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COMPLETE GRADIENT RICCI SOLITONS

BY

UDO SIMON (Berlin)

Abstract. For complete gradient Ricci solitons we state necessary conditions for
a non-trivial soliton structure in terms of intrinsic curvature invariants.

1. Introduction. In [5] Hamilton introduced the notion of Ricci soli-
tons, generalizing the concept of Einstein spaces; for dimension n ≥ 3, this
generalization amounts to the following definitions:

Definition 1. (a) Let (M, g) be a connected, oriented Riemannian
manifold with metric g of dimension dimM =: n ≥ 2. The quadruple
(M, g,X, λ), where X is a vector field and λ ∈ R, is called a Ricci soli-
ton if the following equation for the (0, 2) Ricci tensor Ric is satisfied:

(1) Ric + 1
2LXg = λg;

here LXg denotes the Lie derivative of the metric g with respect to X.

(b) When X is the gradient vector field of a potential function f ∈ C∞
on M (we write X = grad f), then (M, g, f, λ) is called a gradient Ricci
soliton; in this case the previous equation reads

(2) Ric + Hess f = λg,

where Hess f := Hessg f stands for the covariant Hessian of f.

(c) A soliton (M, g,X, λ) will be called expanding, steady or shrinking
if λ < 0, λ = 0 or λ > 0, respectively; analoguous terminology is used for
gradient Ricci solitons.

(d) We call a gradient Ricci soliton trivial if f is constant.

In this paper we proceed with our investigations from [8]; in the intro-
duction of [8] we summarized some known results for compact and also for
complete Ricci solitons. Recall that Perelman [9] proved that compact Ricci
solitons are always gradient.
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Here we present results for complete (in our paper complete always means
complete, but non-compact) gradient Ricci solitons with particular emphasis
on low dimensions. As in the foregoing paper [8], our interest is in the
behaviour of intrinsic curvature invariants of complete Ricci solitons. As
motivation, we recall a statement of A. Derdziński [4]:

Statement. Non-trivial compact Ricci solitons are only possible if:

• the dimension n satisfies n ≥ 4;
• the scalar curvature R is non-constant and positive;
• the soliton constant λ in the definition of Ricci solitons is in a certain

real interval, namely

0 < nλ ∈ (minR,maxR).

In this paper our aim is to prove similar statements for complete gradient
Ricci solitons. As a typical example of such a result we state

Theorem 1. Let (M, g, f, λ) be a complete, non-compact gradient Ricci
soliton of dimension n ≥ 2; assume that:

(i) the Ricci curvature is bounded below, say Ric ≥ δg for some δ ∈ R;
(ii) R 6= 0;
(iii) λ > 0;
(iv) f is bounded above.

Then nλ ∈ [infR, supR].

An essential tool for the proofs is the maximum principle of Omori–Yau,
a powerful tool for complete Riemannian manifolds.

2. Preliminaries

2.1. Basic notation for Riemannian manifolds. Throughout the
paper let (M, g) be a connected, oriented Riemannian manifold of dimension
n ≥ 2.

2.1.1. Levi-Civita connection and derivatives. Denote by ∇ the Levi-
Civita connection of (M, g), by grad f the gradient and by ∆ the Laplacian
acting on functions,

∆f := traceg Hess f

for f ∈ C∞(M).

2.1.2. Curvature. Denote by Ric the g-self adjoint Ricci operator, and
by R := traceRic the scalar curvature. Recall that the second Bianchi
identity for the Riemannian curvature tensor implies

(3) 2∇iRij = ∇jR;
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moreover, denote by ρi the eigenvalues and by ei the associated orthonormal
eigenvectors of Ric. We write κij for the sectional curvature of the 2-plane
span(ei, ej) where i 6= j. Recall that ρi =

∑
j 6=i κij , thus

R =
∑
i

ρi =
∑
j 6=i

κij .

Note that, for n ≥ 3, if the sectional curvature is non-negative, then

R− 2 max
k

ρk ≥ 0.

2.1.3. Standard local notation. We adopt the standard local notation,
raise and lower indices as usual, and apply the Einstein convention. In local
notation we write gij and Rij for the components of the metric tensor g
and the Ricci tensor Ric, respectively. Considering local coordinates ui and
a Gauß basis {∂i}, we write partial derivatives of a function f ∈ C∞(M)

in the form fi := ∂if := ∂f
∂ui
, while we write covariant derivatives of f as

∇jfi = ∇j∇if.

