SOME IDENTITIES INVOLVING DIFFERENCES OF PRODUCTS of generalized fibonacci numbers

BY
CURTIS COOPER (Warrensburg, MO)
Abstract. Melham discovered the Fibonacci identity

$$
F_{n+1} F_{n+2} F_{n+6}-F_{n+3}^{3}=(-1)^{n} F_{n} .
$$

He then considered the generalized sequence W_{n} where $W_{0}=a, W_{1}=b$, and $W_{n}=$ $p W_{n-1}+q W_{n-2}$ and a, b, p and q are integers and $q \neq 0$. Letting $e=p a b-q a^{2}-b^{2}$, he proved the following identity:

$$
W_{n+1} W_{n+2} W_{n+6}-W_{n+3}^{3}=e q^{n+1}\left(p^{3} W_{n+2}-q^{2} W_{n+1}\right) .
$$

There are similar differences of products of Fibonacci numbers, like this one discovered by Fairgrieve and Gould:

$$
F_{n} F_{n+4} F_{n+5}-F_{n+3}^{3}=(-1)^{n+1} F_{n+6} .
$$

We prove similar identities. For example, a generalization of Fairgrieve and Gould's identity is

$$
W_{n} W_{n+4} W_{n+5}-W_{n+3}^{3}=e q^{n}\left(p^{3} W_{n+4}-q W_{n+5}\right)
$$

1. Introduction and results. Let F_{n} and L_{n} be the Fibonacci and Lucas numbers, respectively. Many authors have studied Fibonacci identities and generalized Fibonacci identities. For example, Fairgrieve and Gould [FG], Hoggatt and Bergum [HB], and Horadam [H] stated and proved Fibonacci identities involving differences of products of Fibonacci numbers. And Melham [M] found, proved, and generalized the following one:

$$
F_{n+1} F_{n+2} F_{n+6}-F_{n+3}^{3}=(-1)^{n} F_{n}
$$

We will attempt to prove some more such identities.
The following is the sequence Melham used to generalize his identity above.

Definition. Let W_{n} be defined by $W_{0}=a, W_{1}=b$, and $W_{n}=p W_{n-1}+$ $q W_{n-2}$ for $n \geq 2$, where a, b, p and q are integers and $q \neq 0$. Let $e=$ $p a b-q a^{2}-b^{2}$.

[^0]Here is a list of some known and some new identities involving differences of products of generalized Fibonacci numbers:

a	$F_{n+1} F_{n+2} F_{n+6}-F_{n+3}^{3}=(-1)^{n} F_{n}$
1b	$W_{n+1} W_{n+2} W_{n+6}-W_{n+3}^{3}=e q^{n+1}\left(p^{3} W_{n+2}-q^{2} W_{n+1}\right)$
2a	$F_{n} F_{n+4} F_{n+5}-F_{n+3}^{3}=(-1)^{n+1} F_{n+6}$
2b	$W_{n} W_{n+4} W_{n+5}-W_{n+3}^{3}=e q^{n}\left(p^{3} W_{n+4}-q W_{n+5}\right)$
3 a	$F_{n} F_{n+3}^{2}-F_{n+2}^{3}=(-1)^{n+1} F_{n+1}$
3b	$W_{n} W_{n+3}^{2}-W_{n+2}^{3}=e q^{n}\left(p W_{n+3}+q W_{n+2}\right)$
4 a	$F_{n}^{2} F_{n+3}-F_{n+1}^{3}=(-1)^{n+1} F_{n+2}$
4b	$W_{n}^{2} W_{n+3}-W_{n+1}^{3}=e q^{n}\left(p W_{n}+W_{n+1}\right)$
5a	$F_{n} F_{n+5} F_{n+6}-F_{n+3} F_{n+4}^{2}=(-1)^{n+1} L_{n+6}$
5b	$W_{n} W_{n+5} W_{n+6}-W_{n+3} W_{n+4}^{2}=e q^{n}\left(p W_{n+8}+p^{3} q W_{n+4}\right)$
6a	$F_{n} F_{n+4}^{2}-F_{n+2} F_{n+3}^{2}=(-1)^{n+1} L_{n+3}$
6b	$W_{n} W_{n+4}^{2}-W_{n+2} W_{n+3}^{2}=e q^{n}\left(p^{2} W_{n+4}+q^{2} W_{n+2}\right)$
7 a	$F_{n} F_{n+3} F_{n+5}-F_{n+2}^{2} F_{n+4}=(-1)^{n+1} L_{n+2}$
7 b	$W_{n} W_{n+3} W_{n+5}-W_{n+2}^{2} W_{n+4}=e q^{n}\left(p^{2} W_{n+4}+q^{3} W_{n}\right)$
8 a	$F_{n} F_{n+3}^{2}-F_{n+1}^{2} F_{n+4}=(-1)^{n+1} L_{n+2}$
8b	$W_{n} W_{n+3}^{2}-W_{n+1}^{2} W_{n+4}=e q^{n}\left(W_{n+4}-q^{2} W_{n}\right)$
9 a	$F_{n} F_{n+2} F_{n+5}-F_{n+1} F_{n+3}^{2}=(-1)^{n+1} L_{n+3}$
9 b	$W_{n} W_{n+2} W_{n+5}-W_{n+1} W_{n+3}^{2}=e q^{n}\left(W_{n+5}+p^{2} q W_{n+1}\right)$
10	$F_{n} F_{n+2} F_{n+4} F_{n+6}-F_{n+3}^{4}=(-1)^{n+1} L_{n+3}^{2}$
11	$F_{n} F_{n+4}^{3}-F_{n+2}^{3} F_{n+6}=(-1)^{n+1} F_{n+3} L_{n+3}$
12	$F_{n}^{2} F_{n+5}^{3}-F_{n+1}^{3} F_{n+6}^{2}=(-1)^{n+1} L_{n+3}^{3}$

