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Abstract. Starting from an arbitrary ring R we provide a systematic construction
of Z/nZ-graded rings A which are Frobenius extensions of R, and show that under mild
assumptions, A is an Auslander–Gorenstein local ring if and only if so is R.

1. Introduction. Although commutative Gorenstein local rings have
been studied extensively (see e.g. [Ma]), there is a lack of study of Auslander–
Gorenstein local rings, the class of which contains commutative Gorenstein
local rings. This is because we know very few examples of Auslander–
Gorenstein local rings which are not commutative, despite the fact that
Auslander–Gorenstein rings appear in various fields of current research in
mathematics. For instance, regular 3-dimensional algebras of type A in the
sense of Artin and Schelter, Weyl algebras over fields of characteristic zero,
enveloping algebras of finite-dimensional Lie algebras and Sklyanin algebras
are Auslander–Gorenstein rings (see [ATV], [Bj1], [Bj2] and [TV], respec-
tively).

In this note, starting from an arbitrary Auslander–Gorenstein local ring
we will provide a systematic construction of Auslander–Gorenstein local
rings as Frobenius extensions, a notion we recall in Section 1.

We fix a set of integers I = {0, 1, . . . , n − 1} with n ≥ 2, and a cyclic
permutation

π =

(
0 1 · · · n− 1

1 2 · · · 0

)
of I. Note that the law of composition I × I → I, (i, j) 7→ πj(i), makes I
into a cyclic group with 0 the unit element. Note also that if A = F [X]
is the polynomial ring in one variable X over a ring F , and R = F [Xn]
is a subring of A, then A can be considered as an I-graded ring over R.
In this note, starting from an arbitrary ring R, we provide a systematic
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way to construct I-graded rings A so that the ring extensions A/R are split
Frobenius extensions of second kind. Namely, we will define an appropriate
multiplication on a free right R-module A with a basis {ei}i∈I using the
following two data: certain pairs (q, χ) of an integer q and a mapping χ :
I → Z; and certain triples (σ, c, t) of σ ∈ Aut(R) and c, t ∈ R. Our main
results state that if either t ∈ rad(R), or c ∈ rad(R) and nχ(i) > iq for all
i 6= 0, then A is an Auslander–Gorenstein local ring if and only if so is R
(Theorems 3.6 and 3.7). Also, in the final section, we will provide a way to
obtain every pair (q, χ) mentioned above.

2. Preliminaries. For a ring R we denote by rad(R) the Jacobson
radical of R, by R× the set of units in R, by Z(R) the center of R, by
Aut(R) the group of ring automorphisms of R, for σ ∈ Aut(R) by Rσ the
subring of R consisting of all x ∈ R with σ(x) = x, and for n ≥ 2 by Mn(R)
the ring of n×n matrices over R. We denote by Mod-R the category of right
R-modules. Left R-modules are considered as right Rop-modules, where Rop

denotes the opposite ring of R. In particular, we denote by inj dimR (resp.,
inj dimRop) the injective dimension of R as a right (resp., left) R-module,
and by HomR(−,−) (resp., HomRop(−,−)) the set of homomorphisms in
Mod-R (resp., Mod-Rop).

We start by recalling the notion of Auslander–Gorenstein ring.

Proposition 2.1 (Auslander; see e.g. [FGR, Theorem 3.7]). Let R be
a right and left noetherian ring. Then for any n ≥ 0 the following are
equivalent:

(1) In a minimal injective resolution I• of R in Mod-R, flat dim Ii ≤ i
for all 0 ≤ i ≤ n.

(2) In a minimal injective resolution J• of R in Mod-Rop, flat dimJ i ≤ i
for all 0 ≤ i ≤ n.