2.2. The maximum principle of Omori–Yau [14]. Let (M, g) be
a complete, non-compact Riemannian n-manifold with Ricci curvature
bounded below, Ric ≥ δg for some δ ∈ R. Let f ∈ C2(M) be bounded
below. Then there is a sequence of points {pk ∈ M}k∈N such that the fol-
lowing O-Y-relations are satisfied:

(1) limk f(pk) = inf f ;
(2) limk ‖grad f‖(pk) = 0;
(3) limk (∆f)(pk) ≥ 0.

3. Gradient Ricci solitons. We recall some relations for gradient Ricci
solitons.

3.1. Basic relations for gradient Ricci solitons. From the definition
we get

∆f +R = nλ,(4)

‖Hess f‖2 = nλ2 − 2λR+ ‖Ric‖2 = 1
n(nλ−R)2 +

∥∥Ric− 1
nRg

∥∥2.(5)

The foregoing equations imply

λ(2R− nλ) ≤ ‖Ric‖2.
Differentiating (2), Hamilton [5] derived the following important equation:

(6) R+ ‖grad f‖2 − 2λf = const =: c,

where c ∈ R. Relations (4) and (6) together give

(7) ∆f − ‖grad f‖2 + 2λf = nλ− c =: θ = const,

where θ ∈ R.



128 U. SIMON

Remark 1. We add some simple observations:

• If R ≥ 0 then 2λf + c ≥ 0. In particular, if additionally λ > 0 then f
is bounded below.
• As a consequence of (2) and Hamilton’s equation (6) we get

2Rijf
j = ∂iR = Ri,(8)

2RijfiRj = ‖gradR‖2 ≥ 0.(9)

4. PDEs for gradient Ricci solitons

4.1. Known PDEs. We refer to [8, Section 3] and recall the following
two propositions; of course, some of the following PDEs, e.g. the ones for
∆R and ∆‖grad f‖2, already appeared in the literature before.

Proposition 1. The scalar curvature of a gradient Ricci soliton with
dimension n ≥ 2 satisfies the following PDEs:

1
2∆R = Ric(grad f, grad f) + (λR− ‖Ric‖2),(10)
1
4∆R

2 = R ·
(
Ric(grad f, grad f) + (λR− ‖Ric‖2)

)
+ 1

2‖gradR‖2,(11)
1
2∆‖grad f‖2 = ‖Hess f‖2 − Ric(grad f, grad f),(12)

∆(‖grad f‖2 +R) = 2λ∆f = 2λ(nλ−R).(13)

Proposition 2. The Ricci tensor of a gradient Ricci soliton with di-
mension n ≥ 2 satisfies the following PDE:

1
2∆‖Ric‖2 = 2

∑
i<j

κij(ρi − ρj)2 + 1
2((4− n)λ+R)‖Ric‖2

+
∥∥∇(Ric− 1

nRg
)∥∥2 + 1

n‖gradR‖2 − 2
∑

(ρi)
3 + div,

where div denotes a divergence term, namely (see [8])

div := 1
2∇j(‖Ric‖2f j).

Remark 2. (a) We calculated the foregoing formula using results from
[11]. Our version of Proposition 2 is a minor modification of the result in [8].

(b) Since Perelman [9] has shown that compact Ricci solitons are gradi-
ent, the above PDEs are satisfied by all compact Ricci solitons.

4.2. The Hamilton constant and the Hamilton function. We add
some remarks on Hamilton’s equation (6). Let us rewrite it in the form

H := R− 2λf = c− ‖grad f‖2,

and call c the Hamilton constant and H the Hamilton function. First we
state some simple
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Observations on compact Ricci solitons

(i) If f is stationary at p ∈ M then H(p) = Hmax = c is maximal and
‖grad f‖2(p) = 0. Moreover, at p we have gradH = 0 and gradR = 0.

(ii) If, at q ∈M , H(q) = Hmin is minimal then

‖grad f‖2(q) = max
M
‖grad f‖2,

thus gradH = 0 and 2λ grad f(q) = gradR(q).

