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CHARACTERIZATION OF LOCAL DIMENSION FUNCTIONS
OF SUBSETS OF R4

BY

L. OLSEN (St. Andrews)

Abstract. For a subset £ C R? and z € Rd, the local Hausdorff dimension function
of E at z is defined by

dimHJoc(iE, E) = }l\‘InO dlmH(E n B(l’,’l"))

where dimy denotes the Hausdorff dimension. We give a complete characterization of
the set of functions that are local Hausdorff dimension functions. In fact, we prove a
significantly more general result, namely, we give a complete characterization of those
functions that are local dimension functions of an arbitrary regular dimension index.

1. Introduction and statement of results. For a subset E C R¢
and z € R%, we define the local Hausdorff dimension function of E at = by

dimH,loc(l'a E) = li{% dimy(E N B(z, 7))

where dimy denotes the Hausdorff dimension. The reader is referred to [Fa2]
for the definition of the Hausdorff dimension. The local Hausdorff dimension
function of a set has recently found several applications in fractal geometry
and information theory (cf. [JS, Ru]). In [Ol] we proved that any contin-
uous function is the local Hausdorff dimension function of some set, i.e. if
f : R* — [0,d] is continuous, then there exists a set E C R? such that
f(z) = dimy joc(z, E) for all z € R%. In [Ol] we also showed that there are
discontinuous functions which are local Hausdorff dimension functions, and
discontinuous functions which are not. This suggests the following natural
problem:

Find a characterization of those functions that are local Hausdorff
dimension functions.

In Theorem 1 we will give a complete characterization of such functions.

In fact, we will address a significantly more general problem, namely:
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232 L. OLSEN

Find a characterization of those functions that are local dimension
functions of an arbitrary regular dimension index.

In Theorem 4 we provide a complete solution to this problem.

We need to introduce the notion of punctured upper semicontinuity.
Recall that the upper limit of a function f : R¢ — R as y tends to x is
defined by

limsup f(y) = inf sup f(y).
y—x >0 |5 y|<r

The punctured upper limit of f as y tends to x is defined by

limsupp, f(y) = inf sup  f(y).
y—w >0 o<|z—y|<r

Also, recall that a function f is called upper semicontinuous at a point x if
limsup, ., f(y) < f(z). However, since clearly f(z) < limsup,_,, f(y), we
see that f is upper semicontinuous at x if

limsup f(y) = f(z).

Yy—x

In analogy with this result, we define punctured upper semicontinuity as
follows.

DEFINITION. A function f : R — R is called punctured upper semicon-
tinuous at x if
(1.1) limsupp, f(y) = f(z).
y—x
A function f : R — R is called punctured upper semicontinuous if it is
punctured upper semicontinuous at all x.

It is easily seen that if f is continuous at x, then f is punctured up-
per semicontinuous at x, and that if f is punctured upper semicontinuous
at x, then f is upper semicontinuous at z. There exist punctured upper
semicontinuous functions which are discontinuous (for example, the func-
tion f: R — R defined by f(z) =0 for z < 0 and f(z) =1 for > 0), and
upper semicontinuous functions which are not punctured upper semicontin-
uous (for example, the function f : R — R defined by f(x) = 0 for  # 0
and f(0) =1).

We can now give a complete characterization of those functions that are
local Hausdorff dimension functions.

THEOREM 1. Let f : RY — [0,00) be an arbitrary function. Then the
following two statements are equivalent.
(1) There exists a set E C R% such that
f(z) = dimy joc(z, E)  for all z € R®.
(2) The function f satisfies the following two conditions:
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(i) f is punctured upper semicontinuous.
(ii) For all 0 <t < sup,egra f(x), we have
t < dimy joc(z, {t < f}) forallz e {t < f}.
ExXAMPLE. Let 0 < s < 1. The function f : R — R defined by f(z) =0
forz < 0and f(x) = s for 0 < z clearly satisfies condition (2)(ii) in Theorem

1 but is not punctured upper semicontinuous. It therefore follows that f is
not the local Hausdorff dimension function of any set £ C R.

