SYtSY

?
t , S = 2P − 1, whose moments are related to those of Jt via a binomial-

type expansion already obtained by Demni et al. [Indiana Univ. Math. J. 61 (2012)]. In
this connection, we use free stochastic calculus in order to derive a partial differential
equation for the Herglotz transform µt. Then, we exhibit a flow ψ(t, ·) valued in [−1, 1]
such that the composition of the Herglotz transform with the flow is governed by both
the ones of the initial and the stationary distributions µ0 and µ∞. This enables us to
compute the weights µt{1} and µt{−1} which together with the binomial-type expansion
lead to νt{1} and νt{0}. Fatou’s theorem for harmonic functions in the upper half-plane
shows that the absolutely continuous part of νt is related to the nontangential extension
of the Herglotz transform of µt to the unit circle. In the last part of the paper, we use
combinatorics of noncrossing partitions in order to analyze the term corresponding to the
exponential decay e−nt in the expansion of the nth moment of µt.

1. Reminder and main results. Let (A , τ) be a W ?-noncommutative
probability space with unit 1 and adjoint operation ?: A is a von Neumann
algebra endowed with a faithful tracial state τ . In the recent paper [DHH],
we started the spectral study of the free Jacobi process: this is a family of
positive operators J = (Jt)t≥0 valued in the compressed noncommutative
probability space (

PA P, τP ,
1

τ(P )
τ

)
where P ∈ A is an orthogonal projection. Actually, the operator Jt is defined
[De1] by

Jt = PYtQY
?
t P,

where Q ∈ A is another orthogonal projection and Y = (Yt)t≥0 ⊂ A is
a Lévy process with respect to the free unitary multiplicative convolution,
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referred to as the free unitary Brownian motion [Bi1]. In this definition, it
is also assumed that {P,Q} and {Y, Y ?} are free families in Voiculescu’s
sense [NS]. When P = Q and τ(P ) = 1/2, we proved in [DHH] that the
spectral distribution of Jt in (PA P, τP ) fits that of the positive operator

Y2t + Y ?
2t + 21

4

in (A , τ). In particular, if U ∈ A is a Haar unitary random variable [NS]
then the spectral distribution of

U + U? + 21

4

is the arcsine distribution in (0, 1) [De1]. Two proofs leading to this result
were given in [DHH]. One of them relies on the following binomial-type
expansion. Let S , 2P − 1. Then τ(S) = 0 and

τ [(PYtPY
?
t )n] =

1

22n+1

(
2n

n

)
+

1

22n

n∑
k=1

(
2n

n− k

)
τ((SYtSY

?
t )k).

The description of the spectral distribution of Jt then follows from the ad-
ditional fact that if τ(S) = 0 then SYtSY

?
t and Y2t share the same spectral

distribution [DHH, Lemma 1]. In particular, if S and U are ?-free in (A , τ)
then SUSU? is again a Haar unitary random variable (this also follows
obviously from the freeness of S and USU?, see [NS]).

In this paper, we investigate the spectral distribution νθt ∈ (0, 1) of Jt
when the projection P has arbitrary rank τ(P ) = θ. The key ingredient is
the general form of the binomial-type expansion written above:

(1.1)

τ [(PYtPY
?
t )n] =

1

22n+1

(
2n

n

)
+

2θ − 1

2
+

1

22n

n∑
k=1

(
2n

n− k

)
τ((SYtSY

?
t )k),

which carries our investigations to the spectral distribution, say µθt ,
of SYtSY

?
t in (A , τ). As we shall see below, one cannot expect a description

of µθt , θ ∈ (0, 1), similar to that of µ
1/2
t . Indeed, the multivariate free stochas-

tic calculus developed in [BL] allows one to derive a recursive time-dependent
relation for the moments

rθn(t) , τ [(SYtSY
?
t )n] =

�

T

zn µθt (dz),

T being the unit circle. Moreover, this relation is then transformed into a
partial differential equation for the Herglotz transform of µθt :

Hθ(t, z) , 1 + 2
∑
n≥1

rθn(t)zn, |z| < 1,
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which is a perturbation of the pde satisfied by H1/2,

2[τ(S)]2
z(1 + z)

(1− z)3
= 2(2θ − 1)2

z(1 + z)

(1− z)3
,

while keeping the same initial data

Hθ(0, z) = H1/2(0, z) =
1 + z

1− z
.

Nonetheless, we shall prove using the method of characteristics that there
exists a flow (t, z) 7→ ψθ(t, z) on an open subset of R+ × [−1, 1] such that

[Hθ
∞(ψθ(t, z))]2 − [Hθ

∞(z)]2 = [Hθ(t, ψθ(t, z))]2 − [Hθ(0, z)]2.(1.2)

In (1.2), Hθ
∞ is the Herglotz transform of the spectral distribution µθ∞

of SUSU?. Equivalently, µθ∞ is the weak limit as t → ∞ of µθt and is

a deformation of the Haar distribution µ
1/2
∞ on T since SYtSY

?
t and Y2t

are equally distributed when θ = 1/2. To the best of our knowledge, no
description of µθ∞ has shown up yet in the literature. For that reason
and with regard to (1.2), we shall supply here a full description of µθ∞
relying on an explicit expression for Hθ

∞. In particular, µθ∞ admits an
absolutely continuous part whose support consists of two symmetric (with
respect to the real axis) arcs that join at z = ±1 if and only if τ(S) = 0.
As to its discrete part, it consists of the single point z = 1 with weight
|τ(S)|. However, rather than using the analytic machinery of multiplicative
convolution of probability distributions on T [VDN], we found it more
convenient to write down Hθ

∞ by taking the limit in (1.1) as t→∞ and by
using the moment generating function of PUPU?P in (PA P, τP ), already
computed in [De2].

Coming back to the flow, we shall express it through a conformal one-
to-one map α from C \ [1,∞[ onto the open unit disc, its inverse function
α−1 and the inverse function ξ2t of the Herglotz transform of the spectral
distribution of Y2t [Bi1]. This new expression has at least two advantages.
Firstly, we can easily find zθt ∈ (0, 1) such that ψθ(t, zθt ) = 1. In this way, the
equality µθt{1} = |τ(S)| follows after taking a radial limit in (1.2) as z → zt.
Similarly, we easily see that

lim
z→−1, z>−1

ψθ(t, z) = −1,

whence µθt{−1} = 0, and if t > 2 then we can also find a real number lying in
(−1, 0) where the same limit holds. Secondly, the above immediately shows
that the maximal range of ψ(t, ·) is D together with the lower semicircle,
unless τ(P ) = 1/2 for which the range is D [Bi2].