(iii) Equation (7) implies

Proposition 3. Let (M, g, f, λ) be a compact gradient Ricci soliton.
Then the extrema of f satisfy

2λfmin ≤ nλ− c ≤ 2λfmax.

Remark 3. For a compact gradient Ricci soliton we have:

(a) If the soliton is trivial then 2λf = const = nλ− c.
(b) If H = const then the soliton is trivial.
(c) If the soliton is non-trivial then there exists q ∈M such that

Rijfifj(q) > 0.

Proof. We prove (c): Assume that (M, g, f, λ) is non-trivial; then the in-
tegral of Rijfifj is positive since, by (12), it equals the integral of ‖Hess f‖2,
which is positive (or else Hess f as well as ∆f would vanish, implying that
the soliton is trivial). Thus, the assertion follows.

Observations on complete Ricci solitons

Proposition 4. Assume that (M, g, f, λ) satisfies:

(i) (M, g) is complete;
(ii) Ric ≥ δg for some δ ∈ R;

(iii) f is bounded;
(iv) λ 6= 0.

Then

2λ inf f ≤ nλ− c ≤ 2λ sup f.

Proof. From the assumptions we can apply the maximum principle of
Omori–Yau: there exists a sequence {pk}k of points such that

0 ≤ lim
k
∆f = lim

k
‖grad f‖2 − 2λ lim

k
f + (nλ− c) = −2λ inf f + (nλ− c).

Now consider analogously the function −f with inf(−f) = sup f.

Diagonalizable quadratic forms. Assume that, for orthonormal eigenvec-
tors e1, . . . , en of the Ricci tensor,

Ric(ei, ej) = ρiδij and g(ei, ej) = δij .
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Then equation (2) implies that the Hessian must have diagonal form, too:
Hess(ei, ej) = σiδij , where σ1, . . . , σn denote the eigenfunctions of the Hes-
sian. Equation (2) gives ρi + σi = λ for all i = 1, . . . , n.

5. Gradient Ricci solitons in dimension n ≥ 2

5.1. The scalar curvature and λ. In the following subsections we
collect some relations between R and λ. One can find the first lemma in
several papers, e.g. [3], [1], [2]:

Lemma 1. Let (M, g, f, λ) be a complete gradient Ricci soliton with
λ > 0. Then R ≥ 0.

One of the main results in [10] is the following

Theorem 2. Let (M, g, f, λ) be a complete gradient Ricci soliton of di-
mension n ≥ 2. Then:

• If λ < 0 then nλ ≤ infR ≤ 0, and the equality nλ = infR implies that
the gradient soliton is trivial.
• If λ > 0 then nλ ≥ infR ≥ 0, and the equality nλ = infR implies that

the gradient soliton is trivial. Moreover, the equality infR = 0 implies
that (M, g) is isometric to the standard flat Rn.

Now we recall Proposition 6.2 from [8]:

Proposition 5. Consider a complete gradient Ricci soliton (M, g, f, λ)
of dimension n ≥ 2 with λ 6= 0. Assume that:

(i) the Ricci curvature is bounded below, say Ric ≥ δg for some δ ∈ R;
(ii) λR ≤ ‖Ric ‖2.

Then λ infR ≥ 0.

Lemma 2. Consider a complete gradient Ricci soliton (M, g, f, λ) of di-
mension n ≥ 2 such that:

(i) Ric ≥ δg for some δ ∈ R;
(ii) f is bounded below.

Then:

(a) infR ≤ nλ.
(b) δ ≤ λ.
Proof. (a) In view of our assumptions, there exists a sequence of points

{pk ∈ M}k∈N such that relations (1)–(3) of Subsection 2.2 are satisfied.
Consequently, from equation (4),

0 ≤ lim
k

(∆f)(pk) = nλ− lim
k
R(pk).

This gives infR ≤ limR ≤ nλ.
(b) The proof of this part uses the last inequality with nδ ≤ limR.
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Theorem 2 and Lemma 2 imply the following

Corollary 1. Consider a complete gradient Ricci soliton (M, g, f, λ)
of dimension n ≥ 2 for which:

(i) Ric ≥ δg for some δ ∈ R;
(ii) f is bounded below;

(iii) λ < 0.

Then the gradient soliton is trivial.

Proof. The preceding results together imply that infR = nλ. Thus, the
soliton is trivial.

