VOL. 141

2015

NO. 1

THE EXISTENCE OF c-COVERS OF LIE ALGEBRAS

ΒY

MOHAMMAD REZA RISMANCHIAN (Shahrekord)

Abstract. The aim of this work is to obtain the structure of *c*-covers of *c*-capable Lie algebras. We also obtain some results on the existence of *c*-covers and, under some assumptions, we prove the absence of *c*-covers of Lie algebras.

1. Introduction. Interaction between Schur multipliers and other mathematical concepts has a long history. This basic notion was introduced by I. Schur [S] in 1904 to study projective representations of groups. In 1942, H. Hopf [H2] proved that $M(G) \cong (R \cap F')/[R, F]$, where M(G) is the Schur multiplier of G and G = F/R is a free presentation of G. He also proved that the Schur multiplier of G is independent of the free presentation of G. The first to generalize the Schur multiplier to any variety of groups was R. Baer [B1]. It is well known that his concept is useful in classifying groups into isologism classes. Now it is clear that, if \mathcal{A} is the variety of abelian groups, then the Baer invariant of G with respect to \mathcal{A} is the Schur multiplier M(G), and if \mathcal{N}_c is the variety of nilpotent groups of class at most $c \geq 1$, then the Baer invariant of G with respect to \mathcal{N}_c is $\mathcal{N}_{c}M(G) = (R \cap \gamma_{c+1}(F))/\gamma_{c+1}(R,F)$. Following J. Burns and G. Ellis' paper [BE], we shall call $\mathcal{N}_c M(G)$ the *c*-nilpotent multiplier of G and denote it by $M^{(c)}(G)$. It is easy to see that the 1-nilpotent multiplier is actually the Schur multiplier.

By a Lie algebra we mean a Lie k-algebra, where k is a field. The finitedimensional Lie algebra analogous to the Schur multiplier was introduced in [B2, BMS2], and has been studied in various places: [BMS1, H1, M, Y]. Let L be a finite-dimensional Lie algebra. Its Schur multiplier, M(L), can be defined as a second cohomology group, a quotient of a free Lie algebra, and as the second number of a maximal defining pair. The first two authors of [SEA] generalized the notion of the Schur multiplier to c-nilpotent multiplier as follows. Let L be a Lie algebra presented as a quotient L = F/R of a free Lie algebra F and an ideal R. Then the c-nilpotent multiplier of L, $c \geq 1$, is

$$M^{(c)}(L) = (R \cap \gamma_{c+1}(F)) / \gamma_{c+1}(R, F),$$

²⁰¹⁰ Mathematics Subject Classification: Primary 17B30; Secondary 17B60.

Key words and phrases: c-nilpotent multiplier, c-cover, c-capable.

where $\gamma_{c+1}(F)$ is the (c+1)th term of the lower central series of F, $\gamma_1(R, F) = R$ and $\gamma_{c+1}(R, F) = [\gamma_c(R, F), F]$. This is analogous to the definition of the Baer invariant of a group with respect to the variety of nilpotent groups. The Lie algebra $M^{(1)}(L) = M(L)$ is the most studied Schur multiplier of L. It is readily verified that the Lie algebra $M^{(c)}(L)$ is abelian and independent of the choice of the free presentation of L (see [SEA]).

NOTATION. Let L be an arbitrary Lie algebra, and let L^n denote the nth term of the lower central series of L defined inductively by $L^1 = L$ and $L^{n+1} = [L^n, L]$ for $n \ge 1$. Let $Z_n(L)$ denote the nth term of the upper central series of L defined inductively by $Z_0(L) = \{0\}$ and requiring $Z_{n+1}(L)/Z_n(L)$ to be the center of $L/Z_n(L)$ for $n \ge 0$. An exact sequence $0 \to M \to K \to L \to 0$ (*) of Lie algebras is a *c*-central extension of L if M is a *c*-central subalgebra of K, i.e. $\gamma_{c+1}(M, K) = 1$ or equivalently $M \subseteq Z_c(L)$. The *c*-central extension (*) is said to be a *c*-stem extension of L whenever $M \subseteq \gamma_{c+1}(K)$. In addition, if M is isomorphic to $M^{(c)}(L)$, then the extension e is called a *c*-stem cover of L. In this case, K is said to be a *c*-cover of L.

DEFINITION 1.1. A Lie algebra L is said to be *c*-capable if there exists a Lie algebra K such that $L \cong K/Z_c(K)$.

2. Main results. In this section, we present the structure of *c*-covers of *c*-capable Lie algebras and state conditions which guarantee the absence of *c*-covers of Lie algebras. Batten et al. [BMS1] showed the existence of covers for finite-dimensional Lie algebras. Salemkar et al. [SEA] proved that any *c*-perfect Lie algebra admits at least one *c*-cover (recall that a Lie algebra L is *c*-perfect if $L^{c+1} = L$). The following lemma, determines the structure of the *c*-cover of the Lie algebra L for which $M^{(c)}(L)$ is Hopfian.