With the help of this information, we arrive at the following description
of νt:
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Theorem 1.1. Let t > 0. Then:

(1) The discrete part of νθt is given by

νθt {1} =
1

θ
max{(2θ − 1), 0}.

(2) At any point x ∈ (0, 1) where the distribution function of νθt is dif-
ferentiable, Re(Ht) admits a nontangential limit at α(1/x) and the
density of νθt is given by

1

π
√
x(1− x)

Re{Ht}(α(1/x)) =
1

π
√
x(1− x)

Re{Ht}(ei2 arccos(
√
x)).

The paper is organized as follows. We first supply a full description of µθ∞
and derive a closed formula for its moments through Jacobi polynomials. The
time-dependent recursive relation for the moments rθn(t), n ≥ 1, of µθt comes
next and is an instance of a general formula derived in [BL]. The relation
is then transformed into a pde satisfied by Hθ whose dynamics is analyzed
using the method of characteristics, leading to the flow ψθ. Once this has been
completed, we put the obtained expression in the compact form we mentioned
above and prove the existence of zθt at any time t > 0. Doing so allows us
to compute µθt{1}, whence we deduce νθt {1} after proving that the limit as
n→∞ of the RHS of (1.1) depends only on the weight of µθt{1} (Lebesgue’s
convergence theorem clearly implies that the LHS does so after normalizing
by 1/τ(P )). As to νθt {0}, we relate the Cauchy–Stieltjes transform Gθt of
νθt to Hθ

t ◦ α, then prove the equality 2τ(P )νθt {0} = µθt{−1} = 0. Coming
to the absolutely continuous part of νt, we first relate Im[Gθ(x + iy)],
x ∈ (0, 1), to ReHθ

t along the curve y 7→ α[1/(x+ iy)] and then prove that
α[1/(x + iy)] → α(1/x) nontangentially as y → 0+. As a matter fact, the
last statement of Theorem 1.1 follows from Fatou’s theorem for positive
harmonic functions in the upper half-plane [Don] and from [BV, Lemma
5.11].

We close the paper by analyzing the term corresponding to the expo-

nential decay e−nt in rθn(t). When θ = 1/2, r
1/2
n is expressed through a

Laguerre polynomial since SYtSY
?
t and Y2t are equally distributed ([Bi1],

[DHH]). For general θ ∈ (0, 1), we shall see that the term with fastest decay

in rθn satisfies the same equation as r
1/2
n , yet has a different initial value

at t = 0. Using combinatorics of noncrossing partitions, we prove that this
value is the nth even moment of the 1/2-fold convolution of the self-adjoint
operator a1 − a2, where a1, a2 ∈ A are two free copies of S. Of course, the
resulting convolution is not necessarily a probability measure for general
θ ∈ (0, 1], while this is obviously true when θ = 1/2 (it reduces simply to
the spectral distribution of S since a1 and −a2 have the symmetric Bernoulli
distribution). Using the R-transform machinery [VDN], we can see that the
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Cauchy–Stieltjes transform of the 1/2-convolution of a1 − a2 is a root of a
third degree polynomial that one can express using Gauss hypergeometric
functions.

Henceforth, we shall omit the dependence of our notation on θ for the
sake of clarity.

2. The stationary distribution µ∞. This section is devoted to the
Lebesgue decomposition of the spectral distribution µ∞ of SUSU?, where
we recall that U ∈ A is a Haar unitary operator and S and U are ?-free.
More precisely, we show that µ∞ splits into an absolutely continuous part
and a singular discrete one supported in {1} with weight |τ(S)|. To proceed,
we shall write down its Herglotz transform H∞:

H∞(z) =
�

T

w + z

w − z
µ∞(dw) =

�

T

1 + zw

1− zw
µ∞(dw) = 1 + 2

∑
n≥1

rnz
n

where we set

rn , rn(∞) = τ((SUSU?)n), n ≥ 1,

and the second equality follows from the invariance of µ∞ under the conju-
gate mapping. This may be done using the free multiplicative convolution
of the unitary operators S and USU? (see [NS]) whose common spectral
distribution is given by

θδ1 + (1− θ)δ−1.
However, we found it more convenient to deduce H∞ from (1.1) and from the
knowledge of the moment generating function of PUPU?P in PA P [De2].
The result of our computations is

Lemma 2.1. Set κ , 2θ − 1 = τ(S). Then

H∞(z) =

√
1 + 4κ2

z

(1− z)2

in some neighborhood of the origin. The equality extends analytically to the
open unit disc.

Proof. Define

mn ,
1

τ(P )
τ [(PUPU?P )n], n ≥ 1, m0 = 1.

These are the moments of the stationary free Jacobi process with parameters
λ = 1, θ ∈ (0, 1] (see [De2] for notation, see also [Co]). From [De2, equa-
tion (1), p. 108], we already know that

(2.1)
∑
n≥1

mnz
n =

(2θ − 1) +
√

1− 4θ(1− θ)z
2θ(1− z)

− 1, |z| < 1.
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On the other hand, after summing (1.1) over n ≥ 1 we get∑
n≥1

mnz
n =

1

2θ

[
1√

1− z
− 1 +

(2θ − 1)z

1− z

]
+

1

θ

∑
n≥1

zn

22n

n∑
k=1

(
2n

n− k

)
rk(2.2)

=
1

2θ

[
1√

1− z
− 1 +

(2θ − 1)z

1− z

]
+

1

θ

∑
k≥1

rk
zk

22k

∑
n≥0

(
2n+ 2k

n

)
zn

22n
.

Using the identity (see [DHH, p. 1360])∑
n≥0

(
2n+ 2k

n

)
zn

22n
=

22k√
1− z

(
1 +
√

1− z
)−2k

, |z| < 1,

and equating (2.1) and (2.2), we get

2
∑
n≥1

rn[α(z)]n =

√
1− 4θ(1− θ)z√

1− z
− 1,

where (1)

(2.3) α(z) ,
z

(1 +
√

1− z)2
=

1−
√

1− z
1 +
√

1− z
·

Now α is a bi-holomorphism from C\[1,∞[ onto D, where its inverse function
is given by

α−1(z) =
4z

(1 + z)2
.

As a result, for any z ∈ D,

H∞(z) = 1 + 2
∑
n≥1

rnz
n =

√
1− 4θ(1− θ)α−1(z)√

1− α−1(z)

=

√
1 + z2 + 2z(1− 8θ(1− θ))

(1− z)2
=

√
1 + 4κ2

z

(1− z)2
.