5.2. Compact gradient Ricci solitons in dimension n ≥ 3

Remark 4. Let (M, g, f, λ) be compact with n ≥ 3. Assume that f
satisfies the PDE

(14) Hess f − 1
n∆f · g = 0.

Then f is constant, and the soliton has constant sectional curvature.

Proof. Assume that f is non-constant. Then the PDE (14) implies that
(M, g) is conformally equivalent to a standard sphere, moreover (M, g) is an
Einstein space as

0 = Hess f − 1
n∆f · g = −

(
Ric− 1

nRg
)
.

Both properties together imply that (M, g) is a Riemannian sphere of cur-
vature 1

n−1λ (see [13]).

5.2.1. Shrinking gradient solitons

Lemma 3. Consider a complete gradient Ricci soliton (M, g, f, λ) of di-
mension n ≥ 2 such that:

(i) the scalar curvature is bounded below, say R ≥ nδ for some δ ∈ R;
(ii) λ > 0.

Then f is bounded below.

Proof. For p ∈M equation (6) implies f(p) ≥ 1
2λ(nδ − c).

Remark 5. (a) Hamilton’s equation (6) has another immediate conse-
quence: If λ > 0 and f is bounded above then R is bounded above.

(b) Note that, in Lemma 3 and the foregoing remark (a), the assumptions
and Lemma 1 imply that R ≥ 0.

5.2.2. Steady gradient Ricci solitons

Remark 6. We assume that:

(i) λ = 0;
(ii) the Ricci curvature is bounded below, say Ric ≥ δg for some δ ∈ R;

(iii) f is bounded below.
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Then we can apply the O-Y-relations to formulas (4) and (6), respectively,
which gives:

−limR = lim∆f ≥ 0 and limR = c.

Hence c ≤ 0. In particular, if we additionally assume R ≥ 0 then c = 0 and
infR = 0.

5.2.3. Positive scalar curvature

Proposition 6. Let (M, g, f, λ) be a complete gradient Ricci soliton and
assume that:

(i) the Ricci curvature is bounded below, say Ric ≥ δg for some δ ∈ R;
(ii) nλ ≥ R;

(iii) λ > 0 and R 6= 0 everywhere;
(iv) f is bounded above.

Then 0 < nλ = sup R.

Proof. First note that Lemma 1 and assumption (iii) imply that R > 0.
We continue the proof in the following steps.

(a) From the assumptions we have

λ∆f = λ(nλ−R) ≥ 0.

(b) Lemma 3 allows us to choose γ ∈ (0,∞) such that

F := (λf + γ)−1/2

is well-defined, positive, and inf F > 0. Then

gradF = −λ
2F

3 grad f and F∆F = 3
4λ

2F 6‖grad f‖2 − F 4λ∆f.

(c) From the assumptions and Lemma 3 the function f is bounded above
and below. By definition F is bounded below, and inf F > 0. Again we apply
the maximum principle of Omori–Yau: there exists a sequence {pk}k ⊂ M
such that relations (1)–(3) of Subsection 2.2 are satisfied by F . Note that
limk gradF = 0 implies limk grad f = 0.

(d) We apply the PDE for F :

0 ≤ lim
k
F∆F = −(inf F )4λ

(
nλ− lim

k
R
)
≤ 0;

this and the assumptions finally give nλ = limkR = supR; thus Hamilton’s
equation implies that F takes its infimum where f and thus R takes its
supremum.

Proof of Theorem 1. Assume that (i)–(iv) in Theorem 1 are satisfied,
and assume additionally that nλ /∈ (infR, supR). Then

either 0 < nλ ≤ infR ≤ R, or R ≤ supR ≤ nλ,
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and one of the inequalities in the preceding results is satisfied. This leads to
nλ = infR or nλ = supR, and thus λ cannot be outside the closed interval
appearing in the assertion.

Corollary 2. Let (M, g, f, λ) be complete with λ 6= 0. Assume that:

(i) the Ricci curvature is bounded below, say Ric ≥ δg for some δ ∈ R;
(ii) λR ≤ ‖Ric‖2;

(iii) infR > 0;
(iv) f is bounded above.

Then nλ ∈ [infR, supR].

Proof. The assumptions and Proposition 5 together imply λ > 0. Now
apply Theorem 1.

5.2.4. Negative scalar curvature. For non-positively bounded Ricci cur-
vature we study various inequalities between R and λ.

