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COMPLETE GRADIENT RICCI SOLITONS

UDO SIMON (Berlin)

Abstract. For complete gradient Ricci solitons we state necessary conditions for
a non-trivial soliton structure in terms of intrinsic curvature invariants.

1. Introduction. In [5] Hamilton introduced the notion of Ricci soli-
tons, generalizing the concept of Einstein spaces; for dimension n > 3, this
generalization amounts to the following definitions:

DEFINITION 1. (a) Let (M,g) be a connected, oriented Riemannian
manifold with metric g of dimension dimM =: n > 2. The quadruple
(M,g,X,\), where X is a vector field and A\ € R, is called a Ricci soli-
ton if the following equation for the (0,2) Ricci tensor Ric is satisfied:

(1) Ric+ 3Lxg = Ag;

here Lxg denotes the Lie derivative of the metric g with respect to X.

(b) When X is the gradient vector field of a potential function f € C*
on M (we write X = grad f), then (M,g, f,\) is called a gradient Ricci
soliton; in this case the previous equation reads

(2) Ric+ Hess f = \g,

where Hess f := Hess, f stands for the covariant Hessian of f.

(c¢) A soliton (M, g, X, ) will be called expanding, steady or shrinking
if A< 0, A=0o0r A > 0, respectively; analoguous terminology is used for
gradient Ricci solitons.

(d) We call a gradient Ricci soliton trivial if f is constant.

In this paper we proceed with our investigations from [§]; in the intro-
duction of [8] we summarized some known results for compact and also for
complete Ricci solitons. Recall that Perelman [9] proved that compact Ricci
solitons are always gradient.
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Here we present results for complete (in our paper complete always means
complete, but non-compact) gradient Ricci solitons with particular emphasis
on low dimensions. As in the foregoing paper [8], our interest is in the
behaviour of intrinsic curvature invariants of complete Ricci solitons. As
motivation, we recall a statement of A. Derdziriski [4]:

STATEMENT. Non-trivial compact Ricci solitons are only possible if:

e the dimension n satisfies n > 4;

o the scalar curvature R is non-constant and positive;

e the soliton constant A in the definition of Ricci solitons is in a certain
real interval, namely

0 < nA € (minR,maxR).

In this paper our aim is to prove similar statements for complete gradient
Ricci solitons. As a typical example of such a result we state

THEOREM 1. Let (M, g, f,\) be a complete, non-compact gradient Ricci
soliton of dimension n > 2; assume that:

(i) the Ricci curvature is bounded below, say Ric > dg for some § € R;
(i) R #0;
(iii) A > 0;
(iv) f is bounded above.
Then n\ € [inf R, sup R].

An essential tool for the proofs is the maximum principle of Omori—Yau,
a powerful tool for complete Riemannian manifolds.

2. Preliminaries

2.1. Basic notation for Riemannian manifolds. Throughout the
paper let (M, g) be a connected, oriented Riemannian manifold of dimension
n > 2.

2.1.1. Lewi-Clivita connection and derivatives. Denote by V the Levi-
Civita connection of (M, g), by grad f the gradient and by A the Laplacian
acting on functions,

Af = trace, Hess f

for f € C>(M).

2.1.2. Curvature. Denote by Ric the g-self adjoint Ricci operator, and
by R := traceRic the scalar curvature. Recall that the second Bianchi
identity for the Riemannian curvature tensor implies

(3) 2V;R! = V;R;
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moreover, denote by p; the eigenvalues and by e; the associated orthonormal
eigenvectors of Ric. We write x;; for the sectional curvature of the 2-plane
span(e;, e;) where i # j. Recall that p; =}, ; kij, thus

i i
Note that, for n > 3, if the sectional curvature is non-negative, then

R—kaaxpk > 0.

2.1.3. Standard local notation. We adopt the standard local notation,
raise and lower indices as usual, and apply the Einstein convention. In local
notation we write g;; and R;; for the components of the metric tensor g
and the Ricci tensor Ric, respectively. Considering local coordinates u? and
a GauB basis {0;}, we write partial derivatives of a function f € C*(M)
in the form f; := 9;f := 9 while we write covariant derivatives of f as

out”’
V;fi=V;Vif.

