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Abstract. Given a measure-preserving transformation T of a probability space
(X,B, µ) and a finite measurable partition P of X, we show how to construct an Alpern
tower of any height whose base is independent of the partition P. That is, given N ∈ N,
there exists a Rokhlin tower of height N , with base B and error set E, such that B is
independent of P, and TE ⊂ B.

1. Introduction and statement of results. It has long been known
that, given an ergodic invertible probability measure-preserving system,
a Rokhlin tower may be constructed with base independent of a given parti-
tion of the underlying space [R1], [R2]. In [A], meanwhile, S. Alpern proved
a “multiple” Rokhlin tower theorem (see [EP] for an easy proof) whose full
statement we will not give, but which has the following corollary of interest:

Theorem 1.1. Let N ∈ N and ε > 0 be given. For any ergodic invert-
ible measure-preserving transformation T of a Lebesgue probability space
(X,B, µ), there exists a Rokhlin tower of height N with base B and error
set E with µ(E) < ε such that TE ⊂ B.

A Rokhlin tower of height N with base B and error set E is characterized
by the collection of sets {B, TB, . . . , TN−1B,E} forming a partition of X. If
in addition TE ⊂ B, we shall say Alpern tower. It is our goal to show that for
ergodic transformations on (X,B, µ), given a finite measurable partition P
of X, an Alpern tower may be constructed with base B independent of P.
Precisely:

Main Theorem 1.2. Let (X,B, µ) be a Lebesgue probability space, and
suppose P is a finite measurable partition of X. For any ergodic invertible
measure-preserving transformation T of X and any N ∈ N, there exists
a Rokhlin tower of height N with base B and error set E such that T (E) ⊂ B
and B is independent of P.
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We do not specify the size of the error set; but the process of constructing
our tower makes it clear that the error set may be made arbitrarily small.

2. Proof of main result. For the remainder of the paper, (X,B, µ) will
be a fixed Lebesgue probability space, and T : X → X will be an invertible
ergodic measure-preserving transformation on X. All sets mentioned will
be measurable, and we will adopt a cavalier attitude toward null sets. In
particular, “partition” will typically mean “measurable partition modulo
null sets”.

Definition 2.1. By a tower over B we will mean a set B ⊂ X, called
the base, and a countable partition B = B1 ∪ B2 ∪ · · · , together with the
images T iBj , 0 ≤ i < j, such that the family {T iBj : 0 ≤ i < j} consists of
pairwise disjoint sets. If this family partitions X, we will say that the tower
is exhaustive.

If a tower over B is exhaustive and B = BN ∪ BN+1, we shall speak
of an exhaustive Alpern tower of height {N,N + 1}, as in such a case,
{B, TB, . . . , TN−1B,E = TNBN+1} partitions X with TE ⊂ B. So we
may rephrase Theorem 1.2 as:

Theorem 1.2. Let (X,B, µ) be a Lebesgue probability space and suppose
P is a finite measurable partition of X. For any ergodic invertible measure-
preserving transformation T of X and any N ∈ N, one may find an exhaus-
tive Alpern tower of height {N,N + 1} having base independent of P.

We require a lemma (and a corollary).

Lemma 2.2. Let M ∈ N and let P = {P1, . . . , Pt} be a partition of X
with µ(Pi) > 0 for each i. There exists a set S of positive measure such that
if x ∈ S with first return n(x) = n, say, then |{x, Tx, . . . , Tn−1x}∩Pi| ≥M
for 1 ≤ i ≤ t.

Proof. For almost every x we may find K(x) such that for each i between
1 and t we have |{x, Tx, . . . , TK(x)−1x} ∩ Pi| ≥ M . Since almost all of X
is the countable union (over k ∈ N) of {x : K(x) = k}, there exists some
fixed K such that the set A = {x : K(x) ≤ K} has positive measure. If
C ⊂ A has very small measure (µ(C) < 1/K), then the average first-return
time of x ∈ C to C is 1/µ(C) > K, so we can find S ⊂ C with µ(S) > 0
such that S, TS, . . . , TK−1S are pairwise disjoint.

Corollary 2.3. Let M ∈ N and let P = {P1, . . . , Pt} be a partition
of X with µ(Pi) > 0 for each i. There is a tower having base

S = StM ∪ StM+1 ∪ · · ·
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where for each x ∈ Sr,

|{x, Tx, . . . , T r−1x} ∩ Pi| ≥M for all 1 ≤ i ≤ t.