(3) For any 1 ≤ i ≤ n + 1, any M ∈ mod-R and any submodule X of

ExtiR(M,R) ∈ mod-Rop we have ExtjRop(X,R) = 0 for all 0 ≤ j < i.
(4) For any 1 ≤ i ≤ n+ 1, any X ∈ mod-Rop and any submodule M of

ExtiRop(X,R) ∈ mod-R we have ExtjR(M,R) = 0 for all 0 ≤ j < i.

Definition 2.2 ([Bj2]). A right and left noetherian ring R is said to
satisfy the Auslander condition if it satisfies the equivalent conditions in
Proposition 2.1 for all n ≥ 0, and to be an Auslander–Gorenstein ring if it
satisfies the Auslander condition and inj dimR = inj dimRop <∞.

It should be noted that for a right and left noetherian ring R we have
inj dimR = inj dimRop whenever inj dimR < ∞ and inj dimRop < ∞ (see
[Za, Lemma A]).
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Next, we recall the notion of Frobenius extensions of rings due to Naka-
yama and Tsuzuku [NT1, NT2], which we modify as follows (cf. [AH, HKK]).

Definition 2.3 ([HKK]). A ring A is said to be an extension of a ring
R if A contains R as a subring, and the notation A/R is used to denote that
A is an extension ring of R. A ring extension A/R is said to be Frobenius if
the following conditions are satisfied:

(F1) A is finitely generated as a left R-module;
(F2) A is finitely generated projective as a right R-module;
(F3) A ∼= HomR(A,R) as right A-modules.

Proposition 2.4 ([HKK]). Let A/R be a ring extension, and let φ :
A
∼→ HomR(A,R) be an isomorphism in Mod-A. Then:

(1) There exists a unique ring homomorphism θ : R → A such that
xφ(1) = φ(1)θ(x) for all x ∈ R.

(2) Let φ′ : A
∼→ HomR(A,R) be another isomorphism in Mod-A, and

let θ′ : R → A be the associated ring homomorphism such that
xφ(1) = φ(1)θ′(x) for all x ∈ R. Then there exists u ∈ A× such
that φ′(1) = φ(1)u and θ′(x) = u−1θ(x)u for all x ∈ R.

(3) φ is an isomorphism of R-A-bimodules if and only if θ(x) = x for
all x ∈ R.

Definition 2.5 (cf. [NT1, NT2]). A Frobenius extension A/R is said
to be of first kind if A ∼= HomR(A,R) as R-A-bimodules, and to be of
second kind if there exists an isomorphism φ : A

∼→ HomR(A,R) in Mod-A
such that the associated ring homomorphism θ : R → A induces a ring
automorphism θ : R

∼→ R. Note that a Frobenius extension of first kind is a
special case of a Frobenius extension of second kind.

Proposition 2.6 ([HKK, Proposition 1.6]). If A/R is a Frobenius ex-
tension of second kind, then A is projective as a left R-module.

Proposition 2.7 ([HKK, Proposition 1.7]). For any Frobenius exten-
sions Λ/A, A/R the following hold:

(1) Λ/R is a Frobenius extension.
(2) Assume Λ/A is of first kind. If A/R is of second (resp., first) kind,

then so is Λ/R.

Definition 2.8 ([AH]). A ring extension A/R is said to be split if the
inclusion R→ A is a split monomorphism of R-R-bimodules.

Proposition 2.9 ([HKK, Proposition 1.9]). For any Frobenius exten-
sion A/R the following hold:

(1) If R is an Auslander–Gorenstein ring, then so is A with inj dimA ≤
inj dimR.
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(2) Assume A is projective as a left R-module and A/R is split. If A is an
Auslander–Gorenstein ring, then so is R with inj dimR = inj dimA.

3. Construction. Throughout the rest of this note, we fix a set of
integers I = {0, 1, . . . , n− 1} with n ≥ 2, and a cyclic permutation

π =

(
0 1 · · · n− 1

1 2 · · · 0

)
of I. Note that the law of composition I × I → I, (i, j) 7→ πj(i), makes
I a cyclic group with 0 the unit element. Note also that if A = F [X] is
the polynomial ring in one variable X over a ring F , and R = F [Xn] is a
subring of A, then A can be considered as an I-graded ring over R. In the
following, we will provide a systematic construction of I-graded local rings
starting from an arbitrary local ring.

