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LIE DERIVATIONS OF DUAL EXTENSIONS OF ALGEBRAS

BY

YANBO LI (Qinhuangdao) and FENG WEI (Beijing)

Abstract. Let K be a field and Γ a finite quiver without oriented cycles. Let Λ :=
K(Γ, ρ) be the quotient algebra of the path algebra KΓ by the ideal generated by ρ, and
let D(Λ) be the dual extension of Λ. We prove that each Lie derivation of D(Λ) is of the
standard form.

1. Introduction. In the study of the representation theory of quasi-
hereditary algebras, Xi [19] defined dual extensions of algebras without ori-
ented cycles. Roughly speaking, these algebras A are constructed by adding
to the ordinary quiver (without oriented cycles) of a given algebra B a
reverse arrow for any original arrow, and extending the relations to this ex-
tended quiver in a suitable way. They are a class of finite-dimensional quasi-
hereditary algebras, and they were investigated in detail by Deng and Xi
[6, 8, 20]. A dual extension algebra is a BGG-algebra in the sense of R. Ir-
ving [11], that is, a quasi-hereditary algebra with a duality which fixes all
simple modules. A much more general construction, the twisted doubles,
were studied by Deng, Koenig and Xi [7, 12, 21].

Derivations and Lie derivations of associative algebras play significant
roles in various mathematical areas, such as Lie theory, matrix theory, non-
commutative algebras and operator algebras. Let R be a commutative ring
with identity, A be a unital algebra over R, and Z(A) be the center of A.
We write [a, b] = ab−ba for all a, b ∈ A. Let Θ : A → A be a linear mapping.
We call Θ an (associative) derivation if

Θ(ab) = Θ(a)b+ aΘ(b)

for all a, b ∈ A. Further, Θ is called a Lie derivation if

Θ([a, b]) = [Θ(a), b] + [a,Θ(b)]

for all a, b ∈ A. It is clear that every associative derivation is a Lie derivation.
But the converse statement is not true in general. Moreover, if D : A → A is
an associative derivation and ∆ : A → Z(A) is a linear mapping such that
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∆([a, b]) = 0 for all a, b ∈ A, then the mapping

(♠) Θ = D +∆

is a Lie derivation. Such a Lie derivation is said to be of the standard form.

A common and popular problem in the study of Lie derivations is whether
they have the above mentioned standard form. Equivalently, how every Lie
derivation is approximate to a derivation to the utmost extent. The first result
in this area is due to Martindale [17], who proved that each Lie derivation
of a prime ring satisfying some conditions is of the standard form. Alaminos
et al. [1] showed that every Lie derivation on the full matrix algebra over a
field of characteristic zero has the standard form. Cheung [5] considered Lie
derivations of triangular algebras and gave a sufficient and necessary condition
for every Lie derivation to be standard. Benkovič [4] studied the structure of
Lie derivations from a triangular algebra into its bi-module. The description of
the standard form of Lie triple derivations of triangular algebras was obtained
by Xiao and Wei [23]. Recently, the current authors and Xiao investigated the
associative-type, Lie-type and Jordan-type linear mappings of generalized
matrix algebras. For details, we refer the reader to [13, 14, 16, 22].

The path algebras of quivers naturally appear in the study of tensor
algebras of bimodules over semisimple algebras. It is well known that any
finite-dimensional basic K-algebra is given by a quiver with relations when
K is an algebraically closed field. In [10], Guo and Li studied the Lie algebra
of differential operators on a path algebra KΓ , and related this Lie algebra
to the algebraic and combinatorial properties of KΓ . In [14], the current
authors studied Lie derivations of a class of path algebras of quivers without
oriented cycles, which can be viewed as one-point extensions. It was proved
that in this case each Lie derivation is of the standard form. Moreover, the
standard decomposition is unique. On the other hand, we remark that the
dual extension algebra of an arbitrary finite-dimensional algebra inherits
many nice properties from the given algebra. Then for the path algebra
of a finite quiver without oriented cycles, it is natural to ask whether all
Lie derivations on the dual extension algebra are of the standard form. We
will give a positive answer to this question. More precisely, our main result
is

Theorem. Let K be a field of characteristic not 2. Let (Γ, ρ) be a fi-
nite quiver without oriented cycles. Then each Lie derivation on the dual
extension of the algebra K(Γ, ρ) is of the standard form (♠). Moreover, the
standard decomposition is unique.

Jordan derivations, another important class of linear mappings on dual
extension algebras, have been characterized in [15], where we show that
every Jordan derivation on a dual extension algebra is a derivation.
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Note that each associative algebra with nontrivial idempotents is isomor-
phic to a generalized matrix algebra. Recently, Du and Wang [9] studied Lie
derivations of generalized matrix algebras with bimodules M being faithful.
Although the methods of matrix algebras are also employed in our current
work, we do not assume faithfulness conditions. In Cheung’s study [5] of Lie
derivations of triangular algebras, the faithfulness assumption is not needed.
In this sense, Section 3 of this paper is a natural generalization of Cheung’s
work. Simultaneously, our work is an attempt to deal with the path algebras
of quivers with oriented cycles. So this article is also a continuation and
development of [14].

The paper is organized as follows. After a rapid review of some necessary
preliminaries in Section 2, we characterize Lie derivations of generalized
matrix algebras in Section 3. We study Lie derivations of dual extensions in
Section 4, where the main result of this paper is obtained. Throughout, we
freely use the quiver representation terminology of [2] and [3], where the reader
can find basic facts on path algebras and quiver K-linear representations.