2.2. The maximum principle of Omori—Yau [14]. Let (M,g) be
a complete, non-compact Riemannian n-manifold with Ricci curvature
bounded below, Ric > dg for some § € R. Let f € C?(M) be bounded
below. Then there is a sequence of points {py € M }ren such that the fol-
lowing O-Y -relations are satisfied:

(1) limy, f(px) = inf f;
(2) limy |lgrad f[|(px) = 0;
(3) limy (Af)(pr) > 0.

3. Gradient Ricci solitons. We recall some relations for gradient Ricci
solitons.

3.1. Basic relations for gradient Ricci solitons. From the definition
we get

(4) Af+R=n),
(5) |[Hess f||> = nA2 — 2AR + |[Ric|? = £ (nA — R)? + ||Ric — 2Rg|*.
The foregoing equations imply
A2R — n)) < |Ric|?.
Differentiating (2)), Hamilton [5] derived the following important equation:

(6) R + ||grad f||> — 2\f = const =: c,
where ¢ € R. Relations and @ together give
(7) Af —|lgrad f||? + 2\f = n\ — ¢ =: § = const,

where 0 € R.
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REMARK 1. We add some simple observations:

e If R > 0 then 2\f + ¢ > 0. In particular, if additionally A > 0 then f
is bounded below.
e As a consequence of and Hamilton’s equation @ we get

(8) 2R;jf! = O;R =Ry,
(9) 2R f;R; = ||lgrad R||* > 0.

4. PDEs for gradient Ricci solitons

4.1. Known PDEs. We refer to [§, Section 3] and recall the following
two propositions; of course, some of the following PDEs, e.g. the ones for
AR and Algrad f||?, already appeared in the literature before.

PROPOSITION 1. The scalar curvature of a gradient Ricci soliton with
dimension n > 2 satisfies the following PDFEs:

(10) 3AR = Ric(grad f, grad f) + (AR — || Ric||?),

(11) 1AR? =R (Ric(grad f,grad f) + (AR — ||Ric||?)) + 3||erad R|?,
(12) A|grad f||* = |[Hess f||* — Ric(grad f,grad f),

(13)  A(|lgrad f||? + R) = 2AAf = 2\(nA — R).

PROPOSITION 2. The Ricci tensor of a gradient Ricci soliton with di-
mension n > 2 satisfies the following PDE:

LAIRic|? = 23 kig(oi — p3)? + 1((4 = n)A + R) | Ric?
1<j
+[|V(Ric — LRg)|* + Lllgrad | — 23" (p:)? + div,
where div denotes a divergence term, namely (see [8])
div := 3V, (||Ric||® 7).

REMARK 2. (a) We calculated the foregoing formula using results from
[T11]. Our version of Proposition [2|is a minor modification of the result in [§].

(b) Since Perelman [9] has shown that compact Ricci solitons are gradi-
ent, the above PDEs are satisfied by all compact Ricci solitons.

4.2. The Hamilton constant and the Hamilton function. We add
some remarks on Hamilton’s equation @ Let us rewrite it in the form

H:=R -2\ =c— |grad f||?,

and call ¢ the Hamilton constant and H the Hamilton function. First we
state some simple
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Observations on compact Ricci solitons

(i) If f is stationary at p € M then H(p) = Hpyax = ¢ is maximal and
|grad f]|?(p) = 0. Moreover, at p we have grad H = 0 and grad R = 0.
(ii) If, at ¢ € M, H(q) = Hmin is minimal then

lgrad £[[*(q) = max |grad £
thus grad H = 0 and 2\ grad f(q) = grad R(q).
(iii) Equation implies
PROPOSITION 3. Let (M,g, f,\) be a compact gradient Ricci soliton.
Then the extrema of [ satisfy
2A finin < A — ¢ < 2 finax.
REMARK 3. For a compact gradient Ricci soliton we have:

(a) If the soliton is trivial then 2\ f = const = n\ — c.

(b) If H = const then the soliton is trivial.

(c) If the soliton is non-trivial then there exists ¢ € M such that

RY fifi(q) > 0.

Proof. We prove (c): Assume that (M, g, f, \) is non-trivial; then the in-
tegral of RY f; f; is positive since, by (12)), it equals the integral of |[Hess f]|?,
which is positive (or else Hess f as well as Af would vanish, implying that
the soliton is trivial). Thus, the assertion follows. =

Observations on complete Ricci solitons
PROPOSITION 4. Assume that (M, g, f, \) satisfies:

(i) (M,g) is complete;
(ii) Ric > dg for some § € R;
(iii) f is bounded;
(iv) A #0.
Then
2 inf f < nA —c < 2Asup f.