Throughout this section, we fix a pair (q, χ) of an integer q and a mapping
χ : I → Z satisfying the following conditions:

(X1) q− χ(n− j + i) ≤ χ(j)− χ(i) ≤ χ(j − i) for all i, j ∈ I with i < j;
(X2) χ(i) + χ(n− i− 1) = χ(n− 1) for all i ∈ I.

These are obviously satisfied if q ≤ n and χ(i) = i for all i ∈ I. We set

ω(i, j) =

{
χ(i) + χ(j)− χ(πj(i)) if i+ j < n,

χ(i) + χ(j)− χ(πj(i))− q if i+ j ≥ n,

for i, j ∈ I.

Lemma 3.1. The following hold:

(1) ω(i, j) ≥ 0 for all i, j ∈ I.
(2) ω(0, i) = ω(i, 0) = χ(0) = 0 for all i ∈ I.
(3) ω(i, n− i− 1) = 0 for all i ∈ I.

Proof. (1) If i + j < n, then setting j′ = i + j we have i, j′ ∈ I with
i < j′ and

ω(i, j) = χ(j′ − i)− {χ(j′)− χ(i)}.
If i+ j ≥ n, then setting i′ = i+ j − n we have i′, j ∈ I with i′ < j and

ω(i, j) = {χ(j)− χ(i′)} − {q − χ(n− j + i′)}.
Consequently, the assertion follows from (X1).

(2) By definition we have ω(0, i) = ω(i, 0) = χ(0), and by (X2), χ(0) = 0.
(3) Immediate by (X2).

In the following, we fix a ring R together with a triple (σ, c, t) of σ ∈
Aut(R) and c, t ∈ R satisfying the following condition:

(∗) c, t ∈ Rσ and xc = cσ(x), xt = tσq(x) for all x ∈ R.
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This is obviously satisfied if either σ = idR and c, t ∈ Z(R), or σ is arbitrary
and c = t = 0. Note also that ct = tc. As usual, we require c0 = 1 even if
c = 0.

Let A be a free right R-module with a basis {ei}i∈I , and {δi}i∈I the dual
basis of {ei}i∈I for the free left R-module HomR(A,R), i.e., a =

∑
i∈I eiδi(a)

for all a ∈ A. According to Lemma 3.1(1), we can define a multiplication on
A subject to the following axioms:

(M1) eiej = eπj(i)c
ω(i,j) if i+ j < n, and eiej = eπj(i)tc

ω(i,j) if i+ j ≥ n;

(M2) xei = eiσ
χ(i)(x) for all x ∈ R and i ∈ I.

We will see that A is an associative ring with 1 = e0, and the mapping

φ : A→ HomR(A,R), a 7→ δn−1a,

is an isomorphism in Mod-A with σχ(n−1)(x)φ(1) = φ(1)x for all x ∈ R.

Lemma 3.2. The following hold:

(1) For any a, b ∈ A we have

ab =
∑
i+j<n

eπj(i)c
ω(i,j)σχ(j)(δi(a))δj(b)

+
∑
i+j≥n

eπj(i)tc
ω(i,j)σχ(j)(δi(a))δj(b)

and δ0(ab) = δ0(a)δ0(b) +
∑

i 6=0 tc
ω(i,n−i)σχ(n−i)(δi(a))δn−i(b).

(2) For any a ∈ A and i, j ∈ I we have

δi(aej) =

{
cω(π

−j(i),j)σχ(j)(δπ−j(i)(a)) if i ≥ j,
tcω(π

−j(i),j)σχ(j)(δπ−j(i)(a)) if i < j.