ExaMpPLE. Let C' C R denote the usual Cantor set and suppose that
dimy(C) = log2/log3 < s < 1. The function f : R — R defined by f(z) =0
for x ¢ C and f(x) = s for x € C is easily seen to be punctured upper
semicontinuous but it does not satisfy condition (2)(ii) in Theorem 1. Indeed,
if dimy(C) = log2/log3 <t < s, then {t < f} = C, so dimy joc(z, {t < f})
= dimy joc(z, C) < dimy(C) <t for all 2 € {t < f} = C. Therefore f is not
the local Hausdorff dimension function of any set £ C R.

The following result was also obtained in [Ol] using different methods.

COROLLARY 2. If f : R? — [0, 00) is a continuous function with f(x)<d
for all x € R, then there exists a set E C RY such that
f(z) = dimy joc(z, E)  for all z € R%.

Proof. This follows from the fact that a continuous function f with
f(z) < d for all = clearly satisfies the conditions of Theorem 1. m

In fact, we prove a significantly more general result characterizing local
dimension functions of arbitrary regular dimension indices. Below we define
a regular dimension index.

DEFINITION. A function dim : {E | E C R?} — [0,00) is called a
dimension index if it satisfies the following three conditions:

(1) If EC F C R4, then dim(E) < dim(F).
(2) If By, Es,... CR? then

dim ( U En> = supdim(E,).

(3) If z € R?, then dim({z}) = 0.

A dimension index dim is called regular if it, in addition, satisfies the fol-
lowing condition:

(4) If t > 0 and E C R? is a Borel set satisfying ¢ < dim(F), then there
exists a compact set C' C E such that dim(C) = t.

Properties of general dimension indices have been studied by, for ex-
ample, Cutler [Cu] and Tricot [Tr]. It is clear that the Hausdorff dimension



234 L. OLSEN

dimpy and the packing dimension dimp are dimension indices, and Proposi-
tion 3 shows that they are also regular. The reader is referred to [Fa2] for
the definition of the packing dimension.

PROPOSITION 3. The Hausdorff dimension dimy and the packing dimen-
ston dimp are regular dimension indices.

Proof. To prove the regularity, we need the following two (deep) results.
For t > 0, we let H! denote the ¢-dimensional Hausdorff measure and we let
Pt denote the t-dimensional packing measure.

(1) If t > 0 and E is a Suslin subset of R? such that H*(E) = oo, then
there exists a compact set C' C E such that 0 < H'(C) < oo.

(2) If t > 0 and F is a Suslin subset of R? such that P*(E) = oo, then
there exists a compact set C' C E such that 0 < P*(C) < cc.

Result (1) follows from [Fal, Theorem 5.5] and result (2) is proved in [JP].
It follows immediately from (1) and (2) that dimy and dimp are regular
dimension indices. m

For an arbitrary dimension index dim and a subset £ C R? we define
the local dimension of E at x € R? by

dimyec(z, E) = 11{1% dim(E N B(x,r)).

We can now state our main result.

THEOREM 4. Let f : R? — [0,00) be an arbitrary function and let dim
be a regular dimension index. (In particular, this condition is satisfied if
dim equals the Hausdorff dimension dimy or the packing dimension dimp.)
Then the following three statements are equivalent:

(1) There exists a set E C R? such that
f(z) = dimyo(z, E) for all z € RY,
(2) There exists an F, set E C R such that
f(z) = dimyc(z, E)  for all z € R
(3) The function f satisfies the following two conditions:

(i) f is punctured upper semicontinuous.
(ii) For all 0 <t < sup,epa f(x), we have

t < dimpc(x,{t < f}) forallxe{t<f}.

Observe that Theorem 1 follows immediately from Theorem 4. We also
note that in order to prove Theorem 4 it clearly suffices to show that (3)
implies (2) (which is done in Section 2), and that (1) implies (3) (Section 3).
Finally, the proof of the following consequence of Theorem 4 is similar to
that of Corollary 2 and is therefore omitted.
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COROLLARY 5. Let dim be a regular dimension index such that
dim(G) = dim(R%)
for all open non-empty subsets G C R®. (In particular, this condition is
satisfied if dim equals dimy or dimp.) If f : R4 — [0,00) is a continuous
function with f(z) < dim(R?) for all z € R?, then there exists a set E C R?
such that
f(z) = dimyc(z, E)  for all z € R?,
REMARK. It follows from Theorem 4 that if M is an arbitrary subset

of R, then there exists an F, subset E of R? whose local Hausdorff dimen-
sion function coincides with that of M, i.e.

dimy joc (2, ) = dimy joc (2, M) for all x € R,
This result is the best possible and cannot be improved. More precisely, if

M is an arbitrary subset of R, then it is in general not possible to choose
a closed subset F' of R? such that
dimy joc(z, F) = dimy joc(x, M)  for all z € R%.