LEMMA 2.1 ([H1]). Let L be a Lie algebra whose c-nilpotent multiplier has the Hopfian property, and let $0 \to R \to F \xrightarrow{\pi} L \to 0$ be a free presentation of L. Then the extension $0 \to M \to L^* \xrightarrow{\psi} L \to 0$ is a c-stem cover of L if and only if there exists an ideal S in F such that

- (i) $L^* \cong F/S$ and $M \cong R/S$;
- (ii) $R/\gamma_{c+1}(R,F) = M^{(c)}(L) \oplus (S/\gamma_{c+1}(R,F)).$

The next corollary states the existence of c-covering algebras of a finitedimensional Lie algebra.

COROLLARY 2.2. Any finite-dimensional Lie algebra L has at least one c-covering algebra.

Proof. Let $F/R \cong L$ be a free presentation of L, and $S/\gamma_{c+1}(R, F)$ be a complement of $M^{(c)}(L)$ in $R/\gamma_{c+1}(R, F)$ for a suitable ideal S in F. Then by Lemma 2.1, the Lie algebra F/S is a c-covering algebra of L.

The following result indicates the existence of *c*-covers for *c*-capable Lie algebras.

THEOREM 2.3. Let L be a c-capable Lie algebra. Then there exists a Lie algebra K such that

- (i) $Z_c(K) \subseteq \gamma_{c+1}(K);$
- (ii) $K/Z_c(K) \cong L$.

Proof. Since L is c-capable, there exists a Lie algebra T such that $L \cong T/Z_c(T)$. Let $0 \to S \to F \to T \to 0$ be a free presentation of T. There exists an ideal R of F such that $Z_c(T) \cong R/S$. Then $0 \to R \to F \to L \to 0$ is a free presentation of L. Let $E = H/\gamma_{c+1}(R, F)$ be a vector complement of $D = (R \cap \gamma_{c+1}(F))/\gamma_{c+1}(R, F)$ in $B = R/\gamma_{c+1}(R, F)$. As $E \subseteq B \subseteq Z(C)$ $(C = \gamma_{c+1}(F)/\gamma_{c+1}(R, F))$, E is an ideal of C. Hence $B = D \oplus E$. Set $P = F/\gamma_{c+1}(R, F)$. Let K = P/E and M = B/E. One may observe that $M \subseteq Z_c(K)$. We also have $Z_c(F/S) = R/S$, which yields $\gamma_{c+1}(R, F) \subseteq S$. Suppose $f + \gamma_{c+1}(R, F) + E \in Z_c(K)$. Then $[f, x_1, \ldots, x_c] + \gamma_{c+1}(R, F) \in E$ for all $x_i \in F$, $(1 \leq i \leq c)$. Now

 $[f, x_1, \ldots, x_c] + \gamma_{c+1}(R, F) \in \gamma_{c+1}(F)/\gamma_{c+1}(R, F) \cap H/\gamma_{c+1}(R, F) = 0.$ Thus, $[f, x_1, \ldots, x_c] \in \gamma_{c+1}(R, F) \subseteq S$. Hence $f + S \in Z_c(F/S) = R/S$, and so $f \in R$. Therefore, $Z_c(K) = M$. Also,

$$Z_{c}(K) = B/E = (D \oplus E)/E \cong D = (R \cap \gamma_{c+1}(F))/\gamma_{c+1}(R,F).$$

COROLLARY 2.4. Any c-capable Lie algebra L has at least one c-covering algebra.

One should note that, in general, Lie algebras might not have a c-cover. For example, abelian Lie algebras of dimension at least 2 admit no c-cover with $c \ge 2$ (Corollary 2.8). Now, we prove the absence of c-covers for finitedimensional nilpotent Lie algebras.

THEOREM 2.5. Let L be a nilpotent Lie algebra of class at most $c \ge 1$ with $M^{(n)}(L) \ne \langle 1 \rangle$ for some n > c. Then L does not have any n-cover.

Proof. Towards a contradiction, suppose $0 \to M \to L^* \to L \to 0$ is an *n*-stem cover of the nilpotent Lie algebra *L*. Then $L^*/M \cong L$, $M \subseteq Z_n(L^*) \cap \gamma_{n+1}(L^*)$ and $M \cong M^{(n)}(L)$. Since *L* is nilpotent of class *c*, this implies that $\gamma_{c+1}(L) = 1$, and hence $\gamma_{c+1}(L^*) \subseteq M$. Using the fact that $M \subseteq Z_n(L^*) \cap \gamma_{n+1}(L^*)$ we deduce that $\gamma_{n+c+1}(L^*)$ is trivial. Thus we get $\gamma_{2c+1}(L^*) \subseteq \gamma_{n+c+1}(L^*) = 1$. Now, if $n \ge 2c$ then $\gamma_{n+1}(L^*) \subseteq \gamma_{2c+1}(L^*) = 1$, and if n < 2c then