Proof. (1) Straightforward.
(2) Obviously, the equality holds for j = 0. Let j 6= 0. For any a ∈ A

and k ∈ I we have

ekδk(a) · ej =

{
eπj(k)c

ω(k,j)σχ(j)(δk(a)) if k + j < n,

eπj(k)tc
ω(k,j)σχ(j)(δk(a)) if k + j ≥ n.

If k + j < n, then setting i = k + j we have

ei−jδi−j(a) · ej = eic
ω(i−j,j)σχ(j)(δi−j(a))

and δi(aej) = cω(i−j,j)σχ(j)(δi−j(a)). If k+ j ≥ n, then setting i = k+ j − n
we have

ei−j+nδi−j+n(a) · ej = eitc
ω(i−j+n,j)σχ(j)(δi−j+n(a))

and δi(aej) = tcω(i−j+n,j)σχ(j)(δi−j+n(a)).

In the following, we write

ei+kn = eit
k and χq(i+ kn) = χ(i) + kq
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for i ∈ I and k ∈ Z+, the set of non-negative integers, and define

ωq(k, l) = χq(k) + χq(l)− χq(k + l)

for k, l ∈ Z+. Obviously, χq|I = χ and ωq|I×I = ω. Also, it is not difficult to
check the following:

(a) eiej = ei+jc
ωq(i,j) for all i, j ∈ I;

(b) xek = ekσ
χq(k)(x) for all x ∈ R and k ∈ Z+;

(c) ωq(i, j) = χq(i) + χq(j)− χq(i+ j) for all i, j ∈ I;
(d) ωq(i+ j, k) + ωq(i, j) = ωq(i, j + k) + ωq(j, k) for all i, j, k ∈ I.

Proposition 3.3. The following hold:

(1) A is an associative ring with 1 = e0, and contains R as a subring
via the injective ring homomorphism R → A, x 7→ e0x, i.e., setting
Ai = eiR for i ∈ I, A =

⊕
i∈I Ai is an I-graded ring with A0 = R.

(2) φ is an isomorphism in Mod-A with σχ(n−1)(x)φ(1) = φ(1)x for all
x ∈ R, i.e., A/R is a split Frobenius extension of second kind.

Proof. (1) It follows from Lemma 3.1(2) that e0 · eix = eix = eix · e0 for
all i ∈ I and x ∈ R. Let i, j, k ∈ I and x, y, z ∈ R. By (a), (b) we have

(eix · ejy) · ekz = ei+jc
ωq(i,j)σχq(j)(x)y · ekz

= ei+j+kc
ωq(i+j,k)σχq(k)(cωq(i,j)σχq(j)(x)y)z

= ei+j+kc
ωq(i+j,k)cωq(i,j)σχq(k)+χq(j)(x)σχq(k)(y)z

= ei+j+kc
ωq(i+j,k)+ωq(i,j)σχq(k)+χq(j)(x)σχq(k)(y)z,

eix · (ejy · ekz) = eix · ej+kcωq(j,k)σχq(k)(y)z

= ei+j+kc
ωq(i,j+k)σχq(j+k)(x)cωq(j,k)σχq(k)(y)z

= ei+j+kc
ωq(i,j+k)cωq(j,k)σωq(j,k)(σχq(j+k)(x))σχq(k)(y)z

= ei+j+kc
ωq(i,j+k)+ωq(j,k)σωq(j,k)+χq(j+k)(x)σχq(k)(y)z.

It then follows from (c), (d) that (eix · ejy) · ekz = eix · (ejy · ekz). The last
assertion is obvious.

