VOL. 103

2005

NO. 2

ORLICZ BOUNDS FOR OPERATORS OF RESTRICTED WEAK TYPE

ΒY

PAUL ALTON HAGELSTEIN (Waco, TX)

Abstract. It is shown that if T is a sublinear translation invariant operator of restricted weak type (1,1) acting on $L^1(\mathbb{T})$, then T maps simple functions in $L \log L(\mathbb{T})$ boundedly into $L^1(\mathbb{T})$.

Let \mathbb{T} denote the unit circle. An operator T acting on $L^1(\mathbb{T})$ is said to be of *restricted weak type* (1,1) if for some constant C the inequality

$$|\{x \in \mathbb{T} : |T\chi_E(x)| > \alpha\}| \le \frac{C}{\alpha} \, \|\chi_E\|_{L^1(\mathbb{T})}$$

holds for every measurable set $E \subset \mathbb{T}$ and $\alpha > 0$. Examples of restricted weak type (1, 1) operators include the Hardy–Littlewood maximal operator and the Hilbert transform. Now, it is well known [4] that the Hardy–Littlewood maximal operator as well as the Hilbert transform map $L \log L(\mathbb{T})$ boundedly into $L^1(\mathbb{T})$. As both of these operators are also translation invariant, it is natural to consider whether or not every sublinear translation invariant restricted weak type (1, 1) operator maps $L \log L(\mathbb{T})$ boundedly into $L^1(\mathbb{T})$.

The purpose of this paper is to show that all sublinear translation invariant restricted weak type (1, 1) operators acting on $L^1(\mathbb{T})$ do indeed map $L \log L(\mathbb{T})$ boundedly into $L^1(\mathbb{T})$ and, moreover, that operators of this type are bounded on $L^p(\mathbb{T})$ for 1 . We remark that our methods of proofhere have been strongly influenced by the work of E. M. Stein on limits ofsequences of operators [5] as well as by the suggestive results of L. Colzaniin his paper on translation invariant operators acting on Lorentz spaces [1].

THEOREM 1. Let T be a translation invariant sublinear operator acting on $L^1(\mathbb{T})$. Also suppose that for any measurable set E in \mathbb{T} and $\alpha > 0$ we have

$$|\{x \in \mathbb{T} : |T\chi_E(x)| > \alpha\}| \le \frac{|E|}{\alpha}.$$

²⁰⁰⁰ Mathematics Subject Classification: Primary 42B35.

Key words and phrases: restricted weak type, sublinear operator, translation invariant operator.

If f is a simple function supported on \mathbb{T} , then

$$|T(f)||_{L^1(\mathbb{T})} \le C ||f||_{L\log L(\mathbb{T})},$$

where C is a universal constant.

Proof. We begin by gathering some lemmas that will be of use to us. The first is a Borel–Cantelli type lemma devised by E. M. Stein in his work on limits of sequences of operators.

LEMMA 1 ([5]). Let E_1, E_2, \ldots be a collection of sets in \mathbb{T} such that $\sum |E_j| = \infty$. Then there exist sets F_1, F_2, \ldots in \mathbb{T} such that each F_j is a translate of E_j in \mathbb{T} and almost every point of \mathbb{T} belongs to infinitely many of the sets F_j .

The second lemma involves a well known property of Rademacher functions.

DEFINITION 1. Let $r_n(t)$ denote the Rademacher functions on \mathbb{R} , defined by

$$r_n(t) = r_0(2^n t),$$

where $r_0(t) = 1$ if $0 \le t \le 1/2$, $r_0(t) = -1$ if 1/2 < t < 1, and $r_0(t+1) = r_0(t)$.

LEMMA 2 ([6, 10]). Let $\sum_{n=0}^{\infty} |a_n|^2 < \infty$, and let $F(t) = \sum_{n=0}^{N} a_n r_n(t)$ be a Rademacher series. Let 0 . Then there exist finite, positiveconstants <math>A(p), B(p) such that

$$A(p)\|F\|_{L^{p}([0,1])} \leq \left(\sum_{n=0}^{N} |a_{n}|^{2}\right)^{1/2} \leq B(p)\|F\|_{L^{p}([0,1])}.$$

The third lemma we shall use follows from the work of F. Soria on extrapolation theorems of Carleson–Sjölin type.

LEMMA 3 ([3]). Let T be a sublinear operator acting on $L^1(\mathbb{T})$. Suppose that, for any measurable subset E of \mathbb{T} and $\alpha > 0$,

$$|\{x \in \mathbb{T} : |T\chi_E(x)| > \alpha\}| \le \frac{|E|}{\alpha}.$$

If f is a simple function supported on \mathbb{T} and $\alpha > 0$, then

$$|\{x \in \mathbb{T} : |Tf(x)| > \alpha\}| \le C \frac{\|f\|_{L\log L(\mathbb{T})}}{\alpha},$$

where C is a universal constant.