Identities 1a and 1 b were discovered and proved by Melham (M]. Identity 2a was discovered and proved by Fairgrieve and Gould [FG]. Identities 3a, 4 a , and 8 a were discovered and proved by Hoggatt and Bergum HB. As far as we know, the other identities in the table are new. In the next section, we will prove some of the new identities. The proofs of all the generalized identities are similar to the proof of 1 b by Melham (M).

2. Some proofs

Proof of 2b. We require the identity

$$
W_{n} W_{n+2}-W_{n+1}^{2}=e q^{n}
$$

proved by Horadam [H, p. 171, eq. (4.3)]. We also need

$$
\begin{aligned}
& W_{n+2}=p W_{n+1}-q W_{n} \\
& W_{n+3}=\left(p^{2}-q\right) W_{n+1}-p q W_{n} \\
& W_{n+4}=\left(p^{3}-2 p q\right) W_{n+1}-\left(p^{2} q-q^{2}\right) W_{n} \\
& W_{n+5}=\left(p^{4}-3 p^{2} q+q^{2}\right) W_{n+1}-\left(p^{3} q-2 p q^{2}\right) W_{n}
\end{aligned}
$$

These identities are obtained by the use of the recurrence for W_{n}. To prove identity 2b, we write its LHS and RHS in terms of W_{n}, W_{n+1}, p and q. The RHS of 2 b is

$$
\begin{aligned}
e q^{n} & \left(p^{3} W_{n+4}-q W_{n+5}\right) \\
= & \left(W_{n} W_{n+2}-W_{n+1}^{2}\right)\left(p^{3} W_{n+4}-q W_{n+5}\right) \\
= & \left(W_{n}\left(p W_{n+1}-q W_{n}\right)-W_{n+1}^{2}\right) \\
& \quad \times\left(p^{3}\left(\left(p^{3}-2 p q\right) W_{n+1}-\left(p^{2} q-q^{2}\right) W_{n}\right)\right. \\
& \left.\quad-q\left(\left(p^{4}-3 p^{2} q+q^{2}\right) W_{n+1}-\left(p^{3} q-2 p q^{2}\right) W_{n}\right)\right) \\
= & \left(p^{7}-2 p^{5} q+p^{3} q^{2}+p q^{3}\right) W_{n+1}^{2} W_{n}+\left(-2 p^{6} q+5 p^{4} q^{2}-5 p^{2} q^{3}+q^{4}\right) W_{n+1} W_{n}^{2} \\
& \quad+\left(-p^{6}+3 p^{4} q-3 p^{2} q^{2}+q^{3}\right) W_{n+1}^{3}+\left(p^{5} q^{2}-2 p^{3} q^{3}+2 p q^{4}\right) W_{n}^{3}
\end{aligned}
$$