(2) It follows from (M2) that δix = σχ(i)(x)δi for all x ∈ R and i ∈ I. In
particular, {δi}i∈I is a basis for the right R-module HomR(A,R). Also, for
any i ∈ I, by Lemma 3.1(3), eien−i−1 = en−1 and hence δn−1ei = δn−i−1. It
follows that φ : A

∼→ HomR(A,R), a 7→ δn−1a, in Mod-A. Obviously, A is a
free left R-module with a basis {ei}i∈I . Thus, since δn−1x = σχ(n−1)(x)δn−1
for all x ∈ R, the associated ring homomorphism is just σ−χ(n−1) : R

∼→ R,
and hence A/R is a Frobenius extension of second kind. Also, by (1), A/R
is split.
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In the following, we set

ε(i) =

n−1∑
k=1

ωq(i, ki)

for i ∈ I. By Lemma 3.1(1), ε(i) ≥ 0 for all i ∈ I. Also, for any i ∈ I we
have χq(in) = iq, and hence

ε(i) =

n−1∑
k=1

{χq(i) + χq(ki)− χq((k + 1)i)}

= nχq(i)− χq(ni) = nχ(i)− iq.

Lemma 3.4. The following hold:

(1) eiej = ejei for all i, j ∈ I, and eni = e0t
icε(i) for all i ∈ I.

(2) If t ∈ rad(R), then δ0(a) ∈ R× for all a ∈ A×.

Proof. (1) For any i, j ∈ I, by (a) we have ωq(i, j) = ωq(j, i) and eiej =
ejei. Next, by induction we see that eri = eirc

ωq(i,i)+···+ωq(i,(r−1)i) for all
r ≥ 2, so that eni = einc

ε(i) = e0t
icε(i).

(2) Let a ∈ A×. By Lemma 3.2(1) we have

δ0(aa
−1) = δ0(a)δ0(a

−1) +
∑
i 6=0

tcω(i,n−i)σχ(n−i)(δi(a))δn−i(a
−1).

Since tcω(i,n−i) ∈ rad(R) for all i 6= 0, and since δ0(aa
−1) = 1, it follows that

δ0(a)δ0(a
−1) ∈ R× and δ0(a) has a right inverse. Similarly, δ0(a) has a left

inverse.

Proposition 3.5. If t ∈ rad(R), then R/rad(R)
∼→ A/rad(A) canoni-

cally.

Proof. Setting m = rad(R), we will see that rad(A) = e0m ⊕
⊕

i 6=0 eiR.
We divide the proof into several steps.

Claim 1. There exists an injective ring homomorphism

ρ : A→ Mn(R), a 7→ (δi(aej))i,j∈I ,

such that for any a ∈ A if ρ(a) ∈ Mn(R)× then a ∈ A×.

Proof. We have an injective ring homomorphism A → EndR(A), a 7→
(b 7→ ab), and a ring isomorphism ϕ : EndR(A)

∼→ Mn(R), f 7→
(δi(f(ej)))i,j∈I , so that their composite yields an injective ring homomor-
phism ρ : A→ Mn(R) such that ρ(a) = (δi(aej))i,j∈I for all a ∈ A. Next, for
any a ∈ A with ρ(a) ∈ Mn(R)×, since (b 7→ ab) = ϕ−1(ρ(a)) ∈ EndR(A)×,
we have A

∼→ A, b 7→ ab, and hence a ∈ A×.

Claim 2. Am =
⊕

i∈I eim is a two-sided ideal of A with Am ⊆ rad(A).
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Proof. Obviously, Am is a left ideal. Since Am consists of all a ∈ A
with δi(a) ∈ m for all i ∈ I, and since σ(m) = m, it follows from Lemma
3.2(1) that Am is a two-sided ideal. Let a ∈ Am. We claim that a ∈ rad(A).
Since δi(1 − a) = −δi(a) ∈ m for i 6= 0 and δ0(1 − a) = 1 − δ0(a) ∈ R×,
it follows from Lemmas 3.1(2) and 3.2(2) that ρ(1 − a)ii ∈ R× for all i,
and ρ(1 − a)ij ∈ m unless i = j. Note that rad(Mn(R)) consists of all
matrices with the entries in m (see e.g. [Ka, Chapter 1, Proposition 7.22]).
Thus ρ(1 − a) ∈ Mn(R)×, and by Claim 1 we have 1 − a ∈ A×, so that
a ∈ rad(A).