Corollary 2.2. The Lebesgue decomposition of the spectral measure
µ∞ of SUSU? is given by

µ∞ = |κ|δ1 +

√
1− κ2

sin2 ψ
1{|sinψ|≥|κ|} dψ.

Here dψ denotes the Lebesgue measure on [0, 2π].

(1) We consider the principal determination of the square root.
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Proof. From the previous lemma, H∞ admits a pole at z = 1, therefore
µ∞ assigns a weight to z = 1 given by (see [CMR])

1

2
lim
z→1−

(1− z)H∞(z) =
1

2
lim
z→1

√
(1− z)2 + 4κ2z = |κ|.

As to the remaining parts of µ∞, we first discard the value κ = 0. Indeed,
we know that µ∞ reduces to the Haar distribution on T when κ = 0 or
equivalently θ = 1/2. Now if |κ| ∈ (0, 1) then we claim that µ∞ − |κ|δ1 is
absolutely continuous with respect to the Haar distribution in T. Indeed,
the Herglotz transform of µ∞ − |κ|δ1 is given by

H∞(z)− |κ|1 + z

1− z
=

(1− κ2)(1− z)√
z2 + 2(2κ2 − 1)z + 1 + |κ|(1 + z)

and admits a continuous extension to the boundary T, since

z 7→ z2 + 2(2κ2 − 1)z + 1

does not take negative values (its roots lie on T) and since the denominator
does not vanish on the closed unit disc. Thus our claim follows from the
Poisson representation of positive harmonic functions in the open unit disc
extending continuously to T [Ru, Ch. 11]. Finally, the density of µ∞ is

Re

[
H∞(eiψ)− |κ|1 + eiψ

1− eiψ

]
= Re

[√
1 + 4κ2

eiψ

(1− eiψ)2

]

=

√
1− κ2

sin2 ψ
1{|sinψ|>|κ|}.

We close this section with the following closed form of the moments
rn, n ≥ 1, showing that these are somehow averages over (0, |κ|) of special
polynomials:

Proposition 2.3. For any κ ∈ (−1, 1),

rn = κ

κ�

0

P 1,0
n−1(1− 2s2) ds,

where P 1,0
n is the nth Jacobi polynomial with parameters (1, 0) [Ra, p. 254].

Proof. Using the generalized binomial theorem [Ra, p. 47], we write√
1 +

4κ2z

(1− z)2
− 1 =

∑
k≥1

(−1/2)k
k!

[
− 4κ2z

(1− z)2

]k
=
∑
k≥1

(−1/2)k
k!

(−4κ2z)k
∑
n≥0

(2k)n
n!

zn
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where for x ∈ R, (x)k = x(x+ 1) . . . (x+ k − 1) is the Pochhammer symbol
[Ra, p. 45]. Inverting the order of summation and identifying coefficients
of zn, one obtains

rn =
1

2

n∑
k=1

(−1/2)k
k!

(2k)n−k
(n− k)!

(−4κ2)k, n ≥ 1.

Writing (2k)n−k = Γ (n + k)/Γ (2k), k ≥ 1, using the Legendre duplication
formula [Erd]

Γ (2k) = 22k−1(k − 1)!(1/2)k,

and since

(−1/2)k = − 1

2k − 1
(1/2)k,

one gets

rn = (n− 1)!

n∑
k=1

(−1/2)k
(1/2)k

(n)k
(n− k)!(k − 1)!

(−κ2)k

k!

= −(n− 1)!
n∑
k=1

1

2k − 1

(n)k
(n− k)!(k − 1)!

(−κ2)k

k!

= −(n− 1)!
n−1∑
k=0

1

2k + 1

(n)k+1

(n− 1− k)!(k + 1)!

(−κ2)k+1

k!

= n

n−1∑
k=0

(1− n)k
2k + 1

(n+ 1)k
(k + 1)!

(κ2)k+1

k!

= nκ

n−1∑
k=0

(1− n)k
2k + 1

(n+ 1)k
(2)k

(κ)2k+1

k!
.

Finally,

d

dκ

n−1∑
k=0

(1− n)k
2k + 1

(n+ 1)k
(2)k

(κ)2k+1

k!
=

n−1∑
k=0

(1− n)k
(n+ 1)k

(2)k

(κ)2k

k!

=
(n− 1)!

(2)n−1
P 1,0
n−1(1− 2κ2) =

1

n
P 1,0
n−1(1− 2κ2),

where the second equality follows from [Ra, p. 255].

3. The time-dependent regime. Now, we proceed to the study of µt
and we start with

3.1. Time-dependent recursive relation. This subsection is devoted
to the proof via free stochastic calculus of the following result:
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Proposition 3.1. Let

sn(t) , entτ((SYtSY
?
t )n) = entrn(t), n ≥ 1.

Then

s1(t) = κ2et + (1− κ2),

∂tsn(t) = −n
n−1∑
j=1

sj(t)sn−j(t) + κ2n2ent, n ≥ 2.

Proof. The proof follows the lines of that of Proposition 1 in [DHH], with
minor modifications due to the cancellations S2 = 1 rather than P 2 = P . For
the reader’s convenience, we give the whole proof and first recall Theorem
3.4 of [BL]:

Theorem 3.2. Let n ≥ 1 and define

f2n(a1, . . . , a2n, t) , entτ(a1Yta2Y
?
t . . . a2n−1Yta2nY

?
t )

where {a1, . . . , a2n} ∈ A is ?-free with Y . Set f0(A, t) , τ(A) for any
A ∈ A . Then

∂tf2n(a1, . . . , a2n, t)

= −
∑

1≤k<l≤2n
l−k≡0 [2]

f2n−(l−k)(a1, . . . , ak, al+1, . . . , a2n, t)fl−k(ak+1, . . . , al, t)

+ et
∑

1≤k<l≤2n
l−k−1≡0 [2]

[
f2n−(l−k)−1(a1, . . . , ak−1, akal+1, al+2, . . . , a2n, t)

× fl−k−1(alak+1, ak+2, . . . , al−1, t)
]
.