The LHS of 2 b is

$$
\begin{aligned}
& W_{n} W_{n+4} W_{n+5}-W_{n+3}^{2} \\
&= W_{n}\left(\left(p^{3}-2 p q\right) W_{n+1}-\left(p^{2} q-q^{2}\right) W_{n}\right) \\
& \times\left(\left(p^{4}-3 p^{2} q+q^{2}\right) W_{n+1}-\left(p^{3} q-2 p q^{2}\right) W_{n}\right) \\
&-\left(\left(p^{2}-q\right) W_{n+1}-p q W_{n}\right)^{3} \\
&=\left(p^{7}-2 p^{5} q+p^{3} q^{2}+p q^{3}\right) W_{n+1}^{2} W_{n}+\left(-2 p^{6} q+5 p^{4} q^{2}-5 p^{2} q^{3}+q^{4}\right) W_{n+1} W_{n}^{2} \\
&+\left(-p^{6}+3 p^{4} q-3 p^{2} q^{2}+q^{3}\right) W_{n+1}^{3}+\left(p^{5} q^{2}-2 p^{3} q^{3}+2 p q^{4}\right) W_{n}^{3}
\end{aligned}
$$

Since the LHS and RHS are equal, the identity is proved.
Proof of $5 b$. We again require the Horadam identity

$$
W_{n} W_{n+2}-W_{n+1}^{2}=e q^{n}
$$

We also need the identities

$$
\begin{aligned}
& W_{n+2}=p W_{n+1}-q W_{n} \\
& W_{n+3}=\left(p^{2}-q\right) W_{n+1}-p q W_{n} \\
& W_{n+4}=\left(p^{3}-2 p q\right) W_{n+1}-\left(p^{2} q-q^{2}\right) W_{n} \\
& W_{n+5}=\left(p^{4}-3 p^{2} q+q^{2}\right) W_{n+1}-\left(p^{3} q-2 p q^{2}\right) W_{n} \\
& W_{n+6}=\left(p^{5}-4 p^{3} q+3 p q^{2}\right) W_{n+1}-\left(p^{4} q-3 p^{2} q^{2}+q^{3}\right) W_{n} \\
& W_{n+8}=\left(p^{7}-6 p^{5} q+10 p^{3} q^{2}-4 p q^{3}\right) W_{n+1}-\left(p^{6} q-5 p^{4} q^{2}+6 p^{2} q^{3}-q^{4}\right) W_{n}
\end{aligned}
$$

obtained by the use of the recurrence for W_{n}. We write the LHS and RHS of identity 5 b in terms of W_{n}, W_{n+1}, p and q. The RHS of 5 b is

$$
\begin{aligned}
& e q^{n}\left(p W_{n+8}+p^{3} q W_{n+4}\right) \\
& = \\
& =\left(W_{n} W_{n+2}-W_{n+1}^{2}\right)\left(p W_{n+8}+p^{3} q W_{n+5}\right) \\
& = \\
& \quad\left(W_{n}\left(p W_{n+1}-q W_{n}\right)-W_{n+1}^{2}\right) \\
& \quad \times\left(p\left(\left(p^{7}-6 p^{5} q+10 p^{3} q^{2}-4 p q^{3}\right) W_{n+1}-\left(p^{6} q-5 p^{4} q^{2}+6 p^{2} q^{3}-q^{4}\right) W_{n}\right)\right. \\
& \left.\quad+\quad+p^{3} q\left(\left(p^{3}-2 p q\right) W_{n+1}-\left(p^{2} q-q^{2}\right) W_{n}\right)\right) \\
& = \\
& \quad \begin{array}{l}
W_{n}^{3}\left(-p q^{5}+5 p^{3} q^{4}-4 p^{5} q^{3}+p^{7} q^{2}\right) \\
\\
\quad+W_{n}^{2} W_{n+1}\left(5 p^{2} q^{4}-13 p^{4} q^{3}+9 p^{6} q^{2}-2 p^{8} q\right) \\
\quad \\
\quad+W_{n} W_{n+1}^{2}\left(-p q^{4}+p^{3} q^{3}+4 p^{5} q^{2}-4 p^{7} q+p^{9}\right) \\
\\
\quad+W_{n+1}^{3}\left(4 p^{2} q^{3}-8 p^{4} q^{2}+5 p^{6} q-p^{8}\right) .
\end{array}
\end{aligned}
$$