Indeed, let f: R? — R be any continuous function such that 0 < f(z) < d
for all z € R? and f(z¢) < d for some xq. It follows from Theorem 4 that
there exists a set M such that f(z) = dimy oc(z, M) for all z € R?. We now
claim that there is no closed set F' such that dimy joc(z, F)) = f(x) for all
z € R%. To see this observe that if F is closed and dimy joc(z, F) > 0, then
x € F. Hence, if F is closed and dimpy joc(z, F) = f(z) > 0 for all z € R,
then F = R?, whence dimy joc (2, F) = d for all x, contradicting the fact
that dimH,Ioc($07 F) = f(xo) < d.

2. Proof of Theorem 4: (3) implies (2). First we introduce some
notation. For a function f: R? — R, 2 € R? and r > 0 write
Bp(z, 1) ={y € R |0 < |z —y| <7},
21) Mp(fiwr) = sup  f(y),

0<|z—y[<r
i.e. Bp(x,r) is the punctured ball centered at x and with radius equal to r
and Mp(f;x,r) is the supremum of f over By(z, 7).
Proof that (3) implies (2) in Theorem 4. Let 0 <t < sup,cpa f(x). For
x € {t< f}and r > 0 we have
(2.2) t < dimype(z,{t < f}) < dim(B(z,r) N {t < f}).

Also, since f is punctured upper semicontinuous, and so in particular upper
semicontinuous, B(z,r) N {t < f} is Borel. It therefore follows from (2.2)
and the fact dim is regular that there exists a compact set Ey(x, r) satisfying

E(xz,r) CB(z,r)N{t < f}, dim(E(z,r))="1.
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Next choose a countable dense subset Uy of {t < f} and define

E = U U Eilz,r).

0<t<sup, pa f(y) 7€Q+
teQy zeUy

The set F is clearly F,. We will now prove that f is the local dimension
function of F.

CrAaM 1. For all x € R%, we have
dimyoe (2, E) < f(z).
Proof. Fix € R% and r > 0. Then
(2.3) EnB(z,r) C(ENBpy(z,r)) U{z}
= U (U @E@s)nBem)uie}

0<t<sup, cpa f(y)  5€Q+
t€Q+ zeU,

Next observe that since E;(x,s) C {t < f}, we have
(2.4) Ey(z,s)NBp(z,r) C{t < f}NBp(z,r) =0 for Mp(f;z,r) <t.
Combining (2.3) and (2.4) yields

ENB(zrc ( U (Bi(a.s)n Bp(x,r))) U {z}

0<t<My(fixr) © 5€Qy
teQ4 zeUy

U ( U Et(x,s))u{m}.

0<t<Mp(f;z,r) s€Qy
teQ4 zecU,

N

It follows that

dim(E N B(z,r)) < max( sup sup dim(E;(z,s)),dim({z}))
0<t<My(f;z,r) s€Qy

tEQ+ zeU,
= sup sup dim(FEy(z,s))
0<t<My(fiz,r) s€Qp
teQ4 zeUy
= sup sup t = My(f;z,7)
0<t<M,(fiz,r) s€Qy
t€Q+ xeUy

for all » > 0. Finally, using the fact that f is punctured upper semicontinuous
at x, we infer that

dimpec(z, E) = liil%dim(EﬁB(x,r)) < lii%Mp(f;x,r) = f(z). =

CrLAIM 2. For all x € R%, we have
f(z) < dimye(z, E).
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Proof. Fix x € R? and r > 0. Next, let £ > 0. We can choose s € Q.
with 47 < s < 1r and y € Bp(x, s) such that Mp(f;z,s)—¢ < f(y). Finally,
choose t € Qy with Mp(f;z,5) —2e <t < My(f;z,s) —e. It follows that
y € {t < f} and we can thus find v € U; with |u — y| < s. It is now clear
that