Before passing to computations, we stress that some terms in the second
sum may seem ambiguous, mainly when l = 2n, k = 1 or when l = k + 1.
For that reason, we refer the reader to the proof of Theorem 3.2 in order
to avoid any ambiguity. Now, we specialize Theorem 3.2 to ak = S for all
1 ≤ k ≤ n so that f2n = sn and consider n ≥ 2 (for n = 1, the result is
derived for instance from [BL, p. 923]). Since both indices k, l in the first
(resp. second) sum in Theorem 3.2 have the same (resp. different) parity, it
follows that k and l+ 1 in the second (resp. first) sum have the same (resp.
different) parity and so do l and k + 1. Accordingly, the first sum does not
contain terms f0(·, t) while the second does: they correspond to the indices
l = 2n, k = 1 and to l = k + 1, 1 ≤ k ≤ 2n− 1. Since S2 = 1 and since τ is
a trace, the contribution of the indices k = 1, l = 2n is

κ2ent.

For l = k + 1, 1 ≤ k ≤ 2n − 1, we distinguish between two cases: the
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contribution of 1 ≤ k ≤ 2n− 2 is

(2n− 2)κ2ent,

while that of k = 2n − 1, l = 2n is κ2ent. Thus, the whole contribution of
the indices k = 1, l = 2n and of 1 ≤ k ≤ 2n− 1, l = k + 1 is

(3.1) 2nκ2ent.

Next we write l = k+2s+1 for positive integer values of s and we distinguish
between n = 2 and n ≥ 3. If n = 2 then there is no additional term in the
second sum, while if n ≥ 3 we separate k = 1 and 2 ≤ k ≤ 2n − 3. By
the same properties of a, τ mentioned above, the contribution of k = 1,
l = 2s+ 2, 1 ≤ s ≤ n− 2 is

(3.2) (n− 2)κ2ent.

For the remaining values of 2 ≤ k ≤ 2n − 3, we distinguish even from odd
k’s: the contribution of the indices k = 2j, 1 ≤ j ≤ n− 2, l = 2j + 2s+ 1 is

(3.3)
n−2∑
j=1

n−j−1∑
s=1

κ2ent = κ2ent
(n− 1)(n− 2)

2
,

while for k = 2j + 1, 1 ≤ j ≤ n− 2, l = 2s+ 2j + 2 we distinguish between
1 ≤ s ≤ n− j − 2 and s = n− j − 1. When 1 ≤ s ≤ n− j − 2 we get

(3.4)

n−2∑
j=1

n−j−2∑
s=1

κ2ent = κ2ent
(n− 2)(n− 3)

2
,

while for s = n− j − 1 we get

(3.5)
n−2∑
j=1

κ2ent = (n− 2)κ2ent.

Coming to the first sum in the statement of the theorem, its contribution
is the same as in [DHH, Lemma 1]:

(3.6) − n
n−1∑
k=1

sn−k(t)sk(t).

The proposition is proved by summing (3.1)–(3.5).

3.2. Dynamics of the Herglotz transform. Here, we transform the
time-dependent recursive relation into a pde governing the Herglotz trans-
form z 7→ H(t, z) of µt. Recall that

H(t, z) =
�

T

w + z

w − z
dµt(w)
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and that the moments

rn(t) = τ [(SYtSY
?
t )n], n ≥ 1,

are the coefficients of the expansion of H(t, ·) as an analytic function (µt is
invariant under conjugation):

H(t, z) = 1 + 2
∑
n≥1

rn(t)zn, |z| < 1.

Using Proposition 3.1, we readily get:

Proposition 3.3. The Herglotz transform H satisfies the equation

(3.7) ∂tH +
z

2
∂zH

2 = 2κ2
z(1 + z)

(1− z)3
, H(0, z) =

1 + z

1− z
, |z| < 1.

Proof. Elementary computations show that the sequence (rn(t))n≥1 sat-
isfies

∂tr1(t) = −r1(t) + κ2,

∂trn(t) = −nrn(t)− n
n−1∑
j=1

rj(t)rn−j(t) + κ2n2, n ≥ 2.

Since |rn(t)| ≤ 1 we have |∂trn(t)| ≤ Cn2, n ≥ 1, for some positive constantC.
Thus we can interchange differentiation and summation, which leads to

∂tH = 2
∑
n≥1

∂trn(t)zn

= 2κ2
∑
n≥1

n2zn − 2
∑
n≥1

nrn(t)zn − 2
∑
n≥2

n
n−1∑
j=1

rj(t)rn−j(t)z
n

= 2κ2
z(1 + z)

(1− z)3
− z∂zH − 2

∑
j≥1

rj(t)z
j
∑
n≥j+1

nrn−j(t)z
n−j

= 2κ2
z(1 + z)

(1− z)3
− z∂zH − 4

H − 1

2

∑
j≥1

jrj(t)z
j

= 2κ2
z(1 + z)

(1− z)3
− zH∂zH.

Remark 3.4. Equation (3.7) is a nonhomogeneous Burgers equation. It
allows one to retrieve the expression of H∞ already obtained in the previous
section. Indeed, any stationary solution of (3.7) is a solution of ∂tH = 0,
that is, H(t, z) = H(z) solves the first-order ordinary differential equation

∂z(H
2) = 4κ2

1 + z

(1− z)3
.

After integrating and taking into account H(0) = 1, we get

H2(z) = 4κ2
z

(1− z)2
+H2(0) = H2

∞(z).
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4. Properties of Herglotz transform. In this section we intend to
solve (3.7) by using the method of characteristics which transforms this pde
into two coupled ordinary differential equations. As an application we shall
give the explicit values of the weights µt{±1} and νt{±1}.

4.1. Resolution of the Burgers equation. We shall prove that the
dynamics of the Herglotz transform H(t, ·) is completely determined around
the origin z = 0 by its initial value H(0, ·), the long-time behavior H∞
and some explicit curves {z 7→ ψ(t, z)} called characteristics. To make the
computations easier, we first use the Möbius transform

z 7→ y =
1 + z

1− z
,

which realizes a one-to-one map between the open unit disc and the right
half-plane {Re z > 0}. Indeed, this transform replaces the fraction on the
RHS of (3.7) by a cubic polynomial. To see this, set

F (t, y) , H(t, z), y =
1 + z

1− z
.

Then F satisfies the equation

(4.1) ∂tF +
1

4
(y2 − 1)∂yF

2 =
κ2

2
y(y2 − 1), F (0, y) = y.

Observe that after this change of variable, the stationary solution H∞ reads

H∞(z) , F∞(y) =
√

(1− κ2) + κ2y2.

The description of the solution of (4.1) will be the subject of the next the-
orem, but first we introduce the functions

a , κ2 + (1− κ2)y2, α−1(z) =
4z

(1 + z)2
, ξt(u) =

u− 1

u+ 1
etu.

Recall that α−1 is the inverse of α (see the proof of Lemma 2.1) and ξt is the
inverse of the Herglotz transform of the spectral distribution of Y2t [Bi2].