2. Dual extension. Let us first recall the definition of dual extensions
of path algebras which were introduced by Xi [19]. Moreover, in order to
be able to use the methods of matrix algebras, we will also give some de-
scriptions of dual extensions from the point of view of generalized matrix
algebras. This kind of algebra was introduced by Morita [18], who studied
Morita duality theory of modules and its applications to Artinian algebras.
Let us begin with the definition of generalized matrix algebras.

2.1. Generalized matrix algebras. The definition of generalized ma-
trix algebras is via the notion of Morita context. Let R be a commutative
ring with identity. A Morita context consists of two R-algebras A and B,
two bimodules AMB and BNA, and two bimodule homomorphisms called
pairings ΦMN : M ⊗

B
N → A and ΨNM : N ⊗

A
M → B making the following

diagrams commutative:

M ⊗
B
N ⊗

A
M

ΦMN⊗IM //

IM⊗ΨNM

��

A⊗
A
M

∼=
��

M ⊗
B
B

∼= //M

and
N ⊗

A
M ⊗

B
N

ΨNM⊗ IN //

IN⊗ΦMN

��

B ⊗
B
N

∼=
��

N ⊗
A
A

∼= // N
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Let us write this Morita context as (A,B, AMB, BNA, ΦMN , ΨNM ). If (A,B,

AMB, BNA, ΦMN , ΨNM ) is a Morita context, then the set[
A M

N B

]
=

{[
a m

n b

] ∣∣∣∣ a ∈ A, m ∈M, n ∈ N, b ∈ B
}

forms an R-algebra under matrix-like addition and matrix-like multiplica-
tion. There is no constraint on the bimodules M and N (which may be
zero). Such an R-algebra is called a generalized matrix algebra of order 2
and is usually denoted by G =

[
A M
N B

]
. Its center is

Z(G)

=

{[
a 0

0 b

] ∣∣∣∣ a ∈ Z(A), b ∈ Z(B), am = mb, na = bn, ∀m ∈M, n ∈ N
}
.

Thus we have two natural R-linear projections πA : G → A and πB : G → B,

πA :

[
a m

n b

]
7→ a and πB :

[
a m

n b

]
7→ b.

Then πA(Z(G)) is a subalgebra of Z(A), and πB(Z(G)) is a subalgebra of
Z(B). If M is faithful as a right B-module and as a left A-module, then for
every element a ∈ πA(Z(G)), there exists a unique b ∈ πB(Z(G)), denoted
by ϕ(a), such that

[
a 0
0 b

]
∈ Z(G). It is easy to verify that the mapping

ϕ : πA(Z(G))→ πB(Z(G)) is an algebra isomorphism such that am = mϕ(a)
and na = ϕ(a)n for all a ∈ πA(Z(G)), m ∈M and n ∈ N .

Remark 2.1. Any unital R-algebra A with nontrivial idempotents is
isomorphic to a generalized matrix algebra. In fact, suppose that there exists
a nontrivial idempotent e ∈ A. We construct the following natural general-
ized matrix algebra:

G =

[
eAe eA(1− e)

(1− e)Ae (1− e)A(1− e)

]

=

{[
eae ec(1− e)

(1− e)de (1− e)b(1− e)

] ∣∣∣∣ a, b, c, d ∈ A}.
It is easy to check that the R-linear mapping

ξ : A → G, a 7→
[

eae ea(1− e)
(1− e)ae (1− e)a(1− e)

]
,

is an algebra isomorphism.

2.2. Dual extension of a path algebra. Recall that a finite quiver
Γ is an oriented graph with the set Γ0 of vertices and the set Γ1 of arrows
between vertices, both finite. For an arrow α, we write s(α) = i and e(α) = j
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if α goes from vertex i to vertex j. A sink is a vertex from which no arrows
start, and a source is a vertex where no arrows end. A nontrivial path in Γ
is a sequence p = αn · · ·α1 of arrows such that e(αm) = s(αm+1) for each
1 ≤ m < n. Define s(p) = s(α1) and e(p) = e(αn). A trivial path is the
symbol ei for each i ∈ Γ0. In this case, we set s(ei) = e(ei) = i. A nontrivial
path p is called an oriented cycle if s(p) = e(p). Denote the set of all paths
by P.

Let K be a field and Γ be a quiver. Then the path algebra KΓ is the
K-algebra spanned by the paths in Γ , where the product of two paths x =
αn · · ·α1 and y = βt · · ·β1 is defined by

xy =

{
αn · · ·α1βt · · ·β1 e(y) = s(x),

0 otherwise.

Clearly, KΓ is an associative algebra with the identity 1 =
∑

i∈Γ0
ei, where

ei (i ∈ Γ0) are pairwise orthogonal primitive idempotents of KΓ .

A relation σ on a quiver Γ over a field K is a K-linear combination of
paths σ =

∑n
i=1 kipi, where ki ∈ K and

e(p1) = · · · = e(pn), s(p1) = · · · = s(pn).

Moreover, the number of arrows in each path is assumed to be at least 2.
Let ρ be a set of relations on Γ over K. The pair (Γ, ρ) is called a quiver
with relations over K. Denote by 〈ρ〉 the ideal of KΓ generated by the set
of relations ρ. The K-algebra K(Γ, ρ) = KΓ/〈ρ〉 is always associated with
(Γ, ρ). For x ∈ KΓ , write x for the corresponding element in K(Γ, ρ). We
often write x instead of x if no confusion can arise. We refer the reader to
[3] for the basic facts on path algebras.