Proposition 7. Let (M, g, f, λ) be complete and assume that:

(i) the Ricci curvature is non-positively bounded, say

δ1g ≥ Ric ≥ δ2g for some 0 ≥ δ1 ∈ R and 0 > δ2 ∈ R;

(ii) supR < 0;
(iii) nλ ≥ R.

Then nλ = supR, and the soliton is expanding.

Proof. We have ‖Ric‖2 ≥ 1
nR

2 and we apply relation (11):

1
4∆R

2 = R · Ric(grad f, grad f) + (−R)(‖Ric‖2 − λR) + 1
2‖gradR‖2

≥ 1
nR

2(nλ−R).

For 0 < γ ∈ R we define F := (R2 + γ)−1/2. From the assumptions we
conclude that inf F > 0; we calculate

F∆F = 3
4F

6‖gradR2‖2 − 1
2F

4∆R2.

Again we apply the maximum principle of Omori–Yau: there exists a se-
quence {pk}k ⊂ M such that the three O-Y-relations are satisfied for F .
Note that limk F (pk) = inf F > 0.

We finally arrive at

0 ≤ lim
k

(F∆F )(pk) ≤ 1
2(inf F )4(− lim

k
∆R2)

≤ − 1
2n(inf F )4 supR2 · (nλ− limR) ≤ 0.

The last series of inequalities together with the assumptions give nλ =
limkR = supR.
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Proposition 8. Let (M, g, f, λ) be complete, and assume that:

(i) the Ricci curvature is bounded, say δ1g ≥ Ric ≥ δ2g for some
δ1, δ2 ∈ R;

(ii) λ < 0;
(iii) f is bounded.

Then nλ = infR, and the gradient soliton is trivial.

Proof. Assumption (ii) and Theorem 2 imply that nλ ≤ R ≤ 0. Then
we have λ(nλ −R) ≥ 0, and we proceed as in Proposition 7 above. For an
appropriate 0 < γ ∈ R we define

F := (f + γ)−1/2,

and we choose γ such that inf F > 0. We calculate

F∆F = 3
4F

6‖grad f‖2 − 1
2F

4∆f.

Again we apply the principle of Omori–Yau: there exists a sequence
{pk}k ⊂ M such that the three O-Y-relations are satisfied for F ; we note
that limk gradF = 0 implies limk grad f = 0. Finally, we get

0 ≤ inf F · lim
k

(∆F )(pk) = (inf F )4
(
−1

2

)
(nλ− lim

k
R) ≤ 0

and nλ = limkR = infR. From Theorem 2 the soliton must be trivial.

Following the lines of the proof of Theorem 1, Propositions 7 and 8
together give:

Proposition 9. Let (M, g, f, λ) be complete, and assume that:

(i) the Ricci curvature is bounded, say δ1g ≥ Ric ≥ δ2g for some
0 ≥ δ1, 0 > δ2 ∈ R;

(ii) supR < 0;
(iii) f is bounded.

Then nλ ∈ [infR, supR].

Corollary 3. Let (M, g, f, λ) be complete, and assume that:

(i) δ1g ≥ Ric ≥ δ2g for some 0 ≥ δ1, 0 > δ2 ∈ R;
(ii) supR < 0;

(iii) f is bounded.

Then (M, g, f, λ) is trivial.

Proof. From the foregoing proposition we conclude that λ < 0. Now
Corollary 1 implies the assertion.
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5.3. Realization of Ricci-flat gradient Ricci solitons. In this sub-
section we state two remarks on Ricci-flat gradient Ricci solitons.

(1) Tashiro [12] proved: Let (M, g) be a complete Riemannian manifold
and let 0 6= λ ∈ R. Assume that there exists f ∈ C∞(M) satisfying

Hess f = λg.

Then (M, g) is isometric to the standard flat Rn.
(2) We sketch how we can realize a Ricci-flat gradient soliton as an

affine graph immersion of M into Rn+1. We refer to [6, Section 3.3.4] for
such immersions in relative hypersurface theory.

The case of λ = 0 and Ric ≡ 0 is trivial. For λ 6= 0, define F := 1
λf

and assume (M, g) to be Ricci-flat. Then Ric ≡ 0 and (2) give HessF = g.
A Riemannian metric g generated by a locally strongly convex function F
is called a Calabi or Hessian metric.