Claim 3. n = e0m⊕
⊕

i 6=0 eiR is a two-sided ideal of A with n ⊆ rad(A).

Proof. Obviously, n is a subgroup of A. It then follows from Lemma
3.2(1) that n is a two-sided ideal of A. Next, since ticε(i) ∈ m for all i 6= 0,
by Lemma 3.4(1) there exists m ≥ 1 such that am ∈ Am for all a ∈ n, i.e.,
n/Am is a two-sided ideal of A/Am consisting only of nilpotent elements.
Thus n/Am ⊆ rad(A/Am). It follows from Claim 2 that n ⊆ rad(A).

Claim 4. rad(A) ⊆ n.

Proof. Let a ∈ rad(A). For any x ∈ R we have 1 − a(e0x) ∈ A×, and
by Lemma 3.4(2), 1 − δ0(a)x = δ0(1 − a(e0x)) ∈ R×. Thus δ0(a) ∈ m and
a ∈ n.

This finishes the proof of Proposition 3.5.

Now, by Propositions 2.6, 2.9, 3.3 and 3.5 we have the following.

Theorem 3.6. Assume t ∈ rad(R). Then A is an Auslander–Gorenstein
local ring if and only if so is R.

In Lemma 3.4(2) the assumption t ∈ rad(R) can be replaced by the
condition that c ∈ rad(R) and ω(i, n − i) > 0 for all i 6= 0. Similarly, in
Claim 3 in the proof of Proposition 3.5 the assumption t ∈ rad(R) can be
replaced by the condition that c ∈ rad(R) and ε(i) > 0 for all i 6= 0. Note
also that

ε(i) + ε(n− i) = nω(i, n− i)
for all i 6= 0. Consequently, we have the following.

Theorem 3.7. Assume c ∈ rad(R) and nχ(i) > iq for all i 6= 0. Then
A is an Auslander–Gorenstein local ring if and only if so is R.

4. Classification. In this section, we will provide a way to obtain every
pair (q, χ) satisfying conditions (X1) and (X2).

Let q be an integer and χ : I → Z a mapping satisfying condition (X2).

Lemma 4.1. The following hold:

(1) χ(i)− χ(i− 1) = χ(n− i)− χ(n− i− 1) for all 1 ≤ i ≤ n− 1.
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(2) If n = 2m with m ≥ 1, then there exist p1, . . . , pm+1 ∈ Z such that

χ(i) =


0 if i = 0,

p1 + · · ·+ pi if 1 ≤ i ≤ m,

p1 + · · ·+ pm + pm−1 + · · ·+ pn−i if m+ 1 ≤ i ≤ n− 1,

and q = 2{p1 + · · ·+ pm−1}+ pm + pm+1.
(3) If n = 2m + 1 with m ≥ 1, then there exist p1, . . . , pm+1 ∈ Z such

that

χ(i) =


0 if i = 0,

p1 + · · ·+ pi if 1 ≤ i ≤ m,

p1 + · · ·+ pm + pm + · · ·+ pn−i if m+ 1 ≤ i ≤ n− 1,

and q = 2{p1 + · · ·+ pm}+ pm+1.

Proof. (1) For any 1 ≤ i ≤ n − 1, χ(i) + χ(n − i − 1) = χ(n − 1) =
χ(i− 1) + χ(n− i), and hence χ(i)− χ(i− 1) = χ(n− i)− χ(n− i− 1).

(2)&(3) Since χ(0) = 0, we have χ(i) =
∑i

k=1{χ(k) − χ(k − 1)} for all
1 ≤ i ≤ n − 1. Thus, on setting pi = χ(i) − χ(i − 1) for 1 ≤ i ≤ m and
pm+1 = q − χ(n− 1), the assertions follow by (1).