We will now use these three lemmas to prove the following.

LEMMA 4. Let T be a translation invariant sublinear operator acting on $L^1(\mathbb{T})$. Suppose also that, for any measurable set E in \mathbb{T} and $\alpha > 0$,

$$|\{x \in \mathbb{T} : |T\chi_E(x)| > \alpha\}| \le \frac{|E|}{\alpha}.$$

If f is a simple function supported on \mathbb{T} and $\alpha > 0$, then

(1)
$$|\{x \in \mathbb{T} : |Tf(x)| > \alpha\}| \le C\left(\frac{\|f\|_{L^2(\mathbb{T})}}{\alpha}\right)^2,$$

where C is a universal constant.

Proof. By contradiction. Suppose (1) were false. Then there would exist a sequence $\{f_n\}$ of simple functions and a sequence $\{E_n\}$ of sets such that

$$|Tf_n(x)| > 1$$
 for $x \in E_n$

and

$$|E_n| > n ||f_n||_{L^2(\mathbb{T})}^2$$

By taking subcollections of the original collections of $\{f_n\}$, $\{E_n\}$, with possible repetitions, we may obtain another set of collections, again denoted by $\{f_n\}$, $\{E_n\}$, such that $|Tf_n(x)| > 1$ if $x \in E_n$, $\sum |E_n| = \infty$, and $\sum ||f_n||_2^2 < \infty$.

As $\sum ||f_n||_2^2$ converges, we may find a sequence $\{R_n\}$ of positive numbers such that $R_n \to \infty$, but $\sum ||R_n f_n||_2^2 = D < \infty$.

Now, for each $g \in \mathbb{T}$, we let τ_g denote the translation operator defined by

$$\tau_g f(x) = f(-g+x).$$

As $\sum |E_n| = \infty$, by Lemma 1 we see that there exists a sequence $\{F_n\}$ of sets in \mathbb{T} such that each F_j is a translate of E_j in \mathbb{T} and almost every point of \mathbb{T} belongs to an infinite number of the sets F_n . We associate to each F_j an element $g_j \in \mathbb{T}$ such that

$$\chi_{F_j} = \tau_{g_j} \chi_{E_j}.$$

Let M be a positive integer. There exists a positive integer N and a subset $S \subset \mathbb{T}$ of measure greater than 1/2 such that for all x in S, there exists an integer j_x such that $1 \leq j_x \leq N$ and

$$M < |R_{j_x}T(\tau_{g_{j_x}}f_{j_x})(x)|.$$

Now, define the function h(x,t) on $\mathbb{T} \times [0,1]$ by

$$h(x,t) = \sum_{j=1}^{N} R_j \tau_{g_j} f_j(x) r_j(t).$$

If g(x,t) is a measurable function on $\mathbb{T} \times [0,1]$, we define Tg(x,t) by

$$Tg(x,t) = Tg_t(x),$$

where $g_t(x) = g(x, t)$.

Now, let $x_0 \in S$. For some j with $1 \leq j \leq N$ we have $|R_j T(\tau_{g_j} f_j)(x_0)| > M$. We assume without loss of generality that j = 1.

Now, if 0 < t < 1 and t is not of the form $k \cdot 2^{j}$ for some integers j, k, the sublinearity of T implies that

$$M < |T(R_1\tau_{g_1}f_1)(x_0)| \le \frac{1}{2} \Big[\Big| T\Big(R_1\tau_{g_1}f_1(x) + \sum_{j=2}^N R_j\tau_{g_j}f_j(x)r_j(t)\Big)(x_0) \Big| \\ + \Big| T\Big(R_1\tau_{g_1}f_1(x) + \sum_{j=2}^N R_j\tau_{g_j}f_j(x)r_j(1-t)\Big)(x_0) \Big| \Big].$$

So $|\{t \in [0,1] : |Th(x_0,t)| > M\}| \ge 1/4$. As |S| > 1/2, we then have (2) $|\{(x,t) \in \mathbb{T} \times [0,1] : |Th(x,t)| > M\}| \ge 1/8$.