Identify a chart U ⊂ M with a subset U ⊂ Rn; define locally an affine
graph immersion

x : U 3 p 7→ (p, F (p))

with locally strongly convex F and relative normalization (Y, y), where:

• We have a constant transversal field y := (0, . . . , 0, 1).
• We have a conormal field Y := (−∂1F, . . . ,−∂nF, 1).
• The Gauß structure equations read

∇̄udx(v) = dx(∇uv) + HessF (u, v)y;

here ∇̄ denotes the canonical flat connection of Rn+1 and ∇ its tan-
gential projection.
• We have the affine invariants:

– the cubic form with components Cijk = ∂k∂j∂iF,
– the relative shape operator S ≡ 0.

Then x(U) is part of an improper relative sphere with flat metric. An ex-
ample is an elliptic paraboloid with Blaschke structure.

6. Gradient Ricci solitons in dimension n = 2. As before we con-
sider a gradient Ricci soliton (M, g, f, λ). For n = 2 we denote the Gauß
curvature of (M, g) by K. Then equation (8) reads

(15) K grad f = gradK.

This and (9) imply

K2‖grad f‖2 = Kg(grad f, gradK) = ‖gradK‖2.
For K 6= 0 we get f = ln |K| + b for some b ∈ R. Moreover, if K 6= 0,
equation (15) is the basis for the following:
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Key Local Lemma for n = 2 (Derdziński–Nikčević–Simon; see [8,
Lemma 2.1]). Let (M, g, f, λ) be a gradient Ricci soliton. Then:

(a) |K| exp(−f) = const, and thus, everywhere on M , either K ≡ 0 or
K 6= 0.

(b) If K = const 6= 0 on M then λ = K, f = const. If K ≡ 0 on M
then trivially Hess f = λg.

The above result leads to the following

Observation. The Gauß curvatureK has a constant sign on (M, g, f, λ);
thus we have three possibilities: either K > 0, or K ≡ 0, or K < 0.

Additionally, we recall the following PDEs from [8, Section 3].

Proposition 10. Let (M, g, f, λ) be a gradient Ricci soliton, n = 2,
with Gauß curvature K. Then:

∆K = K‖grad f‖2 + 2K(λ−K),(16)

K∆K = ‖gradK‖2 + 2K2(λ−K),(17)

∆K2 = 4
[
‖gradK‖2 +K2(λ−K)

]
.(18)

6.1. Complete gradient Ricci solitons for n = 2. Considering the
above observation on the sign of the Gauß curvature, in each of the cases
with K 6= 0 we discuss the relations between λ and the Gauß curvature K
for complete gradient Ricci solitons.

6.1.1. Dimension n = 2 and K > 0. We study two cases of the relation
between K and λ.

Proposition 11. Let (M, g, f, λ) be a complete gradient Ricci soliton.

(i) If λ ≥ K > 0 then λ = supK and λ = K = const, f = const.
(ii) If K > 0 and K > λ then Proposition 5 implies λ inf K ≥ 0, thus

λ ≥ 0. There are two cases:

• If K ≥ λ > 0 then Ric ≥ λg, thus (M, g) is compact from Myers’
theorem, and (M, g, f, λ) is trivial.
• If K > 0 and λ = 0 then 2Kg = Hessg(−f), and on each chart

the function −f is locally strongly convex; more precisely, f =
lnK + const, thus

Hessg lnK + 2Kg = 0.

Moreover, in this case inf K = 0.

Proof. For the proofs of (i)–(ii) see [8, Propositions 6.1, 6.2]. For (ii)
with K > 0, λ = 0 it remains to prove that inf K = 0. For this we note
that K satisfies the assumptions of the Omori–Yau maximum principle. The
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foregoing PDE for Hessg lnK implies that

K∆K = ‖gradK‖2 − 4K3.

The O-Y-relations give

0 ≤ lim(K∆K) = lim ‖gradK‖2 − 4 limK3 = −4(inf K)3 ≤ 0.

Thus inf K = 0.

The last proposition and Lemma 1 give:

Theorem 3. Let (M, g, f, λ) be a complete gradient Ricci soliton with
n = 2 and K 6= 0, λ > 0. If λ /∈ (inf K, supK) then (M, g, f, λ) is trivial.