Theorem 4.1. Let F be the solution of the nonlinear equation (4.1).
Then

(4.2) F (t, φ(t, y)) =
√
κ2φ2(t, y) + (1− κ2)y2

with

φ(t, y) =
1√

1− a
a−κ2α

−1(ξt(
√
a))

, y ∈
(

0,

(
u2t − κ2

1− κ2

)1/2)
,

where ut > 1 is the unique solution of the equation

ξt(u) =
u− |κ|
u+ |κ|

·
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In the z-configuration this reads

(4.3) H(t, ψ(t, z)) =

√
κ2φ2

(
t,

1 + z

1− z

)
+ (1− κ2)

(
1 + z

1− z

)2

with

ψ(t, z) = α

(
a

a− κ2
α−1(ξt(

√
a))

)
, z =

y − 1

y + 1
∈ (−1, zt),

and zt ∈ (0, 1) is defined by

ut =

√
(1− κ2)

(
1 + zt
1− zt

)2

+ κ2.

In addition, we have ψ(t, zt) = 1.

Before going into the details of the proof, some remarks are in order.

Remarks.

• We can easily check the validity of (4.2) and (4.3) at t = 0.
• Observe that φ(0, y) = y so that (4.2) can be rewritten in the form

F̃ (t, φ(t, y)) = F̃ (0, y), F̃ (t, y) , F (t, y)− κ2y2.

This means that F̃ is constant along characteristics.
• Keeping in mind the expressions for H∞ and H(0, ·), (4.3) is easily

seen to be equivalent to (1.2).

Proof of Theorem 4.1. Let φ be the solution of the ordinary differential
equation (hereafter ODE)

(4.4) ∂tφ = 1
2(φ2 − 1)F (t, φ), φ(0, y) = y.

Since the Herglotz transform is analytic inside D, the function F should be
also analytic in the half-plane {Re y > 0}. Thus one can for example use the
Cauchy–Lipschitz theorem to deduce the local well-posedness for this ODE.
Now differentiating the function F1 : (t, y) 7→ F (t, φ(t, y)) with respect to t
yields

∂tF1(t, y) = 1
2κ

2φ(t, y)(φ2(t, y)− 1).

Consequently, solving the pde (4.1) reduces to the study of two coupled
ODEs:

(4.5)


∂tφ = 1

2(φ2 − 1)F1,

∂tF1 = 1
2κ

2φ(φ2 − 1),

φ(0, y) = y, F1(0, y) = y.

It is clear that (4.5) entails

F1∂tF1 − κ2φ∂tφ = 0.
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Hence, integrating with respect to t yields (4.2):

F 2
1 (t, y)− κ2φ2(t, y) = (1− κ2)y2,

which in turn leads to

(4.6)

{
∂tφ = 1

2(φ2 − 1)
√

(1− κ2)y2 + κ2φ2,

φ(0, y) = y.

Now, we shall solve (4.6) for fixed y > 0, which is equivalent to z ∈ (−1, 1).
First, observe that φ(t, y) = ±1 are stationary solutions of (4.6) for any κ,
and by uniqueness of solution of (4.6), we deduce that if 0 < y < 1 then φ
is global in time and (2)

|φ(t, y)| < 1, ∀t ∈ R+.

More precisely, assume for instance that there exist T > 0 and 0 < y < 1
such that φ(T, y) = 1. Then φ and the constant function t 7→ 1 solve the
Cauchy problem corresponding to the data φ(T, y) = 1. Necessarily, φ = 1,
which contradicts 0 < y < 1. As a matter of fact, t 7→ φ(t, y) is nonincreasing
and crosses the right half-plane with limit −1 as t→∞. Similar arguments
show that

y > 1 ⇒ φ(t, y) > 1, ∀t ∈ ]0, T ?[.

Next, we need to compute the indefinite integral

2
� dx

(1− x2)
√

(1− κ2)y2 + κ2x2

for real positive x (which is equivalent to φ ∈ (−1, 1)). First, we perform
the change of variable u = 1− x2 ∈ (−∞, 1) to transform the integral to

−
� du

u
√
a− bu+ cu2

where we set

a = (1− κ2)y2 + κ2,

b = 2κ2 + (1− κ2)y2,
c = κ2.

Note that b2 − 4ac = (1− κ2)2y4 and that the roots of a− bu+ cu2 = 0 lie
in [1,∞]. Next, we perform the change of variable

√
a(1− vu) =

√
a− bu+ cu2

and we easily get

u =
2av − b
av2 − c

, du = −2a
av2 − bv + c

(av2 − c)2
dv.

(2) If y = 1 then φ ≡ 1.



SPECTRAL DISTRIBUTION 285

As a result,

� du

u
√
a− bu+ cu2

= 2
√
a
� dv

2av − b
=

1√
a

ln

∣∣∣∣2a− bu− 2
√
a
√
a− bu+ cu2

u

∣∣∣∣.
But u < 1 so that 2a− bu > 2a− b = (1− κ2)y2 > 0 and

(2a− bu)2 − 4a(a− bu+ cu2) = (b2 − 4ac)u2 > 0.

Consequently,

� du

u
√
a− bu+ cu2

=
1√
a

ln
2a− bu− 2

√
a
√
a− bu+ cu2

|u|

and if U(t, y) , 1− φ2(t, y), then

1√
a

ln
2a− bU(t, y)− 2

√
a
√
a− bU(t, y) + cU2(t, y)

|U(t, y)|
= t+A

for some A = A(y, κ). Equivalently,

2a− bU(t, y)− 2
√
a
√
a− bU(t, y) + cU2(t, y)

|U(t, y)|
= λe

√
at

where λ = e
√
aA. Writing this equality as

2a− [b+ ελe
√
at]U(t, y) = 2

√
a
√
a− bU(t, y) + cU2(t, y)

and squaring we get

(4.7)
(
(b+ ελe

√
at)2 − 4ac

)
U(t, y) = 4a(b+ ελe

√
at)− 4ab = 4εaλe

√
at,

ε ∈ {−1, 1} being the sign of U. From the observation made before, the sign
of U does not change in time. To find the value of λ we check the preceding
equation for t = 0:

λ2 + 2ε

(
b− 2a

1− y2

)
λ+ b2 − 4ac = 0.

• Case y2 ≤ 1. This corresponds to ε = 1 and the above equation be-
comes

(4.8) λ2 + 2

(
b− 2a

1− y2

)
λ+ b2 − 4ac = 0.