Note that Lemma 2 implies

$$\begin{split} \|h\|_{L^{2}(\mathbb{T}\times[0,1])}^{2} &= \prod_{\mathbb{T}}^{1} \Big(\sum_{j=1}^{N} R_{j}\tau_{g_{j}}f_{j}(x)r_{j}(t)\Big)^{2}dt \, dx \\ &\leq (A(2))^{-2} \prod_{\mathbb{T}}^{N} \sum_{j=1}^{N} |R_{j}\tau_{g_{j}}f_{j}(x)|^{2} \, dx \\ &= (A(2))^{-2} \sum_{j=1}^{N} \|R_{j}\tau_{g_{j}}f_{j}\|_{L^{2}(\mathbb{T})}^{2} = (A(2))^{-2} \sum_{j=1}^{N} \|R_{j}f_{j}\|_{L^{2}(\mathbb{T})}^{2} \\ &\leq (A(2))^{-1} \cdot D < \infty. \end{split}$$

For our notational convenience, if L^{Φ} is a normed space on [0, 1] and L^{Ψ} is a normed space on \mathbb{T} , we define the mixed norm $\|\cdot\|_{L^{\Phi}_{t}(L^{\Psi})_{x}}$ on functions on $[0, 1] \times \mathbb{T}$ by

$$\|f(x,t)\|_{L^{\Phi}_{t}(L^{\Psi})_{x}} = \|\|f(\cdot,t)\|_{L^{\Psi}(\mathbb{T})}\|_{L^{\Phi}([0,1])}.$$

Now note that

$$\begin{split} \|h(x,t)\|_{L^{1}_{t}(L\log L)_{x}} &\leq 10 \|h(x,t)\|_{L^{1}_{t}(L^{2})_{x}} \\ &\leq 100 \|h(x,t)\|_{L^{2}_{t}(L^{2})_{x}} = 100 \|h(x,t)\|_{L^{2}(\mathbb{T}\times[0,1])} \\ &\leq 100 \cdot ((A(2))^{-1} \cdot D)^{1/2} = C' < \infty. \end{split}$$

By Lemma 3 we then see that

$$|\{(x,t): |Th(x,t)| > \alpha\}| \le \int_{0}^{1} \frac{C ||h(\cdot,t)||_{L\log L(\mathbb{T})}}{\alpha} dt \le \frac{C \cdot C'}{\alpha}$$

This however is in contradiction to (2), which holds for arbitrarily large values of M. \blacksquare

We now see that T is of restricted weak type (1, 1) and of restricted weak type (2, 2). By the extension of the Marcinkiewicz theorem to the case of restricted-weak endpoints (see [7] for details) we have, for 1 and for all simple functions <math>f,

$$||Tf||_{L^{p}(\mathbb{T})} \lesssim \frac{1}{p-1} ||f||_{L^{p}(\mathbb{T})}.$$

Applying the Yano extrapolation theorem [9], we then deduce that

$$\|Tf\|_{L^1(\mathbb{T})} \lesssim \|f\|_{L\log L(\mathbb{T})}$$

for all simple functions f supported on \mathbb{T} , as desired.

We emphasize that the following corollary arises from the proof above.

COROLLARY 1. Suppose T is a sublinear translation invariant operator acting on $L^1(\mathbb{T})$ which is of restricted weak type (1,1). If f is a simple function supported on \mathbb{T} , then

$$\|Tf\|_{L^{p}(\mathbb{T})} \leq C_{p} \|f\|_{L^{p}(\mathbb{T})}, \quad 1 where $C_{p} \sim 1/(p-1) + 1/(2-p).$$$

A natural question for subsequent investigation is whether or not this corollary can be extended to encompass values of p greater than or equal to 2.

REFERENCES

- L. Colzani, Translation invariant operators on Lorentz spaces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), 257–276.
- [2] S. Sawyer, Maximal inequalities of weak type, Ann. of Math. (2) 84 (1966), 157–174.
- F. Soria, On an extrapolation theorem of Carleson-Sjölin with applications to a.e. convergence of Fourier series, Studia Math. 94 (1989), 235–244.
- [4] E. M. Stein, Note on the class $L \log L$, ibid. 32 (1969), 305–310.
- [5] —, On limits of sequences of operators, Ann. of Math. (2) 74 (1961), 140–170.
- [6] —, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970.
- [7] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971.
- [8] E. M. Stein and N. J. Weiss, On the convergence of Poisson integrals, Trans. Amer. Math. Soc. 140 (1969), 35–54.
- S. Yano, Notes on Fourier analysis. XXXIX. An extrapolation theorem, J. Math. Soc. Japan 3 (1951), 296–305.
- [10] A. Zygmund, *Trigonometric Series*, Cambridge Univ. Press, 1959.

Department of Mathematics Baylor University Waco, TX 76798, U.S.A. E-mail: paul_hagelstein@baylor.edu

> Received 21 January 2003; revised 14 October 2004

(4305)