A result of Naber [7, Theorem 1.2] states sufficient conditions for a Ricci
soliton to be gradient; this gives the following corollary:

Corollary 4. Let (M, g,X, λ > 0) be a complete Ricci soliton with
n = 2 and 0 < K < δ for some δ ∈ R. If λ /∈ (inf K, supK) then (M, g,X, λ)
is trivial.

6.1.2. Dimension n = 2 and K < 0. Again we discuss two different
cases:

Proposition 12. Let (M, g, f, λ) be complete and K < 0.

(i) Assume that λ ≥ K ≥ δ for some δ ∈ R and supK 6= 0. Then
λ = supK < 0, thus (M, g, f, λ) is expanding.

(ii) Assume that 0 > K ≥ λ. Then λ = inf K.

Proof. We apply the Omori–Yau techniques developed above for the
PDE

K2∆K2 = 4K2(‖gradK‖2 +K2(λ−K))

satisfied by the function K2.

Remark 7. Note that in the preceding proposition the Gauß curva-
ture K is bounded, thus f is bounded by the Key Local Lemma. In both
cases (i) and (ii) of Proposition 12 the soliton (M, g, f, λ) is expanding.

From the statements in (i) and (ii) we get:

Theorem 4. If K < 0 with supK 6= 0 and if K is bounded below then:

(i) λ < 0, i.e. (M, g, f, λ) is expanding;
(ii) if λ /∈ [inf K, supK] then (M, g, f, λ) is trivial.

7. Gradient Ricci solitons in dimension n = 3. We recall Proposi-
tion 2 and calculate the right-hand side terms appearing in it for n = 3.
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7.1. Sectional curvature and Ricci curvature. For n = 3, it is
well known that the Ricci curvature determines the sectional curvature as
follows:

2κ12 = ρ1 + ρ2 − ρ3 = R− 2ρ3,

2κ13 = ρ1 + ρ3 − ρ2 = R− 2ρ2,

2κ23 = ρ2 + ρ3 − ρ1 = R− 2ρ1.

With elementary calculations one verifies the following relations.

Lemma 4. Let (M, g, f, λ) be a gradient Ricci soliton, and assume that
n = 3. Then

2
∑
i<j

κij(ρi − ρj)2 = 4
∑
i

ρ3i + 6ρ1ρ2ρ3 − 2R‖Ric‖2,

1
2(λ+R)‖Ric‖2 + 1

2(3λ−R)‖Ric‖2 = 2λ‖Ric‖2,

2
∑
i<j

κij(ρi − ρj)2 − 2
∑
i

(ρi)
3 + 2λ‖Ric‖2

= 2
∑
i

(ρi)
3 + 6ρ1ρ2ρ3 + 2(λ−R)‖Ric‖2.

7.2. The Laplacian ∆ ‖Ric‖2. The calculations in the foregoing sub-
section give

Proposition 13.

(a) The Ricci tensor Ric of a gradient Ricci soliton in dimension n = 3
satisfies

1
2∆‖Ric‖2 = 2

∑
i<j

κij(ρi − ρj)2 + 1
2(λ+R)‖Ric‖2 + ‖∇Ric ‖2

− 2
∑
i

(ρi)
3 + 1

2 grad ‖Ric‖2 ⊗ grad f + 1
2‖Ric‖2∆f

= 2
∑
i

(ρi)
3 + 6ρ1ρ2ρ3 + 2(λ−R)‖Ric‖2 + ‖∇Ric ‖2

+ 1
2 grad ‖Ric‖2 ⊗ grad f.

(b) If Ric ≥ 0 then
1
2∆ ‖Ric‖2 ≥ 2(λ− (R− ρinf))‖Ric‖2 + 6ρ1ρ2ρ3 + 1

2 grad(‖Ric‖2)⊗ grad f,

where ρinf := infp∈M{ρi(p) | i = 1, 2, 3}.
Theorem 5. Let (M, g) be a complete gradient Ricci soliton of dimen-

sion n = 3 with the following properties:

• δg ≥ Ric ≥ 0 for some δ ∈ R;
• λ ≥ sup (R− ρinf).

Then ρinf = 0 and 0 ≤ λ = sup(R) ≤ δ.



COMPLETE GRADIENT RICCI SOLITONS 139

Proof. For some positive γ ∈ R we define

F := (‖Ric‖2 + γ)−1/2.