The discriminant of this polynomial is

∆ =
16a

(1− y2)2
(
a− b(1− y2) + c(1− y2)2

)
=

16ay2

(1− y2)2
(b− 2c+ cy2) =

16ay4

(1− y2)2
.
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Therefore the only solution of (4.8) which is not singular at y = 1 is

λ = −b+
2a

1− y2
− 2y2

√
a

1− y2
= −b+ 2 +

2(a− 1)

1− y2
− 2y2(

√
a− 1)

1− y2

= −b+ 2κ2 + 2(1− κ2) y2

1 +
√
a

= (1− κ2)y2
(
−1 +

2

1 +
√
a

)
=

(1− κ2)2y2

(1 +
√
κ2 + (1− κ2)y2)2

(1− y2).

• Case y2 ≥ 1. Reproducing the same computation yields

λ =
(1− κ2)2y2

(1 +
√
κ2 + (1− κ2)y2)2

(y2 − 1).

Hence in both cases we get

ελ =
(1− κ2)2y2

(1 +
√
κ2 + (1− κ2)y2)2

(1− y2).

Finally, (4.7) yields

U(t, y) =
4aλe

√
at

(b+ λe
√
at)2 − 4ac

= 1− φ2(t, y)

where we have performed the change ελ→ λ.

We shall now give compact formulae for φ and ψ. To this end, write

φ2(t, y) = 1− 4aλe
√
at

(a+ κ2 + λe
√
at)2 − 4κ2a

=
(κ2 − a+ λe

√
at)2

(κ2 − a+ λe
√
at)2 + 4aλe

√
at

and

λ =
(1− a)(a− κ2)

(1 +
√
a)2

.

Hence, for any κ ∈ (−1, 1) we get

φ2(t, y) =
(1 + ξt(

√
a))2

(ξt(
√
a) + 1)2 − 4 a

a−κ2 ξt(
√
a)

=
1

1− a
a−κ2α

−1(ξt(
√
a))

.

Accordingly, the domain of definition of φ in {y > 0} is submitted to the
constraint

α−1(ξt(
√
a)) <

a− κ2

a
·

Since α is nondecreasing in (−∞, 1), the last inequality reduces to

(4.9) ξt(
√
a) < α(1− κ2/a) =

√
a− |κ|√
a+ |κ|

·
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But the variations of the functions ξt and u 7→ (u− |κ|)(u+ |κ|) show that
the equation

ξt(u) =
u− |κ|
u+ |κ|

has a unique positive solution ut > 1. Thus the inequality (4.9) is satisfied
provided that

√
a < ut and we obtain the formula

φ(t, y) =
1√

1− a
a−κ2α

−1(ξt(
√
a))

.

Finally, the condition
√
a < ut is equivalent to 0 < y <

√
(u2t − κ2)/(1− κ2)

and the expression for ψ follows from elementary computations.

Remark 4.2. From the recursive relation satisfied by rn(t) and the in-
equality |rn(t)| ≤ 1 , we readily see that |r′n(t)| ≤ 2n2, which implies that
the map t 7→ H(t, z) is C1. More generally, one proves for each k ≥ 1, using

the Leibniz rule, that |r(k)n (t)| ≤ c(k)n2k, n ≥ 1, for some constant c(k) de-
pending only on k and such that c(k + 1) ≥ c(k). Thus t 7→ H(t, z) is even
an analytic map and the Cauchy–Kowalevski Theorem applies to (4.4).

We close this section with the following discussion about the monotonic-
ity of the lifespans of the solutions to (4.6) with respect to the initial data.

Proposition 4.3. Let 1 < y1 < y2 and denote by T ?i the lifespan of the
trajectory t 7→ φ(t, yi). Then T ?2 ≤ T ?1 and

1 < φ(t, y1) < φ(t, y2), ∀t ∈ [0, T ?2 [.

Proof. Let t 7→ φi(t) be the trajectory associated to yi. Then φi > 1 and

(4.10)

dφi
dt = 1

2(φ2i − 1)
√

(1− κ2)y21 + κ2φ2i ,

φ2(0) > φ1(0).

Assume now that φ1 and φ2 intersect at some (first) time T . Then

∀t ∈ [0, T [, φ1(t) < φ2(t), and φ1(T ) = φ2(T ),

which implies from (4.10) that φ′2(T ) = φ′1(T ), and using the backward
uniqueness of the Cauchy problem we conclude that the functions φ1 and
φ2 must agree everywhere in [0, T ], which is a contradiction. Hence, the two
trajectories do not intersect and the inequality T ?2 ≤ T ?1 follows from the
blow up criterion.

4.2. Computing µt{1} and νt{1}. To compute µt{1} and νt{1}, we
need the following lemma which gives the limit of the RHS of (1.1) as n→∞.
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Lemma 4.4. The following assertions hold true:

• Let φ ∈ [0, 2π]. Then

1

22n

n∑
k=1

(
2n

n− k

)
(eikφ + e−ikφ) = cos2n(φ/2)− 1

22n

(
2n

n

)
.

• Let µ be a probability distribution on the unit circle T. Then

lim
n→∞

1

22n

n∑
k=1

(
2n

n− k

) �

T

(zk + zk)µ(dz) = µ({1}).

• Recall the spectral distribution µt of the unitary operator SYtSY
?
t .

Then

lim
n→∞

τ [(PYtPY
?
t )n] =

1

2
[2θ − 1 + µt({1})].

Proof. • Using the fact that
(

2n
n−k
)

=
(

2n
n+k

)
we write

n∑
k=1

(
2n

n− k

)
(eikφ + e−ikφ) =

n∑
k=1

(
2n

n− k

)
eikφ +

−1∑
k=−n

(
2n

n+ k

)
eikφ

=
n∑

k=−n

(
2n

n+ k

)
eikφ −

(
2n

n

)

= e−inφ
2n∑
k=0

(
2n

k

)
eikφ −

(
2n

n

)

= 22n cos2n(φ/2)−
(

2n

n

)
.

• Identifying µ with its image under the map z 7→ arg(z) ∈ (−π, π] we
readily get

1

22n

n∑
k=1

(
2n

n− k

) �

T

(zk + zk)µ(dz) =
1

22n

n∑
k=1

(
2n

n− k

) π�

−π
(eikφ + e−ikφ)µ(dφ)

=

π�

−π
cos2n(φ/2)µ(dφ)− 1

22n

(
2n

n

)
.