Proposition 4.2. Let n = 2m with m ≥ 1. Then (q, χ) satisfies condi-
tion (X1) if and only if:

(1) pi ≥ pm+1 for all 1 ≤ i ≤ m.
(2) If m ≥ 2, 1 ≤ r ≤ m/2 and 1 ≤ s ≤ m− 2r + 1, then

(p1 + · · ·+ pr)− (ps+r + · · ·+ ps+2r−1) ≥ 0.

(3) If m ≥ 5, 3 ≤ r ≤ (2m− 1)/3 and 1 ≤ s ≤ (r − 1)/2, then

(p1 + · · ·+ pr)− (pm−s + · · ·+ pm + pm−1 + · · ·+ pm+s−r+1) ≥ 0.

(4) If m ≥ 3, 1 ≤ r ≤ (m− 1)/2 and 1 ≤ s ≤ m− 2r, then

−(p1 + · · ·+ pr) + (ps+r + · · ·+ ps+2r) ≥ pm+1.

(5) If m ≥ 4, 2 ≤ r ≤ (2m− 2)/3 and 1 ≤ s ≤ r/2, then

−(p1 + · · ·+ pr) + (pm−s + · · ·+ pm + pm−1 + · · ·+ pm+s−r) ≥ pm+1.

Proof. For convenience, we set χ(n) = q. Then condition (X1) is equiv-
alent to

χ(j− i)−{χ(j)−χ(i)} ≥ 0 and {χ(j)−χ(i)}− {χ(n)−χ(n− j + i)} ≥ 0

for all 0 ≤ i < j ≤ n− 1. In the case i = 0, the first inequality is trivial and

χ(j)− {χ(n)− χ(n− j)} = χ(j) + χ(n− j)− χ(n)

= χ(j) + {χ(n− 1)− χ(j − 1)} − χ(n)

= {χ(j)− χ(j − 1)} − {χ(n)− χ(n− 1)}
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for all 1 ≤ j ≤ n− 1. Let 1 ≤ i < j ≤ n− 1. Setting r = j − i and s = i, we
have r, s ≥ 1 with r + s ≤ n− 1 and

χ(j − i)− {χ(j)− χ(i)} =

r∑
k=1

{χ(k)− χ(k − 1)} −
r+s∑
l=s+1

{χ(l)− χ(l − 1)},

{χ(j)− χ(i)} − {q − χ(n− j + i)}

=
r+s∑

k=s+1

{χ(k)− χ(k − 1)} −
n∑

l=n−r+1

{χ(l)− χ(l − 1)}.

Consequently, canceling common terms yields the assertion.

Proposition 4.3. Let n = 2m + 1 with m ≥ 1. Then (q, χ) satisfies
condition (X1) if and only if:

(1) pi ≥ pm+1 for all 1 ≤ i ≤ m.
(2) If m ≥ 2, 1 ≤ r ≤ m/2 and 1 ≤ s ≤ m− 2r + 1, then

(p1 + · · ·+ pr)− (ps+r + · · ·+ ps+2r−1) ≥ 0.

(3) If m ≥ 3, 2 ≤ r ≤ 2m/3 and 1 ≤ s ≤ r/2, then

(p1 + · · ·+ pr)− (pm−s+1 + · · ·+ pm + pm + · · ·+ pm+s−r+1) ≥ 0.

(4) If m ≥ 3, 1 ≤ r ≤ (m− 1)/2 and 1 ≤ s ≤ m− 2r, then

−(p1 + · · ·+ pr) + (ps+r + · · ·+ ps+2r) ≥ pm+1.

(5) If m ≥ 2, 1 ≤ r ≤ (2m− 1)/3 and 1 ≤ s ≤ (r + 1)/2, then

−(p1 + · · ·+ pr) + (pm−s+1 + · · ·+ pm + pm + · · ·+ pm+s−r) ≥ pm+1.

Proof. Similar to Proposition 4.2.
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