Proof. From the assumptions we can apply the maximum principle of
Omori—Yau: there exists a sequence {py }x of points such that

0<limAf = li}£n||gradf||2 = 2Alim f + (nA = ¢) = —2\inf f + (nA — ¢).

Now consider analogously the function —f with inf(—f) =sup f. =

Diagonalizable quadratic forms. Assume that, for orthonormal eigenvec-
tors ey, ..., ey, of the Ricci tensor,

Ric(ei, ej) = Pz’éij and g(ei, Ej) = 5”
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Then equation implies that the Hessian must have diagonal form, too:
Hess(e;, ej) = 0;d;j, where oy,...,0, denote the eigenfunctions of the Hes-
sian. Equation gives p; +o; =Aforalli=1,... n.

5. Gradient Ricci solitons in dimension n > 2

5.1. The scalar curvature and A. In the following subsections we
collect some relations between R and A. One can find the first lemma in
several papers, e.g. [3], [1], [2]:

LEMMA 1. Let (M,g, f,\) be a complete gradient Ricci soliton with
A>0. Then R > 0.

One of the main results in [10] is the following

THEOREM 2. Let (M,g, f,\) be a complete gradient Ricci soliton of di-
mension n > 2. Then:

o If A <0 then nA <infR <0, and the equality nA = inf R implies that
the gradient soliton is trivial.

o If A >0 thennA > inf R > 0, and the equality nA = inf R implies that
the gradient soliton is trivial. Moreover, the equality inf R = 0 implies
that (M, g) is isometric to the standard flat R™.

Now we recall Proposition 6.2 from [§]:

PROPOSITION 5. Consider a complete gradient Ricci soliton (M, g, f,\)
of dimension n > 2 with X\ # 0. Assume that:

(i) the Ricci curvature is bounded below, say Ric > dg for some § € R;
(ii) AR < ||Ric %
Then Ainf R > 0.

LEMMA 2. Consider a complete gradient Ricci soliton (M, g, f,\) of di-
mension n > 2 such that:

(i) Ric > dg for some § € R;

(ii) f is bounded below.

Then:

(a) inf R < nA.

(b) § <A\

Proof. (a) In view of our assumptions, there exists a sequence of points
{pr € M}ken such that relations (1)—(3) of Subsection 2.2 are satisfied.
Consequently, from equation (4],

0 < lim (Af)(px) = nA — Him R (ps).
This gives inf R < limR < nA.
(b) The proof of this part uses the last inequality with nd <limR. =
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Theorem [2] and Lemma [2] imply the following

COROLLARY 1. Consider a complete gradient Ricci soliton (M, g, f,\)
of dimension n > 2 for which:

(i) Ric > dg for some § € R;
(ii) f is bounded below;

(iii) A < 0.
Then the gradient soliton s trivial.

Proof. The preceding results together imply that inf R = nA. Thus, the
soliton is trivial. m

5.2. Compact gradient Ricci solitons in dimension n > 3

REMARK 4. Let (M,g, f,\) be compact with n > 3. Assume that f
satisfies the PDE
(14) Hessf—%Af-g:O.
Then f is constant, and the soliton has constant sectional curvature.

Proof. Assume that f is non-constant. Then the PDE implies that
(M, g) is conformally equivalent to a standard sphere, moreover (M, g) is an
Einstein space as

0 = Hess f — %Af g = —(Ric—%Rg).

Both properties together imply that (M, g) is a Riemannian sphere of cur-
vature —L-\ (see [13]).

5.2.1. Shrinking gradient solitons

LeEMMA 3. Consider a complete gradient Ricci soliton (M, g, f,\) of di-
mension n > 2 such that:

(i) the scalar curvature is bounded below, say R > nd for some § € R;
(ii) A > 0.
Then f is bounded below.
Proof. For p € M equation @ implies f(p) > %(né —c). m
REMARK 5. (a) Hamilton’s equation (f]) has another immediate conse-
quence: If A > 0 and f is bounded above then R is bounded above.

(b) Note that, in Lemma3|and the foregoing remark (a), the assumptions
and Lemma [I] imply that R > 0.