Let Λ = K(Γ, ρ), where Γ is a finite quiver. Let Γ ∗ be the quiver whose
vertex set is Γ0 and whose arrow set is

Γ ∗1 = {α∗ : i→ j | α : j → i is an arrow in Γ1}.
In other words, Γ ∗ is the opposite quiver of Γ . Let p = αn · · ·α1 be a path
in Γ . Denote the path α∗1 · · ·α∗n in Γ ∗ by p∗. Define D(Λ) to be the quotient
algebra of the path algebra of the quiver (Γ0, Γ1∪Γ ∗1 ) by the ideal generated
by

ρ ∪ ρ∗ ∪ {αβ∗ | α, β ∈ Γ1}.
If Γ has no oriented cycles, then D(Λ) is called the dual extension of Λ. It
is a BGG-algebra in the sense of [11]. Clearly, if |Γ0| = 1, then the algebra
is trivial. Let us assume that |Γ0| ≥ 2 from now on. Note that in this case,
D(Λ) has nontrivial idempotents. In view of Remark 2.1, D(Λ) is isomorphic
to a generalized matrix algebra G =

[
A M
N B

]
.

Take the nontrivial idempotent to be ei, where i is a source of Γ . Accord-
ing to the definition of dual extension, it is easy to verify that ΦMN = 0 and
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ΨNM 6= 0. If M 6= 0, then N 6= 0. Moreover, M need not be faithful as a left
A-module or as a right B-module. Let us illustrate this by two examples.

Example 2.2. Let Γ be the quiver

•
1

α // • •β

32
oo

and let Λ = KΓ . The dual extension D(Λ) has a basis

{e1, e2, e3, α, β, α∗, β∗, α∗α, β∗α, β∗β, α∗β}.
If we take the nontrivial idempotent to be e1, then D(Λ) is isomorphic to the
generalized matrix algebra G =

[
A M
N B

]
, where A has a basis {e2, e3, β, β∗,

β∗β}, B has a basis {e1, α∗α}, M has a basis {α, β∗α}, and N has a basis
{α∗, α∗β}. It follows from βα = 0 and ββ∗α = 0 that β ∈ anni(AM), that is,
M is not faithful as a left A-module. It is easy to check that α∗α ∈ anni(MB).
This implies that M is not faithful as a right B-module. Similarly, we obtain
α∗α ∈ anni(BN) and β∗β ∈ anni(NA). That is, N is neither a faithful left
B-module nor a faithful right A-module.

Example 2.3. Let Γ be the quiver

•
γ

))

1

α
(( •
2 3β

// •

and let Λ = KΓ . Taking the nontrivial idempotent to be e1, the dual exten-
sion D(Λ) is isomorphic to G =

[
A M
N B

]
, where A has a basis {e2, e3, β, β∗,

β∗β}, M has a basis {α, β∗βα, β∗γ, βα, γ}, N has a basis {α∗, γ∗β, α∗β∗β,
α∗β∗, γ∗}, B has a basis {e1, α∗α, γ∗γ, α∗β∗γ, γ∗βα, α∗β∗βα}. Clearly, e2α
6= 0, e3βα 6= 0. Then e2, e3 /∈ anni(M). Similarly, βα 6= 0 implies that
β /∈ anni(M), and β∗βα 6= 0 implies that β∗ /∈ anni(M) and β∗β /∈ anni(M).
Hence M is faithful as a left A-module. On the other hand, it is easy to check
that α∗β∗βα ∈ anni(MB). Thus M is not faithful as a right B-module. Like-
wise, we find that N is faithful as a right A-module, while it is not faithful
as a left B-module.

Remark 2.4. In order to study the global dimension of dual exten-
sions, one more general definition of dual extension algebras was proposed
by Xi [20]. We omit the details here because it will not be used in our current
work.

3. Lie derivations of generalized matrix algebras. In Section 2 we
have pointed out that the dual extension of a path algebra can be viewed
as a generalized matrix algebra. In order to study Lie derivations of dual
extension algebras, it is necessary to provide some basic facts concerning Lie
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derivations of generalized matrix algebras. In this section, we will give a suf-
ficient and necessary condition for every Lie derivation to be standard (♠).

From now on, we always assume that all algebras and bimodules are
2-torsion free. Note that the forms of derivations and Lie derivations of a
generalized matrix have been described in [13].

Lemma 3.1 ([13, Proposition 4.1]). Let ΘLied be a Lie derivation of a
generalized matrix algebra G =

[
A M
N B

]
. Then

ΘLied

([
a m

n b

])

=

[
δ1(a)−mn0 −m0n+ δ4(b) am0 −m0b+ τ2(m)

n0a− bn0 + ν3(n) µ1(a) + n0m+ nm0 + µ4(b)

]
for all

[
a m
n b

]
∈ G, where m0 ∈M , n0 ∈ N and

δ1 : A→ A, δ4 : B → Z(A), τ2 : M →M,

ν3 : N → N, µ1 : A→ Z(B), µ4 : B → B

are all R-linear mappings satisfying the following conditions:

(1) δ1 is a Lie derivation of A and δ1(mn) = δ4(nm)+τ2(m)n+mν3(n);
(2) µ4 is a Lie derivation of B and µ4(nm) = µ1(mn)+nτ2(m)+ν3(n)m;
(3) δ4([b, b

′]) = 0 for all b, b′ ∈ B, and µ1([a, a
′]) = 0 for all a, a′ ∈ A;

(4) τ2(am) = aτ2(m) + δ1(a)m−mµ1(a) and τ2(mb) = τ2(m)b+mµ4(b)
− δ4(b)m;

(5) ν3(na) = ν3(n)a + nδ1(a)− µ1(a)n and ν3(bn) = bν3(n) + µ4(b)n−
nδ4(b).