The LHS of 5 b is

$$
\begin{aligned}
W_{n} W_{n+5} W_{n+6} & -W_{n+3} W_{n+4}^{2} \\
= & W_{n}\left(\left(p^{4}-3 p^{2} q+q^{2}\right) W_{n+1}-\left(p^{3} q-2 p q^{2}\right) W_{n}\right) \\
& \times\left(\left(p^{5}-4 p^{3} q+3 p q^{2}\right) W_{n+1}-\left(p^{4} q-3 p^{2} q^{2}+q^{3}\right) W_{n}\right) \\
& -\left(\left(p^{2}-q\right) W_{n+1}-p q W_{n}\right)\left(\left(p^{3}-2 p q\right) W_{n+1}-\left(p^{2} q-q^{2}\right) W_{n}\right)^{2} \\
= & W_{n}^{3}\left(-p q^{5}+5 p^{3} q^{4}-4 p^{5} q^{3}+p^{7} q^{2}\right) \\
& +W_{n}^{2} W_{n+1}\left(5 p^{2} q^{4}-13 p^{4} q^{3}+9 p^{6} q^{2}-2 p^{8} q\right) \\
& +W_{n} W_{n+1}^{2}\left(-p q^{4}+p^{3} q^{3}+4 p^{5} q^{2}-4 p^{7} q+p^{9}\right) \\
& +W_{n+1}^{3}\left(4 p^{2} q^{3}-8 p^{4} q^{2}+5 p^{6} q-p^{8}\right) .
\end{aligned}
$$

Since the LHS and RHS are equal, the identity is proved.
Proof of 10. We require Cassini's identity

$$
F_{n} F_{n+2}-F_{n+1}^{2}=(-1)^{n+1} .
$$

We also need

$$
\begin{aligned}
& F_{n+2}=F_{n+1}+F_{n}, \\
& F_{n+3}=2 F_{n+1}+F_{n}, \\
& F_{n+4}=3 F_{n+1}+2 F_{n}, \\
& F_{n+6}=8 F_{n+1}+5 F_{n}, \\
& L_{n+3}=4 F_{n+1}+3 F_{n},
\end{aligned}
$$

which are obtained by the use of the recurrence for F_{n} and the fact that $L_{n+3}=F_{n+4}+F_{n+2}$. To prove 10, we write its LHS and RHS in terms of F_{n} and F_{n+1}. The RHS of 10 is

$$
\begin{aligned}
(-1)^{n+1} L_{n+3}^{2} & =\left(F_{n+2} F_{n}-F_{n+1}^{2}\right) L_{n+3}^{2} \\
& =\left(F_{n}^{2}+F_{n} F_{n+1}-F_{n+1}^{2}\right)\left(4 F_{n+1}+3 F_{n}\right)^{2} \\
& =9 F_{n}^{4}+33 F_{n}^{3} F_{n+1}+31 F_{n}^{2} F_{n+1}^{2}-8 F_{n} F_{n+1}^{3}-16 F_{n+1}^{4} .
\end{aligned}
$$

The LHS of 10 is

$$
\begin{aligned}
& F_{n} F_{n+2} F_{n+4} F_{n+6}-F_{n+3}^{4} \\
& \quad=F_{n}\left(F_{n+1}+F_{n}\right)\left(3 F_{n+1}+2 F_{n}\right)\left(8 F_{n+1}+5 F_{n}\right)-\left(2 F_{n+1}+F_{n}\right)^{4} \\
& \quad=9 F_{n}^{4}+33 F_{n}^{3} F_{n+1}+31 F_{n}^{2} F_{n+1}^{2}-8 F_{n} F_{n+1}^{3}-16 F_{n+1}^{4}
\end{aligned}
$$

Since the LHS and RHS are equal, the identity is proved.

REFERENCES

[FG] S. Fairgrieve and H. W. Gould, Product difference Fibonacci identities of Simson, Gelin-Cesàro, Tagiuri, and generalizations, Fibonacci Quart. 43 (2005), 137-141.
[HB] V. E. Hoggatt Jr. and G. E. Bergum, A problem of Fermat and the Fibonacci sequence, Fibonacci Quart. 15 (1977), 323-330.
[H] A. F. Horadam, Basic properties of a certain generalized sequence of numbers, Fibonacci Quart. 3 (1965), 161-176.
[M] R. S. Melham, A Fibonacci identity in the spirit of Simson and Gelin-Cesàro, Fibonacci Quart. 41 (2003), 142-143.

Curtis Cooper
Department of Mathematics and Computer Science
University of Central Missouri
Warrensburg, MO 64093, U.S.A.
E-mail: cooper@ucmo.edu

[^0]: 2010 Mathematics Subject Classification: Primary 11B39; Secondary 11B37.
 Key words and phrases: generalized Fibonacci numbers, Fibonacci identities, differences of products.