5.2.2. Steady gradient Ricci solitons
REMARK 6. We assume that:

(i) A=0;

(ii) the Ricci curvature is bounded below, say Ric > dg for some § € R;
(iii) f is bounded below.
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Then we can apply the O-Y-relations to formulas and @, respectively,
which gives:

—limR =limAf >0 and limR=c.
Hence ¢ < 0. In particular, if we additionally assume R > 0 then ¢ = 0 and
inf R =0.

5.2.3. Positive scalar curvature

PROPOSITION 6. Let (M, g, f, ) be a complete gradient Ricci soliton and
assume that:

(i) the Ricci curvature is bounded below, say Ric > dg for some § € R;
(i) nA > R;
(iii) A >0 and R # 0 everywhere;
(iv) f is bounded above.
Then 0 < nA =sup R.

Proof. First note that Lemma |1 and assumption (iii) imply that R > 0.
We continue the proof in the following steps.
(a) From the assumptions we have

AMf=AXn\A\—R)>0.
(b) Lemma (3| allows us to choose v € (0, 00) such that
Fi=(\f+7)"?
is well-defined, positive, and inf F' > 0. Then
grad F' = —%FS grad f and FAF = %/\QFGngad flI? = FAI\AS.

(c) From the assumptions and Lemma the function f is bounded above
and below. By definition F' is bounded below, and inf F' > 0. Again we apply
the maximum principle of Omori—Yau: there exists a sequence {py}r C M
such that relations (1)—(3) of Subsection 2.2 are satisfied by F. Note that

limy, grad F' = 0 implies limg grad f = 0.
(d) We apply the PDE for F"

0 < lim FAF = —(inf F)*\ (n)\ ~ lim R) <0

this and the assumptions finally give nA = limy R = sup R; thus Hamilton’s
equation implies that F' takes its infimum where f and thus R takes its
supremum. m

Proof of Theorem [1 Assume that (i)—(iv) in Theorem [I] are satisfied,
and assume additionally that nA ¢ (inf R,sup R). Then

either 0<nA<INfR<R, or R<supR < nA,



COMPLETE GRADIENT RICCI SOLITONS 133

and one of the inequalities in the preceding results is satisfied. This leads to
nA =inf R or n\ = sup R, and thus A cannot be outside the closed interval
appearing in the assertion. m

COROLLARY 2. Let (M, g, f,\) be complete with X\ # 0. Assume that:

(i) the Ricci curvature is bounded below, say Ric > dg for some § € R;
(ii) AR < ||Ric||?;
(ifi) inf R > 0;
(iv) f is bounded above.
Then nA € [inf R, sup R].

Proof. The assumptions and Proposition [5| together imply A > 0. Now
apply Theorem 1. =

5.2.4. Negative scalar curvature. For non-positively bounded Ricci cur-
vature we study various inequalities between R and A.

PROPOSITION 7. Let (M, g, f,\) be complete and assume that:
(i) the Ricci curvature is non-positively bounded, say
019 > Ric > dag  for some 0 > 91 € R and 0 > d3 € R;
(ii) supR < 0;
(iii) nA > R.
Then nA = sup R, and the soliton is expanding.
Proof. We have |[Ric||* > 1R? and we apply relation :
1AR? = R - Ric(grad f, grad f) + (—R)(||Ric[|* — AR) + 5| grad R|?
> %RQ (nA—R).
For 0 < v € R we define F := (R? 4 v)~'/2. From the assumptions we
conclude that inf F' > 0; we calculate
FAF = 3F%|grad R?|* — SF*AR®.

Again we apply the maximum principle of Omori-Yau: there exists a se-
quence {pr}r C M such that the three O-Y-relations are satisfied for F.
Note that limy F'(pg) = inf F' > 0.

We finally arrive at

0 < lim (FAF)(px) < (inf F)*(— lim AR?)
< —L(inf F)*supR? - (nA —limR) < 0.

The last series of inequalities together with the assumptions give nA =
limy R =supR. =



134 U. SIMON

PROPOSITION 8. Let (M,g, f,\) be complete, and assume that:

(i) the Ricci curvature is bounded, say 619 > Ric > dag for some
01,00 € R;
(ii) A < 0;
(iii) f is bounded.

Then nA = inf R, and the gradient soliton is trivial.