Lemma 3.2 ([13, Proposition 4.2]). An additive mapping Θd : G → G is
a derivation if and only if

Θd

([
a m

n b

])
=

[
δ1(a)−mn0 −m0n am0 −m0b+ τ2(m)

n0a− bn0 + ν3(n) n0m+ nm0 + µ4(b)

]
for all

[
a m
n b

]
∈ G, where m0 ∈M , n0 ∈ N and

δ1 : A→ A, τ2 : M →M, τ3 : N →M,

ν2 : M → N, ν3 : N → N, µ4 : B → B

are all R-linear mappings satisfying the following conditions:

(1) δ1 is a derivation of A with δ1(mn) = τ2(m)n+mν3(n);
(2) µ4 is a derivation of B with µ4(nm) = nτ2(m) + ν3(n)m;
(3) τ2(am) = aτ2(m) + δ1(a)m and τ2(mb) = τ2(m)b+mµ4(b);
(4) ν3(na) = ν3(n)a+ nδ1(a) and ν3(bn) = bν3(n) + µ4(b)n.
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In [5], Cheung gave a necessary and sufficient condition for each Lie
derivation on a triangular algebra to have the standard form (♠). We extend
this result to the generalized matrix algebras context.

Theorem 3.3. Let ΘLied be a Lie derivation of a generalized matrix
algebra G =

[
A M
N B

]
. Then ΘLied is of the standard form (♠) if and only if

there exist linear mappings lA : A→ Z(A) and lB : B → Z(B) satisfying

(1) pA = δ1− lA is a derivation on A, lA([a, a′]) = 0, lA(mn) = δ4(nm),
lA(a)m = mµ1(a) and nlA(a) = µ1(a)n.

(2) pB = µ4− lB is a derivation on B, lB([b, b′]) = 0, lB(nm) = µ1(mn),
lB(b)n = nδ4(b) and mlB(b) = δ4(b)m.

Proof. For necessity, suppose that ΘLied = δ+h, where δ is a derivation
and h maps G into Z(G). Then by Lemma 3.2, there exist linear mappings
lA : A→ A and lB : B → B such that pA = δ1 − lA is a derivation of A and
pB = µ4 − lB is a derivation of B. This gives

h

([
a m

n b

])
=

[
lA(a) + δ4(b) 0

0 µ1(a) + lB(b)

]
∈ Z(G), ∀

[
a m

n b

]
∈ G.

By Lemma 3.1 we know that δ4(b) ∈ Z(A) and µ1(a) ∈ Z(B) for all b ∈ B
and a ∈ A. Then the structure of Z(G) implies that lA maps into Z(A)
and lB maps into Z(B). Furthermore, lA(a)m = mµ1(a), nlA(a) = µ1(a)n,
lB(b)n = mδ4(b) and mlB(b) = δ4(b)m.

Note that h is also a Lie derivation of G. In view of Lemma 3.1 we have
lA(mn) = δ4(nm) and lB(nm) = µ1(mn) for all m ∈ M and n ∈ N . Let us
substitute G1 =

[
a 0
0 0

]
and G2 =

[
a′ 0
0 0

]
into

(3.1) h([G1, G2]) = [h(G1), G2] + [G1, h(G2)].

It is not difficult to calculate that

h([G1, G2]) =

[
lA([a, a′]) 0

0 µ1([a, a
′])

]
,(3.2)

[h(G1), G2] + [G1, h(G2)] =

[
[lA(a), a′] + [a, lA(a′)] 0

0 0

]
.(3.3)

It follows from lA(a), lA(a′) ∈ Z(A) that

[lA(a), a′] + [a, lA(a′)] = 0.

Combining (3.2) with (3.3) yields lA([a, a′]) = 0. Similarly, if we take G1 =[
0 0
0 b

]
and G2 =

[
0 0
0 b′
]

in (3.1), we get lB([b, b′]) = 0.
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For sufficiency, set

δ

([
a m

n b

])
=

[
pA(a)−mn0 −m0n am0 −m0b+ τ2(m)

n0a− bn0 + ν3(n) n0m+ nm0 + pB(b)

]
,

h

([
a m

n b

])
=

[
lA(a) + δ4(b) 0

0 µ1(a) + lB(b)

]
for all

[
a m
n b

]
∈ G. It is easy to verify that δ is a derivation of G and h maps

into Z(G). For all G =
[
a m
n b

]
∈ G and G′ =

[
a′ m′

n′ b′

]
∈ G, we have

h([G,G′]) =

[
lA(x+ u) + δ4(v + y) 0

0 µ1(x+ u) + lB(v + y)

]
,

where x = [a, a′], y = [b, b′], u = mn′ −m′n and v = nm′ − n′m. Note that
(1) implies lA(x+u)+δ4(v+y) = 0, and (2) implies µ1(x+u)+lB(v+y) = 0.
Therefore h([G,G′]) = 0.