The result follows from the Stirling formula

lim
n→∞

1

22n+1

(
2n

n

)
= lim

n→∞

1√
πn

= 0

and from the Lebesgue convergence theorem.
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• Due to the trace property of τ , the spectral distributions of SYtSY
?
t

and of Y ?
t SYtS coincide so that µt is invariant under z 7→ z. Hence

2
�

T

zk µt(dz) =
�

T

(zk + zk)µt(dz),

and the desired limit follows from (1.1).

Corollary 4.5. For any t > 0,

lim
z→1−

(1− z)H(t, z) = 2|κ|.

Consequently,

νt{1} =
1

2θ
[2θ − 1 + |κ|] =

1

θ
max{2θ − 1, 0}.

Proof. Fix t > 0. There exists zt ∈ (0, 1) such that ψ(t, zt) = 1 or
equivalently there exists yt = (1 + zt)/(1− zt) > 1 such that

lim
y→y−t

φ(t, y) =∞.

We deduce from Proposition 4.3 that the lifespan of the trajectory starting
at y ∈ ]1, yt[ is larger than the lifespan t of the trajectory φ(·, yt). Keeping
in mind F (t, y) = H(t, z), we get

lim
z→1−

(1− z)H(t, z) = 2 lim
y→∞

F (t, y)

y
= 2 lim

y→y−t

F (t, φ(t, y))

φ(t, y)
.

But formula (4.2) entails

lim
y→y−t

F 2(t, φ(t, y))

φ2(t, y)
= κ2,

whence we deduce

lim
z→1−

(1− z)H(t, z) = 2|κ|.

Now, it is a general fact that the discrete part of µt corresponds exactly to
the poles of H(t, ·). Moreover, the weight that µt assigns to a given pole
can be recovered using radial limits [CMR]. In particular, µt{1} = |κ| and
νt{1} follows from the last assertion of Lemma 4.4 after normalizing (1.1)
by 1/τ(P ) = 1/θ since

lim
n→∞

1

τ(P )
τ [(PYtPY

?
t )n] = lim

n→∞

1�

0

xn νt(dx) = νt{1}.

4.3. Relating µt{0} and νt{−1}. The relation between µt{1} and
νt{0} was established using (1.1). Imitating the computations in the proof
of Lemma 2.1, we find that this binomial-type expansion relates as well the



290 N. DEMNI AND T. HMIDI

moment generating function of νt to Ht. To see this, set

mn(t) ,
1

τ(P )
τ((PYtPY

?
t )n) =

1�

0

xn νt(dx),

Mt(z) ,
∑
n≥0

mn(t)zn, |z| < 1.

Using (1.1) and similar computations to those leading to (2.2), we find the
identity

(4.11) Mt(z) =
1

(1 + τ(S))
√

1− z

[
Ht(α(z)) +

τ(S)√
1− z

]
.

Note that since α is conformal from C \ [1,∞) onto the open disc D, (4.11)
entails that Mt admits a holomorphic extension to C\ [1,∞). Now we relate
νt{0} and µt{1} as follows.

Proposition 4.6. Let

Gt(z) ,
1

z
Mt

(
1

z

)
=

1�

0

1

z − x
νt(dx), z ∈ C \ [0, 1],

be the Cauchy–Stieltjes transform of νt. Then

νt{0} = − lim
h→0+

Im[hGt(ih)] =
1

1 + τ(S)
µt{−1} = 0.

Proof. By the very definition of Gt and from (4.11), it follows that

− lim
h→0+

Im[hGt(ih)] = lim
h→0+

Re

[
Mt

(
1

ih

)]
=

1

(1 + τ(S))
lim
h→0+

Re

[
Ht(α(1/(ih)))√

1− 1/(ih)

]
.

But
Ht(α(z))√

1− z
=

1 + α(z)

1− α(z)
Ht(α(z))

and

α(1/(ih)) = i(
√
h−
√
h+ i)2 = 2ih− 1− 2i

√
h
√
h+ i

tends (nontangentially) to −1, which yields

lim
h→0+

|1 + α(1/(ih))|
1− |α(1/(ih))|

=
√

2.

Now
1

|ζ − α(1/(ih))|
≤ 1

1− |α(1/(ih))|
, |ζ| = 1,
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shows that

h 7→ ζ + α(1/(ih))

ζ − α(1/(ih))

is bounded for small positive values of h. Hence, the Lebesgue convergence
theorem implies

lim
h→0+

1 + α(1/(ih))

1− α(1/(ih))
Ht(α(1/ih)) = µt{−1},

and consequently

− lim
h→0+

Im[hGt(ih)] =
1

1 + τ(S)
µt{−1}.

Finally, the expression for ψ readily shows that

lim
z→−1+

ψ(t, z) = −1.

For any t > 0, since

2µt{−1} = lim
z→−1+

(1 + z)Ht(z),

(1.2) leads to µt({−1}) = 0, and the proposition is proved.

5. End of the proof of Theorem 1.1. So far, we have determined the
discrete part of the Lebesgue decomposition of νt relying on both (1.1) and
(1.2). In this section, we prove the second statement of Theorem 1.1 which
provides the partial description of the density of νt. From Fatou’s theorem
for harmonic functions on the upper half-plane [Don], this is given by

− 1

π
lim
y→0+

Im[Gt(x+ iy)]

whenever the distribution function of νt is differentiable at x ∈ [0, 1]. But
(4.11) shows that for any x ∈ (0, 1),

− lim
y→0+

Im[Gt(x+ iy)] =
1√

x(1− x)
lim
y→0+

Re{Ht[α(1/(x+ iy))]}

=
1√

x(1− x)
lim
y→0+

{Re[Ht]}[α(1/(x+ iy))].

Now we need to investigate how α(1/(x+iy)) approaches α(1/x) as y → 0+.
This is summarized in the following lemma:

Lemma 5.1. For any x ∈ [0, 1], α(1/(x+ iy))→ α(1/x) nontangentially
as y → 0+.

Proof. Let x ∈ [0, 1]. Then the statement is equivalent to the argument
of the complex number

1− α(1/(x+ iy))

α(1/x)
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being in ]−π/2, π/2[ for small positive values of y. Hence, it suffices to com-
pute the derivative at y = 0 of the curve

y 7→ 1− α(1/(x+ iy))

α(1/x)
.

But (2.3) shows again that the sought derivative equals

i

x2
1

α(1/x)
α′(1/x) =

1√
x(1− x)

,

therefore it is real positive. The lemma is proved.