Proof. Assumption (ii) and Theorem [2| imply that nA\ < R < 0. Then
we have A(nA —R) > 0, and we proceed as in Proposition |7| above. For an
appropriate 0 < v € R we define

Fi=(f+)"",
and we choose «v such that inf ' > 0. We calculate
FAF = 3FS|grad f||* — sF*Af.

Again we apply the principle of Omori—Yau: there exists a sequence
{pr}x C M such that the three O-Y-relations are satisfied for F'; we note
that limy grad F' = 0 implies limy grad f = 0. Finally, we get

0 < inf F'-Tim (AF)(py,) = (inf )Y (=3) (nx - limR) < 0
and nA = limy R = inf R. From Theorem [2| the soliton must be trivial. m

Following the lines of the proof of Theorem 1, Propositions [7] and
together give:

PROPOSITION 9. Let (M,g, f,\) be complete, and assume that:

(i) the Ricci curvature is bounded, say 619 > Ric > dag for some
0>61,0>06, €R;

(ii) supR < 0;

(iii) f is bounded.

Then n € [inf R, sup R].
COROLLARY 3. Let (M, g, f,\) be complete, and assume that:

(i) 619 > Ric > d2g for some 0 > 61,0 > 02 € R;
(ii) supR < 0;
(iii) f is bounded.

Then (M, g, f,\) is trivial.

Proof. From the foregoing proposition we conclude that A < 0. Now
Corollary [I] implies the assertion. =
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5.3. Realization of Ricci-flat gradient Ricci solitons. In this sub-
section we state two remarks on Ricci-flat gradient Ricci solitons.

(1) Tashiro [12] proved: Let (M, g) be a complete Riemannian manifold
and let 0 # A € R. Assume that there exists f € C°°(M) satisfying

Hess f = Ag.

Then (M, g) is isometric to the standard flat R™.

(2) We sketch how we can realize a Ricci-flat gradient soliton as an
affine graph immersion of M into R™™!. We refer to [6, Section 3.3.4] for
such immersions in relative hypersurface theory.

The case of A = 0 and Ric = 0 is trivial. For A # 0, define F' := %f
and assume (M, g) to be Ricci-flat. Then Ric = 0 and give Hess F' = g.
A Riemannian metric g generated by a locally strongly convex function F
is called a Calabi or Hessian metric.

Identify a chart U C M with a subset U C R"; define locally an affine
graph immersion

z:U3pr (p,F(p))

with locally strongly convex F' and relative normalization (Y,y), where:

e We have a constant transversal field y := (0,...,0,1).
e We have a conormal field Y := (=01 F,...,—0,F,1).

e The Gauf$ structure equations read
Vudz(v) = dz(Vyv) + Hess F(u, v)y;

here V denotes the canonical flat connection of R?t! and V its tan-
gential projection.
e We have the affine invariants:

— the cubic form with components Cj;, = 0,,0;0; F),
— the relative shape operator S = 0.

Then z(U) is part of an improper relative sphere with flat metric. An ex-
ample is an elliptic paraboloid with Blaschke structure.

6. Gradient Ricci solitons in dimension n = 2. As before we con-
sider a gradient Ricci soliton (M, g, f,\). For n = 2 we denote the Gaufl
curvature of (M, g) by K. Then equation reads

(15) Kgrad f = grad K.
This and @ imply
K?||grad f||* = Kg(grad f,grad K) = [|grad K ||*.

For K # 0 we get f = In|K| + b for some b € R. Moreover, if K # 0,
equation is the basis for the following:
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Key LocAL LEMMA FOR n = 2 (Derdzinski-Nikéevié¢-Simon; see [8,
Lemma 2.1]). Let (M, g, f,\) be a gradient Ricci soliton. Then:

(a) |K|exp(—f) = const, and thus, everywhere on M, either K =0 or
K #0.

(b) If K = const # 0 on M then A\ = K, f = const. If K =0 on M
then trivially Hess f = Ag.

The above result leads to the following

OBSERVATION. The Gauf} curvature K has a constant sign on (M, g, f, \);
thus we have three possibilities: either K > 0, or K =0, or K < 0.

Additionally, we recall the following PDEs from [8, Section 3].

ProposITION 10. Let (M,g, f,\) be a gradient Ricci soliton, n = 2,
with Gauf$ curvature K. Then:

(16) AK = K||grad f|* + 2K(\ — K),
(17) KAK = ||grad K||? + 2K*(\ — K),
(18) AK? = 4|lgrad K||* + K*(\ — K)].