Et(ua S) g E7
and that Fy(u,s) C B(u,s) C B(x,r), whence
E(u,s) N B(x,r) = E(u, s).
We therefore conclude that
dim(E N B(x,r)) > dim(E(u, s) N B(z,r)) = dim(E¢(u,s)) =t
> My(f;xz,8) —2 > Mp(f;x, %r) — 2¢.
Since f is punctured upper semicontinuous at x, we infer that
) e S 1 S D S _ 9.
dimoc (2, E) 711{%d1m(}5 N B(z,r)) > }1{1}) My(f;@, gr) — 26 = f(x) — 2¢

Finally, letting € \, 0, shows that dim,(z, E) > f(z). =

3. Proof of Theorem 4: (1) implies (3). We begin with a small
lemma.

LEMMA 6. Let M C R%. Then

dim(M) < sup dimygc(x, M).
xeM
Proof. Let € > 0. For each x € M we can choose a positive number
rz > 0 such that
dim(M N B(z,ry)) < dimjoc(x, M) + €.

The family (B(z,7,))zen forms an open cover of M, and it therefore follows
from Lindel6f’s theorem (cf. [BBT, p. 7, Exercise 1:1.14]) that there exists
a countable subset U C M such that the family (B(z,7;))zcv covers M.
This implies that

dim(M) = dim( U (Mn B(a:,rx))) = suB dim(M N B(z,ry))
zeU re

< sup dimyoc(x, M) + ¢ < sup dimyec(z, M) + €.
zeU zeM
Letting € X\, 0 gives the desired result. m
Proof that (1) implies (3)(i) in Theorem 4. We prove this by proving the
two claims below.

CrLAIM 1. For all x € R%, we have
lim supp £(y) < f(2).

y—
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Proof. Fixx € R?and r > 0. For all y € Bp(z,7) and 0 < s <7 — |z —y|
we see that B(y, s) C B(z,r), whence dim(E N B(z,r)) > dim(E N B(y, s)).
Letting s ™\, 0 now gives
dim(E N B(w,r)) > dimpc(y, £) = f(y).
Since y € Bp(x,r) was arbitrary, this implies that

dim(E N B(z,r)) > sup  f(y).
0<|z—y[<r

Finally, letting r ™\, 0 shows that
f(z) = dimjpc(z, E) > limsupp f(y). =

Yy—x
CLAIM 2. For all x € R%, we have
f(x) < limsupp f(y).

y—)flf
Proof. Fix x € R? and r > 0. Let € > 0. For each y € Bp(z,7) we can
find r, > 0 such that B(y,r,) C B(x,r) and
dim(E N B(y,ry)) < dimoc(y, E) + ¢ = f(y) +¢.
The family (B(y,7y))yeB,(z,r) forms an open cover of By(z,7), so by Lin-
del6f’s theorem there exists a countable subset U C Bp(x,r) such that
(B(y,ry))yev covers Bp(z, ). Hence,
dim(E N B(z,r)) < dim((E N Bp(z,r)) U {x})
= max(dim(E N Bp(z,r)), dim({z}))
= dim(E N Bp(x,r))
<dim (|J(EnB,n))
yelU

= sup dim(E N B(y, ry))
yeU

<sup f(y)+e< sup f(y)+e.
yeU 0<|z—y|<r

Next, letting € N\, 0 shows that dim(E N B(z,7)) < supgc|,—y<, f(y). Fi-
nally, letting r \, 0 yields

f(z) = dimjoe(z, E) < limsupp f(y). =

Yy—x

Proof that (1) implies (3)(ii) in Theorem 4. Let t < sup,cra f(v) and
x € {t < f}. Also, let » > 0. Next, observe that

(3.1) dim(E N B(z,r))
= max(dim((E \ {f <t}) N B(z,r)),dim((En{f <t}) N B(z,7))).
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Using Lemma 6 we see that
dim((EN{f <t})NB(x,r)) <dim(EN{f <t})
sup  dimye(y, EN{f < t})
yeENn{f<t}

sup dimpe(y, E) < sup f(y) <t
ye{f<t} ye{f<t}

IN N

IN

We also have
(3.3) dim(E N B(x,r)) > dimjg(z, E) = f(x) > t.
Combining (3.1), (3.2) and (3.3) shows that

dim(E N B(z,r)) =dim((E\ {f <t}) N B(z,r))

for all » > 0. This clearly implies that dimjoc(z, E) = dimjoc(z, B\ {f < t}),
whence

t < f(z) = dimyc(z, ) = dimoe(z, B\ {f < t}) < dimpge(z, {t < f}).
This completes the proof. m
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