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CHARACTERIZATION OF LOCAL DIMENSION FUNCTIONS

OF SUBSETS OF Rd

BY

L. OLSEN (St. Andrews)

Abstract. For a subset E ⊆ Rd and x ∈ Rd, the local Hausdorff dimension function
of E at x is defined by

dimH,loc(x,E) = lim
rց0
dimH(E ∩B(x, r))

where dimH denotes the Hausdorff dimension. We give a complete characterization of
the set of functions that are local Hausdorff dimension functions. In fact, we prove a
significantly more general result, namely, we give a complete characterization of those
functions that are local dimension functions of an arbitrary regular dimension index.

1. Introduction and statement of results. For a subset E ⊆ Rd

and x ∈ Rd, we define the local Hausdorff dimension function of E at x by

dimH,loc(x,E) = lim
rց0
dimH(E ∩B(x, r))

where dimH denotes the Hausdorff dimension. The reader is referred to [Fa2]
for the definition of the Hausdorff dimension. The local Hausdorff dimension
function of a set has recently found several applications in fractal geometry
and information theory (cf. [JS, Ru]). In [Ol] we proved that any contin-
uous function is the local Hausdorff dimension function of some set, i.e. if
f : Rd → [0, d] is continuous, then there exists a set E ⊆ Rd such that
f(x) = dimH,loc(x,E) for all x ∈ Rd. In [Ol] we also showed that there are
discontinuous functions which are local Hausdorff dimension functions, and
discontinuous functions which are not. This suggests the following natural
problem:

Find a characterization of those functions that are local Hausdorff
dimension functions.

In Theorem 1 we will give a complete characterization of such functions.
In fact, we will address a significantly more general problem, namely:
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Find a characterization of those functions that are local dimension
functions of an arbitrary regular dimension index.

In Theorem 4 we provide a complete solution to this problem.
We need to introduce the notion of punctured upper semicontinuity.

Recall that the upper limit of a function f : Rd → R as y tends to x is
defined by

lim sup
y→x

f(y) = inf
r>0

sup
|x−y|<r

f(y).

The punctured upper limit of f as y tends to x is defined by

lim sup
y→x

p f(y) = inf
r>0

sup
0<|x−y|<r

f(y).

Also, recall that a function f is called upper semicontinuous at a point x if
lim supy→x f(y) ≤ f(x). However, since clearly f(x) ≤ lim supy→x f(y), we
see that f is upper semicontinuous at x if

lim sup
y→x

f(y) = f(x).

In analogy with this result, we define punctured upper semicontinuity as
follows.

Definition. A function f : Rd → R is called punctured upper semicon-
tinuous at x if

(1.1) lim sup
y→x

p f(y) = f(x).

A function f : Rd → R is called punctured upper semicontinuous if it is
punctured upper semicontinuous at all x.

It is easily seen that if f is continuous at x, then f is punctured up-
per semicontinuous at x, and that if f is punctured upper semicontinuous
at x, then f is upper semicontinuous at x. There exist punctured upper
semicontinuous functions which are discontinuous (for example, the func-
tion f : R→ R defined by f(x) = 0 for x < 0 and f(x) = 1 for x ≥ 0), and
upper semicontinuous functions which are not punctured upper semicontin-
uous (for example, the function f : R → R defined by f(x) = 0 for x 6= 0
and f(0) = 1).
We can now give a complete characterization of those functions that are

local Hausdorff dimension functions.

Theorem 1. Let f : Rd → [0,∞) be an arbitrary function. Then the
following two statements are equivalent.

(1) There exists a set E ⊆ Rd such that

f(x) = dimH,loc(x,E) for all x ∈ Rd.

(2) The function f satisfies the following two conditions:
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(i) f is punctured upper semicontinuous.

(ii) For all 0 ≤ t < supx∈Rd f(x), we have

t < dimH,loc(x, {t < f}) for all x ∈ {t < f}.