6.1. Complete gradient Ricci solitons for n = 2. Considering the
above observation on the sign of the Gaufl curvature, in each of the cases
with K # 0 we discuss the relations between A and the Gauf} curvature K
for complete gradient Ricci solitons.

6.1.1. Dimensionn =2 and K > 0. We study two cases of the relation
between K and .

PROPOSITION 11. Let (M, g, f,\) be a complete gradient Ricci soliton.

(i) If \> K >0 then A =sup K and A = K = const, f = const.
(ii) If K > 0 and K > X then Proposition |5| implies Ainf K > 0, thus
A > 0. There are two cases:

e [f K> X >0 then Ric > \g, thus (M, g) is compact from Myers’
theorem, and (M, g, f,\) is trivial.

o If K> 0 and A = 0 then 2Kg = Hessy(—f), and on each chart
the function —f is locally strongly convexr; more precisely, f =
In K + const, thus

HessyIn K +2Kg = 0.
Moreover, in this case inf K = 0.

Proof. For the proofs of (i)—(ii) see [8, Propositions 6.1, 6.2]. For (ii)
with K > 0, A = 0 it remains to prove that inf K = 0. For this we note
that K satisfies the assumptions of the Omori—Yau maximum principle. The



COMPLETE GRADIENT RICCI SOLITONS 137

foregoing PDE for Hess, In K implies that
KAK = ||grad K||* — 4K3.
The O-Y-relations give
0 < lim(KAK) = lim ||grad K ||? — 41lim K = —4(inf K)? < 0.
Thus inf K =0. =
The last proposition and Lemma [1] give:

THEOREM 3. Let (M,g, f,\) be a complete gradient Ricci soliton with
n=2and K #0, A >0. If \ ¢ (inf K,sup K) then (M, g, f,\) is trivial.

A result of Naber [7, Theorem 1.2] states sufficient conditions for a Ricci
soliton to be gradient; this gives the following corollary:

COROLLARY 4. Let (M,g, X, A > 0) be a complete Ricci soliton with
n=2and0 < K <J for somed € R. If \ ¢ (inf K,sup K) then (M, g, X, \)
is trivial.

6.1.2. Dimension n = 2 and K < 0. Again we discuss two different
cases:

PROPOSITION 12. Let (M, g, f,\) be complete and K < 0.

(i) Assume that A > K > 6 for some § € R and sup K # 0. Then
A=sup K <0, thus (M, g, f,\) is expanding.
(ii) Assume that 0 > K > X. Then \ = inf K.

Proof. We apply the Omori—Yau techniques developed above for the
PDE

K2AK? = 4K?(||grad K||? + K*(\ — K))
satisfied by the function K2. m

REMARK 7. Note that in the preceding proposition the Gaufl curva-
ture K is bounded, thus f is bounded by the Key Local Lemma. In both
cases (i) and (ii) of Proposition [12] the soliton (M, g, f, \) is expanding.

From the statements in (i) and (ii) we get:

THEOREM 4. If K <0 with sup K # 0 and if K is bounded below then:
(i) A< 0, i.e. (M,g,f,\) is expanding;

(ii) if A ¢ [inf K,sup K] then (M, g, f,\) is trivial.

7. Gradient Ricci solitons in dimension n = 3. We recall Proposi-
tion [2| and calculate the right-hand side terms appearing in it for n = 3.
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7.1. Sectional curvature and Ricci curvature. For n = 3, it is
well known that the Ricci curvature determines the sectional curvature as
follows:

2612 = p1+ p2 — p3 = R — 2ps,
2k13 = p1 + p3 — p2 = R — 2pa,
2ko3 =p2+p3—p1 =R —2p1.
With elementary calculations one verifies the following relations.

LEMMA 4. Let (M, g, f,\) be a gradient Ricci soliton, and assume that
n =3. Then

2 kij(pi — p)> =4 p} + 6p1paps — 2R|Ric|,
1<j A
F(A+R)|Ric||” + (38X — R)|[Ric||* = 2A||Ric||?,
2 " kij(pi — pi)? =2 (pi)® + 2X||Ric||?
1<J A
=2 (p1)* + 6p1p2p3 + 2(A — R)||Ric]*.

7.2. The Laplacian A |[Ric||?. The calculations in the foregoing sub-
section give

PROPOSITION 13.