 $\langle 1 \rangle = \gamma_{2c+1}(L^*) = \gamma_{n+2c-n+1}(L^*) \supseteq \gamma_{c+2c-n+1}(L^*) = \gamma_{3c-n+1}(L^*).$

Since n > c, we have 3c - n < 2c. Now continuing the above procedure we can show that $\gamma_{3c-3c+n+1}(L^*) = \gamma_{n+1}(L^*) = \langle 1 \rangle$. Thus $M^{(n)}(L) \cong M \subseteq \gamma_{n+1}(L^*) = \langle 1 \rangle$, a contradiction.

THEOREM 2.6. If L is a finite-dimensional nilpotent Lie algebra of dimension greater than 1 and class $c \geq 1$, then $M^{(n)}(L) \neq 0$ for all $n \geq c$.

Proof. Let L be a nilpotent Lie algebra generated by m > 1 elements. Hence, dim $(L/L^2) = m$. Let F be a free Lie algebra generated by m > 1elements with $L \cong F/R$. Since L has class c, we have $\gamma_{c+2}(F) \subsetneq \gamma_{c+1}(F)$ and $M^{(n)}(L) \cong \gamma_{n+1}(F)/\gamma_{n+1}(R, F)$. Also

$$m = \dim(L/L^2) = \dim\left(\frac{F/R}{(F^2 + R)/R}\right) = \dim(F/F^2 + R) \le \dim(F/F^2) = m.$$

Hence, $R \subseteq F^2$.

For contradiction, suppose $M^{(n)}(L) = 0$. Then

$$\gamma_{c+1}(F) \supseteq \gamma_{c+2}(F) \supseteq \gamma_{n+2}(F) = \gamma_{n+1}(F^2, F)$$

$$\supseteq \gamma_{n+1}(R, F) = \gamma_{n+1}(F) = \gamma_n(F^2, F) \supseteq \gamma_n(R, F)$$

$$= \gamma_n(F) \supseteq \cdots \supseteq \gamma_{c+1}(R, F) = \gamma_{c+1}(F),$$

which contradicts $\gamma_{c+2}(F) \subsetneq \gamma_{c+1}(F)$.

COROLLARY 2.7. Let L be a finite-dimensional nilpotent Lie algebra of dimension greater than 1 and class $c \geq 1$. Then L has no n-cover with n > c.

COROLLARY 2.8. Let L be an abelian Lie algebra of dimension greater than 1. Then L has no n-cover with $n \ge 2$.

Acknowledgements. The author is grateful to the referee for valuable comments and suggestions. The author was partially supported by the Center of Excellence for Mathematics, Shahrekord University, Iran.

REFERENCES

- [B1] R. Baer, Representations of groups as quotient groups, I–III, Trans. Amer. Math. Soc. 58 (1945), 295–419.
- [B2] P. Batten, Covers and multipliers of Lie algebras, PhD thesis, North Carolina State Univ., 1993.
- [BMS1] P. Batten, K. Moneyhun and E. Stitzinger, On covers of Lie algebras, Comm. Algebra 24 (1996), 4301–4317.
- [BMS2] P. Batten, K. Moneyhun and E. Stitzinger, On characterizing nilpotent Lie algebras by their multipliers, Comm. Algebra 24 (1996), 4319–4330.
- [BE] J. Burns and G. Ellis, On the nilpotent multipliers of a group, Math. Z. 226 (1997), 405–428 (Erratum at G. Ellis' homepage http://hamilton.ucg.ie/).
- [H1] P. Hardy, On characterizing nilpotent Lie algebras by their multipliers. III, Comm. Algebra 33 (2005), 4205–4210.
- [H2] H. Hopf, Fundamentalgruppe und zweite Bettische Gruppe, Comment. Math. Helv. 14 (1942), 257–309.
- [M] K. Moneyhun, Isoclinisms in Lie algebras, Algebras Groups Geom. 11 (1994), 9–22.

[SEA]	A. R. Salemkar, B. Edalatzadeh and M. Araskhan, Some inequalities for the
	dimension of the c-nilpotent multiplier of Lie algebras, J. Algebra 322 (2009),
	1575 - 1585.
[S]	I. Schur, Über die Darstellung der endlichen Gruppen durch gebrochene lineare
	Substitutionen, J. Reine Angew. Math. 127 (1904), 20–50.

[Y] B. Yankosky, On the multiplier of a Lie algebra, J. Lie Theory 13 (2003), 1–6.

Mohammad Reza Rismanchian Department of Pure Mathematics Faculty of Mathematical Sciences Shahrekord University, P.O. Box 115 Shahrekord, Iran E-mail: rismanchian@sci.sku.ac.ir

> Received 1 January 2015; revised 28 February 2015

(6492)