Example. Let 0 < s < 1. The function f : R→ R defined by f(x) = 0
for x ≤ 0 and f(x) = s for 0 < x clearly satisfies condition (2)(ii) in Theorem
1 but is not punctured upper semicontinuous. It therefore follows that f is
not the local Hausdorff dimension function of any set E ⊆ R.

Example. Let C ⊆ R denote the usual Cantor set and suppose that
dimH(C) = log 2/log 3 < s ≤ 1. The function f : R→ R defined by f(x) = 0
for x 6∈ C and f(x) = s for x ∈ C is easily seen to be punctured upper
semicontinuous but it does not satisfy condition (2)(ii) in Theorem 1. Indeed,
if dimH(C) = log 2/log 3 ≤ t < s, then {t < f} = C, so dimH,loc(x, {t < f})
= dimH,loc(x,C) ≤ dimH(C) ≤ t for all x ∈ {t < f} = C. Therefore f is not
the local Hausdorff dimension function of any set E ⊆ R.

The following result was also obtained in [Ol] using different methods.

Corollary 2. If f : Rd → [0,∞) is a continuous function with f(x)≤d
for all x ∈ Rd, then there exists a set E ⊆ Rd such that

f(x) = dimH,loc(x,E) for all x ∈ Rd.

Proof. This follows from the fact that a continuous function f with
f(x) ≤ d for all x clearly satisfies the conditions of Theorem 1.

In fact, we prove a significantly more general result characterizing local
dimension functions of arbitrary regular dimension indices. Below we define
a regular dimension index.

Definition. A function dim : {E | E ⊆ Rd} → [0,∞) is called a
dimension index if it satisfies the following three conditions:

(1) If E ⊆ F ⊆ Rd, then dim(E) ≤ dim(F ).
(2) If E1, E2, . . . ⊆ Rd, then

dim
(

⋃

n

En

)

= sup
n
dim(En).

(3) If x ∈ Rd, then dim({x}) = 0.

A dimension index dim is called regular if it, in addition, satisfies the fol-
lowing condition:

(4) If t ≥ 0 and E ⊆ Rd is a Borel set satisfying t < dim(E), then there
exists a compact set C ⊆ E such that dim(C) = t.

Properties of general dimension indices have been studied by, for ex-
ample, Cutler [Cu] and Tricot [Tr]. It is clear that the Hausdorff dimension
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dimH and the packing dimension dimP are dimension indices, and Proposi-
tion 3 shows that they are also regular. The reader is referred to [Fa2] for
the definition of the packing dimension.

Proposition 3. The Hausdorff dimension dimH and the packing dimen-
sion dimP are regular dimension indices.

Proof. To prove the regularity, we need the following two (deep) results.
For t ≥ 0, we let Ht denote the t-dimensional Hausdorff measure and we let
Pt denote the t-dimensional packing measure.

(1) If t ≥ 0 and E is a Suslin subset of Rd such that Ht(E) = ∞, then
there exists a compact set C ⊆ E such that 0 < Ht(C) <∞.

(2) If t ≥ 0 and E is a Suslin subset of Rd such that Pt(E) = ∞, then
there exists a compact set C ⊆ E such that 0 < Pt(C) <∞.

Result (1) follows from [Fa1, Theorem 5.5] and result (2) is proved in [JP].
It follows immediately from (1) and (2) that dimH and dimP are regular
dimension indices.

For an arbitrary dimension index dim and a subset E ⊆ Rd we define
the local dimension of E at x ∈ Rd by

dimloc(x,E) = lim
rց0
dim(E ∩B(x, r)).

We can now state our main result.

Theorem 4. Let f : Rd → [0,∞) be an arbitrary function and let dim
be a regular dimension index. (In particular , this condition is satisfied if
dim equals the Hausdorff dimension dimH or the packing dimension dimP.)
Then the following three statements are equivalent :

(1) There exists a set E ⊆ Rd such that

f(x) = dimloc(x,E) for all x ∈ Rd.