(a) The Ricci tensor Ric of a gradient Ricci soliton in dimension n = 3
satisfies

JARic|® =2 " kij(pi = pj)* + 5(A + R)|Ric||* + ||V Ric||?
1<j
- 22(p¢)3 + 1 grad ||Ric||”* ® grad f + 1||Ric|*A f

=2 (pi)* + 6p1p2ps + 2(A — R)||Ric||* + |V Ric |

+ 1 grad ||Ric||* ® grad .
(b) If Ric >0 then
3A[Ric|? = 2(A = (R — pint))|[Ric||* + 6p1pops + 5 grad(|[Ric||*) @ grad f,
where pine := inferr{pi(p) i =1,2,3}.

THEOREM 5. Let (M, g) be a complete gradient Ricci soliton of dimen-
sion n = 3 with the following properties:

e 6g > Ric > 0 for some § € R;
e A >sup (R — pint)-

Then ping =0 and 0 < X\ =sup(R) < 0.
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Proof. For some positive v € R we define
F = (|[Ricl|* + )72
The function F' has the following properties:
(i) £ >0on M;
(ii) inf F > 0 on M;
(i) AF = 3F5||grad |Ric|?||” - F* - A|Ric||%;
(iv) grad F = 0 < grad ||Ric||? = 0.
Again we apply the maximum principle of Omori—Yau: There exists a se-

quence {pg}r of points such that the three O-Y-relations for the function
F are satisfied. We note:

If lim F(pg) =inf £ then  lim | Ric||? = sup ||Ric|)?.
Moreover, under the assumptions of the theorem,
lim 34A|Ric||?> > 2(A = (R = piur)) lim [Ric|| + 6 lim(p1p2p3) = 0.
As a consequence,
0 <lim AF = lilgn(—F?’)%AHRicHz

< liin (—F?) h,gn [2(A = (R — ping)) | Ric||® + 6p1p2p3] < 0.

These inequalities and the assumptions together imply pi,r = 0 and A =
SupR. =

REMARK 8. From the assumptions and A = sup R we know that A > 0.
But A = 0 leads to Ric = 0 and Hess f = 0, and therefore in the soliton
equation all terms vanish identically.

Thus only the case § > A > 0 is left. First it follows from Hamilton’s
equation @ and the assumptions that 2Af > —c¢, therefore f is bounded
below. Then, as in Proposition [4 we can prove that

2Xinf f < nX —c.

8. Gradient Ricci solitons in dimension n = 4. In this section we
apply the formula of Proposition [2|in dimension n = 4.

ProproOSITION 14. The Ricci tensor Ric > 0 of a gradient Ricci soliton
in dimension n = 4 satisfies
LAIRic? =23 kij(ps — py)? + IRIRicll? + [ VRic|]
1<j
—2 (p:)® + § grad(|[Ric|*) ® grad f + §|[Ric|*Af
i
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=2 kij(pi — p)* + 2X|Ric|® = 2 (pi)® + ||V Ric|”

1<j %
+ 1 grad ||Ric||* ® grad f.

THEOREM 6. Let (M,g, f,\) be a complete gradient Ricci soliton of di-
mension n = 4 satisfying the following relations:

e the sectional curvature is non-negative;
e Ric < §g for some 0 < € R;

® A > paup = suppep{pi(p) | i =1,2,3,4}.
Then X\ = pgup-
Proof. For some positive 7 € R we define
F := (| Ric||? +7)~V2.
As above, F' has the following properties:
(i) F>0on M;
(ii) inf F > 0 on M;
(ili) AF = 3F5||grad ||Ric? H — F3L1 A|Ric||%;
(iv) grad F = 0 < grad ||Ric||? = 0.
From Proposition [14] we have
SAIRIC|® =2 kij(pi — pj)* + 2A|Ric]* = 2 " (pi)?
i<j i
+ || VRic||* + § grad(||Ric||?) ® grad f.
We calculate the term
2A|[Ric]? = 2 ) "(pi)* > 2(A — psup) | Ric|*.
i

Again we apply the maximum principle of Omori—Yau, which gives
0 <lim AF = lim (—F?)1A|Ric||* < lim (—F3)(\ = psup) < 0.
The assertion follows as before. m

REMARK 9. Under the assumptions of the preceding Theorem [6], if addi-
tionally psup > 0 then R > 0; this follows from A > pgyp > 0 and Lemma
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