According to this lemma, Re[Ht] has a nontangential limit along the
curve y 7→ α(1/(x + iy)) at any point x ∈ (0, 1) where the density of νt
exists. By [BV, Lemma 5.11], Re[Ht] tends nontangentially to α(1/x) at
any such x. Finally, the density of νt is given for all x ∈ (0, 1) by

− lim
y→0+

Im[Gt(x+ iy)] =
1√

x(1− x)
{Re[Ht]}[α(1/x)]

=
1√

x(1− x)
{Re[Ht]}[ei arccos(2x−1)]

=
1√

x(1− x)
{Re[Ht]}[ei2 arccos(

√
x)].

The proof of Theorem 1.1 is complete.

Remarks. 1. The main result proved in [Don] shows that the symmetric
derivative of the distribution function of µt exists and is finite at any x where
the distribution function of νt is differentiable.

2. Unfortunately, we have not been able to prove the extension of ψ(t, ·)
to the unit circle when κ 6= 0. When κ = 0 ⇔ τ(P ) = 1/2, Ht has a
continuous extension to the closed unit disc for any time t > 0 [Bi2] and one
retrieves the description of νt derived in [DHH].

6. Analysis of the moments. Since we do not have at our disposal an
explicit expression of the moments rn(t), we perform an analysis of the term
corresponding to the fastest decay e−nt. To proceed, set c , κ2 = [τ(S)]2

and recall from Proposition 3.1 that sn(t) = entrn(t), n ≥ 1, satisfy

∂tsn(t) = −n
n−1∑
j=1

sj(t)sn−j(t) + cn2ent,

s1(t) = cet + (1− c).
When c = 0, we already know that [DHH]

sn(t) =
1

n
L
(1)
n−1(2nt)
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where L
(1)
n is the nth Laguerre polynomial [Ra]. For general c ∈ (0, 1), it is

easy to see by induction that

sn(t) = Pn(t) +

n∑
k=1

ekt × polynomial of degree k − 1,

where Pn(t) ≡ Pn(c, t) is a polynomial in t of degree n − 1 and depending
on c. Now, observe that compared to the equation satisfied by sn(t) when
c = 0, the deformation comes with the factor ent. As a matter of fact, the
polynomials Pn(t), n ≥ 1, still satisfy

∂tPn(t) = −n
n−1∑
k=1

Pj(t)Pn−j(t), n ≥ 2,

P1(t) = 1− c.

However, one needs to compute Pn(0) in order to determine the polynomials
Pn(t), n ≥ 2. We shall see that while Pn(0) = sn(0) = 1 when c = 0, Pn(0)
changes drastically when c ∈ (0, 1). Indeed, expand sn(t) as [NS, Theorem
14.4]

sn(t) = entτ((SYtSY
?
t )n)

= ent
∑

π∈NC(2n)

cπ(S, . . . , S)mK(π)(Yt, Y
?
t , . . . , Yt, Y

?
t ).

Here NC(2n) is the lattice of noncrossing partitions of size 2n, K(π) ∈
NC(2n) denotes the Kreweras complement of π, cπ(S, . . . , S) is the free
cumulant of the 2n-tuple (S, . . . , S) associated with π, and mK(π) is the
mixed moment of the 2n-tuple (Yt, Y

?
t , . . . , Yt, Y

?
t ) [NS, Chapter XI]. But

since the polynomial Pn comes without any exponential factor, we only need
to focus exactly on partitions π ∈ NC(2n) whose Kreweras complement
K(π) is non-parity-alternating, that is, each block of K(π) lies either in
{1, 3, . . . , 2n−1} or in {2, 4, . . . , 2n} (we identify K(π) ≈ {1, . . . , 2n}). More
precisely, the kth moment of Yt is given by (see [Bi1])

e−kt/2
1

k
L
(1)
k−1(kt), k ≥ 1,

so that the polynomial Pn corresponds to mK(π) for which there is no cancel-
lation between Y and Y ?. According to [NS, Exercise 9.42, pp. 153–154], the
partition π runs over the set NCE(2n) of noncrossing even partitions (each
block of π has an even number of elements). Moreover, since the constant
term of

1

k
L
(1)
k−1(kt)
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equals 1 for any k ≥ 1, we end up with

Pn(0) =
∑

π∈NCE(2n)

cπ(S, . . . , S).

We can write this sum as

Pn(0) =
∑

π∈NC(2n)

1

2|π|
cπ(a1 − a2, . . . , a1 − a2)

where a1, a2 ∈ A are two free copies of S and |π| is the number of blocks
of π. Indeed, by freeness of a1 and a2 and multilinearity of free cumulants,
one has

cV (a1 − a2, . . . , a1 − a2) = cV (a1, . . . , a1) + cV (−a2, . . . ,−a2)

for any block V ∈ π, whence the equality follows. This new way of expressing
Pn(0) hints at the even moments of the 1/2-fold free convolution of the
spectral distribution of a1 − a2 [NS]. Note that if c = 0 then a1, a2,−a2 are
distributed according to the symmetric Bernoulli distribution

1
2 [δ1 + δ−1],

hence the 1/2-fold free convolution of the spectral distribution of a1 − a2 is
still the symmetric Bernoulli distribution. Accordingly, we retrieve Pn(0, 0):

Pn(0) =
�
x2n

1

2
[δ1 + δ−1](dx) = 1.

However, when c 6= 0 the situation becomes rather cumbersome: the spectral
distribution of a1 is given by

θδ1 + (1− θ)δ−1,

while that of −a2 is given by

(1− θ)δ1 + θδ−1.

Equivalently, the R-transform of a1 reads

Ra1(u) =

√
1 + 4u(u+ κ)− 1

2u
,

while that of −a2 reads

R−a2(u) =

√
1 + 4u(u− κ)− 1

2u

near u = 0. It follows that the R-transform of the 1/2-fold free convolution
of a1 − a2 is given by

Ra1−a2(u) =
1

2
[Ra1(u)+R−a2(u)] =

√
1 + 4u(u+ κ) +

√
1 + 4u(u− κ)− 2

4u
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and that its K-transform is given by

Ka1−a2(u) , Ra1−a2(u) +
1

u
=

√
1 + 4u(u+ κ) +

√
1 + 4u(u− κ) + 2

4u
.

Inverting K (in composition sense) leads to the cubic polynomial equation

u3 − h1(v)y2 + h2(v)y − h3(v) = 0,

where

h1(v) =
2v2 − 1

v(v2 − 1)
,

h2(v) =
5v2 + c− 1

4v2(v2 − 1)
,

h3(v) =
1

4v(v2 − 1)
.

After elementary transformations, we can express the solutions of this equa-
tion through Gauss hypergeometric functions 2F1 [Hi, pp. 265–266].
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