The following corollary provides a sufficient condition for each Lie deriva-
tion of G =

[
A M
N B

]
to be standard, where M is faithful as a left A-module

and as a right B-module.

Corollary 3.4. Let G =
[
A M
N B

]
be a generalized matrix algebra. Sup-

pose that M is faithful as a left A-module and as a right B-module. If
Z(A) = πA(Z(G)) and Z(B) = πB(Z(G)), then every Lie derivation of
G has the standard form (♠).

Proof. Let Θ be a Lie derivation of G of the form described in Lemma
3.1. Then it follows from Z(A) = πA(Z(G)) and Z(B) = πB(Z(G)) and
Lemma 3.1 that

h

([
a m

n b

])
=

[
ϕ−1(µ1(a)) + δ4(b) 0

0 µ1(a) + ϕ(δ4(b))

]
∈ Z(G).

On the other hand, a direct computation shows that Θ − h is a derivation
of G. This completes the proof.

Remark 3.5. Du and Wang [9] obtained a much more general version
of Corollary 3.4. We omit the details.

Corollary 3.6. Let U =
[
A M
O B

]
be a triangular algebra. Suppose that

M is faithful as a left A-module and as a right B-module. If Z(A) =
πA(Z(U)) and Z(B) = πB(Z(U)), then every Lie derivation of U is of
the standard form (♠).

Let us now extend Theorem 11 of [5] to the case of generalized matrix
algebras. As in [5], we need two preliminary lemmas.
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Lemma 3.7. Let δ1 be a Lie derivation of A, and let µ1 : A → Z(B),
τ2 : M →M and ν3 : N → N be linear mappings satisfying

τ2(am) = aτ2(m) + δ1(a)m−mµ1(a),

ν3(na) = ν3(n)a+ nδ1(a)− µ1(a)n.

Define Γ : A×A→ A by

Γ (x, y) = δ1(xy)− xδ1(y)− δ1(x)y.

Then:

(1) Γ (x, y) = Γ (y, x);
(2) Γ (x, y)m = mµ1(xy)− xmµ1(y)− ymµ1(x) and

nΓ (x, y) = µ1(xy)n− µ1(y)nx− µ1(x)ny.

(3) Let f(t) =
∑k

j=0 rjt
j ∈ K[t] and x ∈ A. Then there exists ax ∈ A

such that

axm = mµ1(f(x))− f ′(x)mµ1(x) for all m ∈M,

nax = µ1(f(x))n− µ1(x)nf ′(x) for all n ∈ N,

where f ′(t) =
∑k

j=1 jrjt
j−1.

Moreover, if δ1 is of the standard form, that is, δ1 = pA + lA, where pA is
a derivation of A and lA maps into Z(A), then ax = lA(f(x))− f ′(x)l(x)).

Proof. The equality (1) and the first one of (2) can be obtained from [5,
Lemma 9(i), (ii)]. It suffices to prove the second equality of (2). In fact, the
equality ν3(na) = ν3(n)a+ nδ1(a)− µ1(a)n implies that

ν3(n(xy)) = ν3(n)xy + nδ1(xy)− µ1(xy)n,

ν3((nx)y) = ν3(nx)y + nxδ1(y)− µ1(y)nx

= ν3(n)xy + nδ1(x)y − µ1(x)ny.

Comparing the above two equalities gives the required result.
In order to prove (3), it is enough to consider f(t) = tk, where k =

0, 1, . . . . For k = 0, we can take ax = δ1(1), by conditions (4) and (5) of
Lemma 3.1. For k > 0, take

ax =

k−1∑
j=1

xk−1−jG(xj , x).

Then the two equalities of (2) imply the conclusion.

Lemma 3.8. Assume that δ1 = pA + lA, where pA is a derivation and
lA(a) ∈ Z(A), lA([a, a′]) = 0 for all a, a′ ∈ A. Let

VA = {a ∈ A | lA(a)m = mµ1(a), nlA(a) = µ1(a)n ∀m ∈M, ∀n ∈ N}.
Then VA is a subalgebra of A satisfying the following conditions:
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(1) [x, y] ∈ VA for all x, y ∈ A.
(2) Let f(t) ∈ K[t] and x ∈ A. If f ′(x) = 0, then f(x) ∈ VA.
(3) VA contains all the idempotents of A.

Proof. For all x, y ∈ VA, from Lemma 3.7(2) we have

mµ1(xy) = Γ (x, y)m+ xmµ1(y) + ymµ1(x)

= δ1(xy)m− xδ1(y)m− δ1(x)ym+ xlA(y)m+ ylA(x)m

= pA(xy)m+ lA(xy)m− xpA(y)m

− xlA(y)m− pA(x)ym− lA(x)ym+ xlA(y)m+ ylA(x)m.

Note that pA is a derivation and lA(x) ∈ Z(A). Hence

(3.4) mµ1(xy) = lA(xy)m.

On the other hand,

µ1(xy)n = nΓ (x, y) + µ1(y)nx+ µ1(x)ny(3.5)

= nδ1(xy)− nxδ1(y)− nδ1(x)y + nlA(y)x+ nlA(x)y

= npA(xy) + nlA(xy)− nxpA(y)

− nxlA(y)− npA(x)y − nlA(x)y + nlA(y)x+ nlA(x)y

= nlA(xy).