Proof. Let S, K be as in Lemma 2.2 and choose any k ≥ K.

We turn now to the proof of Theorem 1.2.

Fix a partition P = {P1, . . . , Pt}, an arbitrary natural number N , and
ε > 0. Set mi = µ(Pi), and assume (without loss of generality) that 0 <
m1 ≤ · · · ≤ mt. Select and fix M > 3N3t/m1. Let S be as in Corollary 2.3
for this M ; hence S = StM∪StM+1∪· · · . (Some Si may be empty, of course.)
For each non-empty SR, partition SR by P-name of length R. (Recall that
x, y in SR have the same P-name of length R if T ix and T iy lie in the same
cell of P for 0 ≤ i < R.) Let C be the base of one of the resulting columns;
hence, every x ∈ C has the same P-name of length R (for some R ≥ tM),
and the length R orbit of each x ∈ C meets each Pi at least M times.

Partition C into pieces C(1), . . . , C(t) whose measures will be determined

later. Then partition each C(i) into N equal measure pieces, C(i) = C
(i)
1 ∪

· · · ∪ C(i)
N .

Now we fix (R,C) and focus our attention on the height R column over

a single C(i) and its height R subcolumns over C
(i)
j , 1 ≤ j ≤ N . We refer

to the sets T rC(i), 0 ≤ r < R, as levels and to the sets T rC
(i)
j as rungs.

We are going to build a portion of B by carefully selecting some rungs
from the subcolumns under consideration. As we move through the various
subcolumns, we need to have gaps of length N or N + 1 between selections.
Now to specifics. We want to have our C(i)-selections form a “staircase” of
height N starting at level N2 − N . That is, at height (N − 1)N , the rung

over C
(i)
1 is the only one selected; at height N(N −1)+1, the rung over C

(i)
2

is the only one selected, etc., so that at height N2 − 1, the rung over C
(i)
N is

the only one selected.

This is easy to accomplish. First, we select each base rung C
(i)
j , j =

1, . . . , N (i.e. the rungs in the zeroth level). Over C
(i)
1 , we then select N − 1

additional rungs with gaps of length N ; that is, we select the rungs at heights

N , 2N, . . . , (N − 1)N . Over C
(i)
2 we select N − 2 rungs with gap N , then a

rung with gap N + 1. We continue in this fashion, choosing one less gap of
length N and one more of length N + 1 in each subsequent subcolumn. In

the last subcolumn (that over C
(i)
N ) we are thus choosing rungs with gaps

of length N + 1 a total of N − 1 times. See the left side of Figure 1 for the
case N = 4.

Now we perform a similar procedure moving down from the top, so as
to obtain a staircase starting at height R − (N2 − 1). Note that there are
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either N or N − 1 unselected rungs at the top of each subcolumn. See the
right side of Figure 1.

C
(i)
1 C

(i)
2 C

(i)
3 C

(i)
4

...

...

Fig. 1. Bottom and top of tower for N = 4

Next, we want to select rungs through the middle of the tower so as to
iterate the staircase pattern all the way up, except that we will skip certain
levels (i.e. not select any of their rungs), continuing the staircase pattern
where we left off with the following rung. As we want to match stride with
the staircase already selected at the top, the total number of levels skipped
in the middle section will be constrained to a certain residue class modulo N ,
and as we want the selected rungs to form a portion of an Alpern tower of
height {N,N + 1}, we cannot skip any two levels with fewer than N levels
between them.

Some terminology: an appearance of Pj in C(i) is just a level of C(i) that
is contained in Pj . A selection of Pj is just a selected rung in a subcolumn
of C(i) that is contained in Pj . The net skip of Pj in the tower over C(i) is
defined as

Sj(C
(i)) = (# of appearances of Pj)− (# of selections of Pj).

For example, looking at Figure 1, one sees that four zeroth level rungs are
selected. So if the zeroth level belongs to Pj , the zeroth level contribution
to Sj(C

(i)) is −3 (one appearance and four selections).
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Let δ = 2(N − 1)(N − 2) and choose γ with

δ

m1
+N > γ ≥ δ

m1
and (t− 1)δ + γ ≡ R (mod N).

Over C(i), we skip a quantity of “middle” levels belonging to each Pj (for
j 6= i) sufficient to ensure that Sj(C

(i)) = δ for j 6= i and Si(C
(i)) = γ. (Note

that Pj cannot have been skipped more than δ times in the outer rungs.)
This is not delicate; one can just enact the selection greedily. That is to
say, travel up the tower, beginning at level N2, skipping rungs that belong
to cells requiring additional skips whenever there has been no too-recent
skip. Since each Pj appears at least M > 3N3t/m1 times, and we need only
γ + (t− 1)δ ≤ 2N2t/m1 net skips, we will find all the skips we need.