(2) There exists an Fσ set E ⊆ Rd such that

f(x) = dimloc(x,E) for all x ∈ Rd.

(3) The function f satisfies the following two conditions:

(i) f is punctured upper semicontinuous.
(ii) For all 0 ≤ t < supx∈Rd f(x), we have

t < dimloc(x, {t < f}) for all x ∈ {t < f}.

Observe that Theorem 1 follows immediately from Theorem 4. We also
note that in order to prove Theorem 4 it clearly suffices to show that (3)
implies (2) (which is done in Section 2), and that (1) implies (3) (Section 3).
Finally, the proof of the following consequence of Theorem 4 is similar to
that of Corollary 2 and is therefore omitted.
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Corollary 5. Let dim be a regular dimension index such that

dim(G) = dim(Rd)

for all open non-empty subsets G ⊆ Rd. (In particular , this condition is
satisfied if dim equals dimH or dimP.) If f : Rd → [0,∞) is a continuous
function with f(x) ≤ dim(Rd) for all x ∈ Rd, then there exists a set E ⊆ Rd

such that

f(x) = dimloc(x,E) for all x ∈ Rd.

Remark. It follows from Theorem 4 that if M is an arbitrary subset
of Rd, then there exists an Fσ subset E of R

d whose local Hausdorff dimen-
sion function coincides with that of M , i.e.

dimH,loc(x,E) = dimH,loc(x,M) for all x ∈ Rd.

This result is the best possible and cannot be improved. More precisely, if
M is an arbitrary subset of Rd, then it is in general not possible to choose
a closed subset F of Rd such that

dimH,loc(x, F ) = dimH,loc(x,M) for all x ∈ Rd.

Indeed, let f : Rd → R be any continuous function such that 0 < f(x) ≤ d
for all x ∈ Rd and f(x0) < d for some x0. It follows from Theorem 4 that
there exists a setM such that f(x) = dimH,loc(x,M) for all x ∈ Rd. We now
claim that there is no closed set F such that dimH,loc(x, F ) = f(x) for all
x ∈ Rd. To see this observe that if F is closed and dimH,loc(x, F ) > 0, then
x ∈ F . Hence, if F is closed and dimH,loc(x, F ) = f(x) > 0 for all x ∈ Rd,
then F = Rd, whence dimH,loc(x, F ) = d for all x, contradicting the fact
that dimH,loc(x0, F ) = f(x0) < d.

2. Proof of Theorem 4: (3) implies (2). First we introduce some
notation. For a function f : Rd → R, x ∈ Rd and r > 0 write

(2.1)
Bp(x, r) = {y ∈ Rd | 0 < |x− y| < r},

Mp(f ;x, r) = sup
0<|x−y|<r

f(y),

i.e. Bp(x, r) is the punctured ball centered at x and with radius equal to r
and Mp(f ;x, r) is the supremum of f over Bp(x, r).

Proof that (3) implies (2) in Theorem 4. Let 0 ≤ t < supx∈Rd f(x). For
x ∈ {t < f} and r > 0 we have

(2.2) t < dimloc(x, {t < f}) ≤ dim(B(x, r) ∩ {t < f}).

Also, since f is punctured upper semicontinuous, and so in particular upper
semicontinuous, B(x, r) ∩ {t < f} is Borel. It therefore follows from (2.2)
and the fact dim is regular that there exists a compact set Et(x, r) satisfying

Et(x, r) ⊆ B(x, r) ∩ {t < f}, dim(Et(x, r)) = t.
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Next choose a countable dense subset Ut of {t < f} and define

E =
⋃

0≤t<sup
y∈Rd

f(y)

t∈Q+

⋃

r∈Q+
x∈Ut

Et(x, r).

The set E is clearly Fσ. We will now prove that f is the local dimension
function of E.

Claim 1. For all x ∈ Rd, we have

dimloc(x,E) ≤ f(x).