Combining (3.4) with (3.5) shows that VA is a subalgebra of A.
We now prove (1)–(3). Clearly, (1) follows from the fact that µ1 annihi-

lates all commutators.
To prove (2), take x ∈ A with f ′(x) = 0 and f(t) ∈ R[t]. In view of

Lemma 3.7(3), there exists ax ∈ A such that axm = mµ1(f(x)) and nax =
µ1(f(x))n. Since δ1 is of the standard form, we have axm = lA(f(x))m and
nax = nlA(f(x)) by Lemma 3.7. Therefore

lA(f(x))m = mµ1(f(x)) and nlA(f(x)) = µ1(f(x))n.

That is, f(x) ∈ VA.
The proof of (3) is the same as that of [5, Lemma 10(4)]: for any

idempotent e ∈ A, let f(t) = 3t2 − 2t3. Then clearly f ′(e) = 0. Hence
e = f(e) ∈ VA.

As in [5], we define W (X) to be the smallest subalgebra of an algebra
X satisfying conditions (1)–(3) of Lemma 3.8. Then the following is a direct
consequence of Theorem 3.3.

Corollary 3.9. Let G =
[
A M
N B

]
be a generalized matrix algebra with

zero bilinear pairings. If

(1) W (A)=A and every Lie derivation of A is of the standard form (♠),
(2) W (B)=B and every Lie derivation of B is of the standard form (♠),

then each Lie derivation of G is of the standard form (♠).
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Proof. Since the bilinear pairings are both zero, (1) implies condition (1)
of Theorem 3.3, and (2) implies condition (2) of Theorem 3.3.

Corollary 3.10 ([5, Theorem 11]). Every Lie derivation of a triangular
algebra U =

[
A M
O B

]
is of the standard form if:

(1) W (A) = A and every Lie derivation of A is of the standard form;
(2) W (B) = B and every Lie derivation of B is of the standard form.

To end this section, let us give an application of Corollary 3.9. We will
construct a class of algebras with bilinear pairings being both zero, called
generalized one-point extension algebras. Note that they are not triangular
algebras. We will show that each Lie derivation of a generalized one-point
extension algebra is of the standard form (♠). Moreover, the standard de-
composition is unique.

Definition 3.11. Let (Γ0, Γ1) be a finite quiver without oriented cycles
and |Γ0| ≥ 2. Let Γ ∗ be a quiver whose vertex set is Γ0 and whose arrow set
is

Γ ∗1 = {α∗ : i→ j | α : j → i is an arrow in Γ1}.
For a path p = αn · · ·α1 in Γ , write the path α∗1 · · ·α∗n in Γ ∗ by p∗. Given
a set ρ of relations, denote Λ = K(Γ, ρ). Define the generalized one-point
extension algebra E(Λ) to be the quotient algebra of the path algebra of the
quiver (Γ0, Γ1 ∪ Γ ∗1 ) by the ideal generated by

ρ ∪ ρ∗ ∪ {αβ∗ | α, β ∈ Γ1} ∪ {α∗β | α, β ∈ Γ1}.
In order to study the Lie derivations of E(Λ), we need the following

lemmas.

Lemma 3.12. W (E(Λ)) = E(Λ).

Proof. According to the definition, W (E(Λ)) contains all idempotents ei.
Furthermore, for every arrow α with e(α) = j, the fact that α = [ej , α]
implies α ∈ W (E(Λ)). For the same reason, α∗ ∈ W (E(Λ)) and then
W (E(Λ)) = E(Λ).

Since Γ is a quiver without oriented cycles, we can take a source i in Γ .
Let ei be the corresponding idempotent in E(Λ). Then E(Λ) is isomorphic to
a generalized matrix algebra G =

[
A M
N B

]
with A ' E(Λ′), where the quiver

(Γ ′, ρ′) of Λ′ is obtained from Γ by removing vertex i and the relations
starting at i. Moreover, in view of the construction of E(Λ) the bilinear
pairings are both zero.

Lemma 3.13. An additive mapping Θd is a derivation of E(Λ) if and
only if

Θd

([
a m

n b

])
=

[
δ1(a) am0 −m0b+ τ2(m)

n0a− bn0 + ν3(n) 0

]
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for all
[
a m
n b

]
∈ G, where m0 ∈M , n0 ∈ N and

δ1 : A→ A, τ2 : M →M, ν3 : N → N

are all R-linear mappings satisfying the following conditions:

(1) δ1 is a derivation of A;
(2) τ2(am) = aτ2(m) + δ1(a)m and τ2(mb) = τ2(m)b;
(3) ν3(na) = ν3(n)a+ nδ1(a) and ν3(bn) = bν3(n).

Proof. Since the bilinear pairings are both zero, by Lemma 3.2 we only
need to show that µ4 = 0. But this is clear by condition (2) of Lemma 3.2.

Lemma 3.14. Every derivation Θ of E(Λ) with Im(Θ) ∈ Z(E(Λ)) is
zero.

Proof. If there exists a nonzero such derivation, then Lemma 3.13 yields
δ1 6= 0 and Im(δ1) ∈ Z(A). Repeating this process, we eventually get a
nonzero derivation f of K. However, this is impossible.

Proposition 3.15. Every Lie derivation of E(Λ) is of the standard
form (♠). Moreover, the standard decomposition is unique.