We have not specified the relative masses of the bases of the columns C(i).
Set

(2.1) bj =
µ(Pj)(γ + (t− 1)δ)− δ

γ − δ

and set µ(C(i)) = biµ(C), 1 ≤ i ≤ t. Our choice of γ ensures that bi ≥ 0 for
each i, and one easily checks that

∑
bi = 1, so this is coherent.

Let BC be the union of the rungs selected from the columns over C (this
includes each of the rungs selected from each of the N subcolumns over C(i),
1 ≤ i ≤ t) and set B =

⋃
C BC (here C runs over the bases of the columns

corresponding to every P-name of length R for every R ≥ tM). It is clear
that B forms the base of an Alpern tower of height {N,N + 1}. It remains
to show that B is independent of P, which we will do by constructing a
set A, disjoint from B, such that both A and A ∪ B can be shown to be
independent of P.

Here is how A is constructed. Consider again the tower over C(i). This
tower had R levels and RN rungs, some of which were selected for the
base B. We now choose γ+ (t− 1)δ additional rungs for the set A. For each
j 6= i, δ of these rungs should be contained in Pj , with the remaining γ
contained in Pi. (We do not worry about gaps and whatnot; just choose any
such collection of rungs disjoint from the family of B-selections.) Denote the
union of these additional rungs (in all of the columns over C(i), 1 ≤ i ≤ t)
by AC . Finally, set A =

⋃
C AC .

That A ∪ B is independent of P is a consequence of the fact that for
each C(i), the number of appearances of Pj in the column over C(i) is pre-
cisely the number of B-selections from Pj plus the number of A-selections
from Pj . Accordingly, the relative masses of the cells of P restricted to A∪B
are equal to the relative frequencies of the appearances of the cells of P in
the column over C(i). Therefore, since the proportion of the column that is
selected for A ∪ B is independent of C(i) (in fact is always equal to 1/N),
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and since the columns over the various C(i) exhaust X, we see that A ∪ B
is independent of P (in fact µ(Pj ∩ (A ∪B)) = 1

N µ(Pj), 1 ≤ j ≤ t).
That A is independent of P, meanwhile, is a consequence of (2.1). Fix-

ing C and recalling that bi = µ(C(i))/µ(C), that there were δ Pj-rungs in
the column over C(i) selected for A, i 6= j, and that there were γ Pi-rungs
in the column over C(i) selected for A, we see that the relative mass of Pi

among the A-selections in the tower over C is

ri =
biγ + (1− bi)δ
γ + (t− 1)δ

.

But, solving (2.1) for µ(Pi), one gets

µ(Pi) =
biγ + (1− bi)δ
γ + (t− 1)δ

as well. So the intersection of A with the column over C is independent of P.
That this is true for all C gives independence of A from P simpliciter.

REFERENCES

[A] S. Alpern, Generic properties of measure preserving homeomorphisms, in: Ergodic
Theory, Lecture Notes in Math. 729, Springer, Berlin, 1979, 16–27.

[EP] S. J. Eigen and V. S. Prasad, Multiple Rokhlin tower theorem: a simple proof, New
York J. Math., 3A (1997), 11–14.

[R1] V. A. Rokhlin, On the fundamental ideas of measure theory, Amer. Math. Soc.
Transl. 71 (1952).

[R2] V. A. Rokhlin, Generators in ergodic theory II, Vestnik Leningrad. Univ. 20 (1965),
no. 13, 68–72 (in Russian).

James T. Campbell, Steven Kalikow, Randall McCutcheon
Department of Mathematical Sciences
University of Memphis
Dunn Hall 373
Memphis, TN 38152, U.S.A.
E-mail: jcampbll@memphis.edu

skalikow@memphis.edu
rmcctchn@memphis.edu

Jared T. Collins
Department of Mathematics

and Computer Science
Freed-Hardeman University

Henderson, TN 38340, U.S.A.
E-mail: jtcollins@fhu.edu

Raena King
Department of Mathematics

and Computer Science
Christian Brothers University

Memphis, TN 38104, U.S.A.
E-mail: rking2@cbu.edu

Received 23 March 2015 (6581)


	1 Introduction and statement of results
	2 Proof of main result
	REFERENCES