Proof. Fix x ∈ Rd and r > 0. Then

E ∩B(x, r) ⊆ (E ∩Bp(x, r)) ∪ {x}(2.3)

=
⋃

0≤t<sup
y∈Rd

f(y)

t∈Q+

(

⋃

s∈Q+
x∈Ut

(Et(x, s) ∩Bp(x, r))
)

∪ {x}.

Next observe that since Et(x, s) ⊆ {t < f}, we have

(2.4) Et(x, s) ∩Bp(x, r) ⊆ {t < f} ∩Bp(x, r) = ∅ for Mp(f ;x, r) ≤ t.

Combining (2.3) and (2.4) yields

E ∩B(x, r) ⊆
⋃

0≤t<Mp(f ;x,r)
t∈Q+

(

⋃

s∈Q+
x∈Ut

(Et(x, s) ∩Bp(x, r))
)

∪ {x}

⊆
⋃

0≤t<Mp(f ;x,r)
t∈Q+

(

⋃

s∈Q+
x∈Ut

Et(x, s)
)

∪ {x}.

It follows that

dim(E ∩B(x, r)) ≤ max( sup
0≤t<Mp(f ;x,r)

t∈Q+

sup
s∈Q+
x∈Ut

dim(Et(x, s)), dim({x}))

= sup
0≤t<Mp(f ;x,r)

t∈Q+

sup
s∈Q+
x∈Ut

dim(Et(x, s))

= sup
0≤t<Mp(f ;x,r)

t∈Q+

sup
s∈Q+
x∈Ut

t =Mp(f ;x, r)

for all r > 0. Finally, using the fact that f is punctured upper semicontinuous
at x, we infer that

dimloc(x,E) = lim
rց0
dim(E ∩B(x, r)) ≤ lim

rց0
Mp(f ;x, r) = f(x).

Claim 2. For all x ∈ Rd, we have

f(x) ≤ dimloc(x,E).
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Proof. Fix x ∈ Rd and r > 0. Next, let ε > 0. We can choose s ∈ Q+
with 18r ≤ s ≤

1
4r and y ∈ Bp(x, s) such thatMp(f ;x, s)−ε < f(y). Finally,

choose t ∈ Q+ with Mp(f ;x, s) − 2ε ≤ t ≤ Mp(f ;x, s) − ε. It follows that
y ∈ {t < f} and we can thus find u ∈ Ut with |u − y| < s. It is now clear
that

Et(u, s) ⊆ E,

and that Et(u, s) ⊆ B(u, s) ⊆ B(x, r), whence

Et(u, s) ∩B(x, r) = Et(u, s).

We therefore conclude that

dim(E ∩B(x, r)) ≥ dim(Et(u, s) ∩B(x, r)) = dim(Et(u, s)) = t

≥Mp(f ;x, s)− 2ε ≥Mp
(

f ;x, 18r
)

− 2ε.

Since f is punctured upper semicontinuous at x, we infer that

dimloc(x,E) = lim
rց0
dim(E ∩B(x, r)) ≥ lim

rց0
Mp
(

f ;x, 18r
)

− 2ε = f(x)− 2ε.

Finally, letting εց 0, shows that dimloc(x,E) ≥ f(x).

3. Proof of Theorem 4: (1) implies (3). We begin with a small
lemma.

Lemma 6. Let M ⊆ Rd. Then

dim(M) ≤ sup
x∈M
dimloc(x,M).

Proof. Let ε > 0. For each x ∈ M we can choose a positive number
rx > 0 such that

dim(M ∩B(x, rx)) ≤ dimloc(x,M) + ε.

The family (B(x, rx))x∈M forms an open cover ofM , and it therefore follows
from Lindelöf’s theorem (cf. [BBT, p. 7, Exercise 1:1.14]) that there exists
a countable subset U ⊆ M such that the family (B(x, rx))x∈U covers M .
This implies that

dim(M) = dim
(

⋃

x∈U

(M ∩B(x, rx))
)

= sup
x∈U
dim(M ∩B(x, rx))

≤ sup
x∈U
dimloc(x,M) + ε ≤ sup

x∈M
dimloc(x,M) + ε.