Proof. Obviously, W (K) = K. If |Γ ′0| = 1, then A ' K and hence
W (A) = A. If |Γ ′0| > 1, then A can be viewed as a generalized one-point
extension too. Thus W (A) = A. By Corollary 3.9, if each Lie derivation of
A has the standard form (♠), then so does E(Λ). Note that Γ is a finite
quiver. Repeating the above process finitely many times, we arrive at the
algebra K. Of course, each Lie derivation of K is of the standard form. This
implies that each Lie derivation of E(Λ) is standard. The uniqueness of the
standard decomposition is due to Lemma 3.14.

4. Lie derivations of dual extensions

Lemma 4.1. Let Γ be a finite quiver without oriented cycles, Λ = K(Γ, ρ)
and D(Λ) the dual extension of Λ. Then D(Λ) = W (D(Λ)).

Proof. If Γ only contains one vertex, then the algebra D(Λ) is trivial,
that is, D(Λ) ' K. In this case W (D(Λ)) = D(Λ).

Now suppose that the number of vertices in Γ is at least 2. It follows
from condition (3) in the definition of W (D(Λ)) that all the trivial paths are
contained in W (D(Λ)). On the other hand, Γ is a quiver without oriented
cycles. Thus for every arrow α ∈ Γ , we have α = [α, s(α)], since αs(α) = α
and s(α)α = 0. Condition (1) of the definition of W (D(Λ)) shows that α is
in W (D(Λ)). Analogously, α∗ ∈W (D(Λ)). Therefore all paths are contained
in W (D(Λ)), and hence D(Λ) = W (D(Λ)).
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Lemma 4.2. Let D(Λ) be the dual extension of Λ = K(Γ, ρ). Let i be a
source in Γ and

Pi = {p ∈P | s(p) = e(p) = i, p2 = 0}.

Denote by V the vector space spanned by all paths of Pi. Assume that ΘLied

is a Lie derivation on D(Λ). Then ΘLied(v) is in the center of D(Λ) for all
v ∈ V .

Proof. It is easy to see that

D(Λ) '
[
(1− ei)D(Λ)(1− ei) (1− ei)D(Λ)ei

eiD(Λ)(1− ei) eiD(Λ)ei

]
.

Thus ΘLied has the form described in Lemma 3.1. Condition (1) of Lemma
3.1 implies that δ4(p

∗p) = 0. Thus ΘLied(p∗p) = µ4(p
∗p). It follows from (2)

of Lemma 3.1 that µ4(p
∗p) = p∗q + q′p. This shows that 0m = mµ4(p

∗p)
= 0 and n0 = µ4(p

∗p)n = 0 for all m ∈ M and n ∈ N . Note that B is
commutative. Hence ΘLied(p∗p) ∈ Z(D(Λ)).

Now we are in a position to prove the main result of this paper.

Theorem 4.3. Let Γ be a quiver without oriented cycles, Λ = K(Γ, ρ)
and D(Λ) be the dual extension of Λ. Then each Lie derivation on D(Λ) is
of the standard form (♠).

Proof. Let ΘLied be a Lie derivation of D(Λ). Suppose that D(Λ) has
a vector space decomposition D(Λ) = V ⊕ W . Define a linear mapping
Θ′ by Θ′|V = 0, Θ′|W = ΘLied|W , and define a linear mapping ∆′ by
∆′(V ) = ΘLied(V ) and ∆′(W ) = 0. Clearly, ΘLied = Θ′ + ∆′. Furthermore,
it follows from Lemma 4.2 that Im(∆′) ⊂ Z(D(Λ)). This shows that Θ′ is
also a Lie derivation on D(Λ). Clearly, if each Lie derivation of type Θ′ is of
the standard form (♠), then every Lie derivation of D(Λ) has the standard
form (♠).

Assume i is a source in Γ , and ei the corresponding idempotent in D(Λ).
Then

D(Λ) '
[
(1− ei)D(Λ)(1− ei) (1− ei)D(Λ)ei

eiD(Λ)(1− ei) eiD(Λ)ei

]
.

Let ΘLied be a Lie derivation of D(Λ) satisfying ΘLied(V ) = 0. Let us
first prove that for D(Λ), condition (2) of Theorem 3.3 is satisfied. From
the construction of D(Λ) we know that eiD(Λ)ei is an algebra with a basis
{p∗p | s(p) = i}. Furthermore, if p, q are nontrivial, then (p∗p)(q∗q) = 0.
Thus the algebra eiD(Λ)ei is commutative. Let lB = µ4. Then lB([b, b′]) = 0
for all b, b′ ∈ eiD(Λ)ei. Note that (1 − ei)D(Λ)eiD(Λ)(1 − ei) = 0. That
is, ΦMN = 0. We conclude that µ1(mn) = 0 for all m ∈ M and n ∈ N .
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On the other hand, since Θ(p∗p) = 0 for all nontrivial paths p, we arrive at
µ4(p

∗p) = 0 and hence µ4(nm) = 0. Therefore lB(nm) = µ1(mn).
Let b = kei + v, where v ∈ V . It follows from the structure of M and

D(Λ) that

τ2(mb) = kτ2(mei) = kτ2(m) = τ2(m)kei = τ2(m)(kei + v) = τ2(m)b.

Similarly, we can obtain ν3(bn) = bν3(n). Then it follows from conditions
(4) and (5) of Lemma 3.1 that lB(b)n = nδ4(b) and mlB(b) = δ4(b)m.