The function F has the following properties:

(i) F > 0 on M ;
(ii) inf F > 0 on M ;

(iii) ∆F = 3
4F

5
∥∥grad ‖Ric‖2

∥∥2 − F 3 · 12∆‖Ric‖2;
(iv) gradF = 0⇔ grad ‖Ric‖2 = 0.

Again we apply the maximum principle of Omori–Yau: There exists a se-
quence {pk}k of points such that the three O-Y-relations for the function
F are satisfied. We note:

If lim
k
F (pk) = inf F then lim

k
‖Ric‖2 = sup ‖Ric‖2.

Moreover, under the assumptions of the theorem,

lim
k

1
2∆‖Ric‖2 ≥ 2(λ− (R− ρinf)) lim

k
‖Ric‖2 + 6 lim

k
(ρ1ρ2ρ3) ≥ 0.

As a consequence,

0 ≤ lim
k
∆F = lim

k
(−F 3)12∆‖Ric‖2

≤ lim
k

(−F 3) lim
k

[
2(λ− (R− ρinf))‖Ric‖2 + 6ρ1ρ2ρ3

]
≤ 0.

These inequalities and the assumptions together imply ρinf = 0 and λ =
supR.

Remark 8. From the assumptions and λ = supR we know that λ ≥ 0.
But λ = 0 leads to Ric ≡ 0 and Hess f ≡ 0, and therefore in the soliton
equation (2) all terms vanish identically.

Thus only the case δ ≥ λ > 0 is left. First it follows from Hamilton’s
equation (6) and the assumptions that 2λf ≥ −c, therefore f is bounded
below. Then, as in Proposition 4, we can prove that

2λ inf f ≤ nλ− c.

8. Gradient Ricci solitons in dimension n = 4. In this section we
apply the formula of Proposition 2 in dimension n = 4.

Proposition 14. The Ricci tensor Ric ≥ 0 of a gradient Ricci soliton
in dimension n = 4 satisfies

1
2∆‖Ric‖2 = 2

∑
i<j

κij(ρi − ρj)2 + 1
2R‖Ric‖2 + ‖∇Ric‖2

− 2
∑
i

(ρi)
3 + 1

2 grad(‖Ric‖2)⊗ grad f + 1
2‖Ric‖2∆f
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= 2
∑
i<j

κij(ρi − ρj)2 + 2λ‖Ric‖2 − 2
∑
i

(ρi)
3 + ‖∇Ric‖2

+ 1
2 grad ‖Ric‖2 ⊗ grad f.

Theorem 6. Let (M, g, f, λ) be a complete gradient Ricci soliton of di-
mension n = 4 satisfying the following relations:

• the sectional curvature is non-negative;
• Ric ≤ δg for some 0 < δ ∈ R;
• λ ≥ ρsup := supp∈M{ρi(p) | i = 1, 2, 3, 4}.

Then λ = ρsup.

Proof. For some positive γ ∈ R we define

F := (‖Ric‖2 + γ)−1/2.

As above, F has the following properties:

(i) F > 0 on M ;
(ii) inf F > 0 on M ;

(iii) ∆F = 3
4F

5
∥∥grad ‖Ric‖2

∥∥2 − F 3 1
2∆‖Ric‖2;

(iv) gradF = 0⇔ grad ‖Ric ‖2 = 0.

From Proposition 14 we have

1
2∆ ‖Ric‖2 = 2

∑
i<j

κij(ρi − ρj)2 + 2λ‖Ric‖2 − 2
∑
i

(ρi)
3

+ ‖∇Ric‖2 + 1
2 grad(‖Ric‖2)⊗ grad f.

We calculate the term

2λ‖Ric‖2 − 2
∑
i

(ρi)
3 ≥ 2(λ− ρsup)‖Ric‖2.

Again we apply the maximum principle of Omori–Yau, which gives

0 ≤ lim
k
∆F = lim

k
(−F 3)12∆‖Ric‖2 ≤ lim

k
(−F 3)(λ− ρsup) ≤ 0.

The assertion follows as before.

Remark 9. Under the assumptions of the preceding Theorem 6, if addi-
tionally ρsup > 0 then R ≥ 0; this follows from λ ≥ ρsup > 0 and Lemma 1.
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