Letting εց 0 gives the desired result.

Proof that (1) implies (3)(i) in Theorem 4. We prove this by proving the
two claims below.

Claim 1. For all x ∈ Rd, we have

lim sup
y→x

p f(y) ≤ f(x) .
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Proof. Fix x ∈ Rd and r > 0. For all y ∈ Bp(x, r) and 0 < s < r−|x−y|
we see that B(y, s) ⊆ B(x, r), whence dim(E ∩B(x, r)) ≥ dim(E ∩B(y, s)).
Letting sց 0 now gives

dim(E ∩B(x, r)) ≥ dimloc(y,E) = f(y).

Since y ∈ Bp(x, r) was arbitrary, this implies that

dim(E ∩B(x, r)) ≥ sup
0<|x−y|<r

f(y).

Finally, letting r ց 0 shows that

f(x) = dimloc(x,E) ≥ lim sup
y→x

pf(y).

Claim 2. For all x ∈ Rd, we have

f(x) ≤ lim sup
y→x

p f(y).

Proof. Fix x ∈ Rd and r > 0. Let ε > 0. For each y ∈ Bp(x, r) we can
find ry > 0 such that B(y, ry) ⊆ B(x, r) and

dim(E ∩B(y, ry)) ≤ dimloc(y,E) + ε = f(y) + ε.

The family (B(y, ry))y∈Bp(x,r) forms an open cover of Bp(x, r), so by Lin-
delöf’s theorem there exists a countable subset U ⊆ Bp(x, r) such that
(B(y, ry))y∈U covers Bp(x, r). Hence,

dim(E ∩B(x, r)) ≤ dim((E ∩Bp(x, r)) ∪ {x})

= max(dim(E ∩Bp(x, r)), dim({x}))

= dim(E ∩Bp(x, r))

≤ dim
(

⋃

y∈U

(E ∩B(y, ry))
)

= sup
y∈U
dim(E ∩B(y, ry))

≤ sup
y∈U
f(y) + ε ≤ sup

0<|x−y|<r

f(y) + ε.

Next, letting ε ց 0 shows that dim(E ∩ B(x, r)) ≤ sup0<|x−y|<r f(y). Fi-
nally, letting r ց 0 yields

f(x) = dimloc(x,E) ≤ lim sup
y→x

p f(y).

Proof that (1) implies (3)(ii) in Theorem 4. Let t < supv∈Rd f(v) and
x ∈ {t < f}. Also, let r > 0. Next, observe that

(3.1) dim(E ∩B(x, r))

= max(dim((E \ {f ≤ t}) ∩B(x, r)), dim((E ∩ {f ≤ t}) ∩B(x, r))).
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Using Lemma 6 we see that

dim((E ∩ {f ≤ t}) ∩B(x, r)) ≤ dim(E ∩ {f ≤ t})

≤ sup
y∈E∩{f≤t}

dimloc(y,E ∩ {f ≤ t})

≤ sup
y∈{f≤t}

dimloc(y,E) ≤ sup
y∈{f≤t}

f(y) ≤ t.

We also have

(3.3) dim(E ∩B(x, r)) ≥ dimloc(x,E) = f(x) > t.

Combining (3.1), (3.2) and (3.3) shows that

dim(E ∩B(x, r)) = dim((E \ {f ≤ t}) ∩B(x, r))

for all r > 0. This clearly implies that dimloc(x,E) = dimloc(x,E \{f ≤ t}),
whence

t < f(x) = dimloc(x,E) = dimloc(x,E \ {f ≤ t}) ≤ dimloc(x, {t < f}).

This completes the proof.

Acknowledgements. I thank an anonymous referee for providing the
remark following Corollary 5.
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