By the definition of dual extension, it is easy to check that

(1− ei)D(Λ)(1− ei) ' D(Λ′),

where Λ′ = K(Γ ′, ρ′), (Γ ′, ρ′) being the quiver obtained from Γ by removing
vertex i and the relations starting at i. Clearly, Γ ′ has no oriented cycles.
Then Lemma 4.1 implies that D(Λ′) = W (D(Λ′)). Thus ΘLied is of the
standard form (♠) if each Lie derivation on D(Λ′) is standard.

Note that Γ is a finite quiver. Repeating this process finitely many times,
we arrive at the algebra K. That is, if each Lie derivation of K is standard,
then so is the case for D(Λ).

Corollary 4.4. Let ΘLied be a Lie derivation of D(Λ). Then there
exists a derivation D of D(Λ) with ΘLied(x) = D(x) for all x =

∑
i kipi ∈ Λ,

where pi are nontrivial paths.

Proof. By Theorem 4.3,ΘLied is of the standard form (♠), soΘLied=D+∆,
where D is a derivation of D(Λ) and ∆(x) ∈ Z(D(Λ)) for all x ∈ D(Λ). Note
that ∆ is also a Lie derivation of D(Λ). Thus for a path p with s(p) 6= e(p),
the fact that p = [p, s(p)] gives

∆(p) = [∆(p), s(p)] + [p,∆(s(p))].

It follows from the image of ∆ being in Z(D(Λ)) that ∆(p) = 0. Moreover,
let p be a nontrivial path with s(p) = e(p). By the construction of D(Λ),
p is of the form x∗x, where x is a nontrivial path in Γ . Therefore

∆(p) = ∆(x∗x) = ∆([x∗, x]) = [∆(x∗), x] + [x∗, ∆(x)] = 0.

Thus for all x =
∑

i kipi ∈ Λ, where the pi are nontrivial paths, we have
ΘLied(x) = D(x).

Let us address the problem of whether the standard decomposition of
each Lie derivation of D(Λ) is unique. It turns out that the answer is positive.
To see this, we first characterize the center of D(Λ).

Lemma 4.5. Let Γ be a connected quiver with |Γ0| ≥ 2. Then the ele-
ments in Z(D(Λ)) are all of the form

k +
∑

e(p)=s(p), p2=0

kpp.
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Proof. Assume that

x =
∑
i∈Γ0

kiei +
∑

s(p)6=e(p)

kpp+
∑

s(p)=e(p), p2=0

kpp ∈ Z(D(Λ)).

Applying the fact that etx = xet yields∑
t=s(p) 6=e(p)

kpp =
∑

t=e(p)6=s(p)

kpp.

This implies that for all paths p with s(p) 6= e(p), we have kp = 0 if s(p) = t
or e(p) = t. Since t is arbitrary, the coefficients of all paths p with s(p) 6= e(p)
are all zero.

Let α be an arrow in Γ1 with e(α) = j and s(α) = t. In view of αx = xα,
we know that kj = kt. Note that Γ is a connected quiver. Thus ki = k for
all i ∈ Γ0, where k ∈ K.

Lemma 4.6. Let D be a derivation of D(Λ) with Im(D) ⊂ Z(D(Λ)).
Then D = 0.

Proof. Clearly, D is also a Lie derivation of D(Λ). By the proof of
Corollary 4.4, we have D(p) = 0 for all nontrivial paths p. We now prove
D(ei) = 0 for all i ∈ Γ0. According to Lemma 4.5, we can assume that
D(ei) = ki +

∑
e(p)=s(p), p2=0 k

i
pp. Note that ei is an idempotent. By the

definition of derivation, it is easy to verify that ki = 0 and kip = 0 for
paths p with s(p) = i. Suppose there exists some p with nonzero coeffi-
cient in D(ei). Let s(p) = j 6= i. Then D(eiej) = 0. On the other hand,
D(eiej) = D(ei)ej + eiD(ej) 6= 0, a contradiction.

As a direct consequence of Lemma 4.6 we immediately get

Proposition 4.7. Let ΘLied be a Lie derivation of a dual extension
algebra D(Λ). Then the standard decomposition of ΘLied is unique.

Remark 4.8. On the one hand, a Lie derivation of a dual extension
algebra can be uniquely expressed as the sum of a derivation and a lin-
ear mapping annihilating all commutators with images in the center of the
algebra. On the other hand, the sum of a derivation and such a linear map-
ping is clearly a Lie derivation. In this sense, the Lie derivations on dual
extensions are totally characterized.

Now let us give an example of a Lie derivation which is not a derivation.

Example 4.9. Let Γ be the quiver

•1 α // • β2 3// •

with relation βα, and Λ = K(Γ, ρ). Let D(Λ) be the dual extension of the
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algebra Λ. Define a linear mapping ΘLied on D(Λ) by

ΘLied(e1) = k1 + α∗α, ΘLied(e2) = k2 + β∗β, ΘLied(e3) = k3,

ΘLied(α) = α, ΘLied(α∗) = α∗, ΘLied(β) = β∗,

ΘLied(β∗) = β∗, ΘLied(α∗α) = 2α∗α, ΘLied(β∗β) = 2β∗β.

Then a direct computation shows that ΘLied is a Lie derivation of D(Λ) but
not a derivation.

Moreover, we give the standard decomposition of ΘLied. Define a linear
mapping ∆ on D(Λ) by

∆(e1) = k1 + α∗α, ∆(e2) = k2 + β∗β, ∆(e3) = k3,

and let D = ΘLied−∆. Then ΘLied = D+∆ is the standard decomposition
of Θ.
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