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Abstract. We study weak mixing and double ergodicity for nonsingular actions of
locally compact Polish abelian groups. We show that if T is a nonsingular action of G,
then T is weakly mixing if and only if for all cocompact subgroups A of G the action of
T restricted to A is weakly mixing. We show that a doubly ergodic nonsingular action is
weakly mixing and construct an infinite measure-preserving flow that is weakly mixing but
not doubly ergodic. We also construct an infinite measure-preserving flow whose cartesian
square is ergodic.

1. Preliminaries. In [17], Kakutani and Parry constructed an infinite
measure-preserving invertible transformation T such that T × T is ergodic
(and conservative) but T × T × T is not conservative, hence not ergodic.
They also constructed other examples including one where all finite cartesian
products are ergodic. Since that time there has been interest in understand-
ing dynamical properties for infinite measure-preserving and nonsingular
transformations that are analogous to the weak mixing property for finite
measure-preserving transformations.

In [1], Aaronson, Lin and Weiss studied the notion of weak mixing for
nonsingular and infinite measure-preserving transformations. A nonsingular
transformation T is said to be weakly mixing if whenever f ◦ T = λf for
f ∈ L∞ and λ ∈ C, then f is constant a.e. They showed that T is weakly
mixing if an only if for every ergodic finite measure-preserving transforma-
tion S, T × S is ergodic, and constructed an example of a weakly mixing
transformation such that T × T is not conservative, hence not ergodic. In
[2], Adams, Friedman and Silva showed that it can happen that T is weakly
mixing with T × T conservative but still T × T not ergodic. Other unusual
behavior has been shown to exist: there is an infinite measure-preserving

2000 Mathematics Subject Classification: Primary 37A40.
Key words and phrases: weakly mixing, doubly ergodic, measure-preserving transfor-

mation, action of Polish groups.

[247]



248 S. IAMS ET AL.

transformation T such that all its finite cartesian products are ergodic but
T × T 2 is not conservative [3].

These examples have been extended to the case of infinite measure-
preserving and nonsingular actions of countable discrete abelian groups by
Danilenko [7]. More recently, these notions have been studied in the context
of multiple recurrence by Danilenko and Silva [8]. We refer to [7] and [8]
for a more detailed history of these problems. However, both [7] and [8] and
earlier work consider only actions of countable discrete abelian groups. In
this work we are interested in studying notions such as weak mixing and
its generalizations for infinite measure-preserving and nonsingular actions
of continuous groups such as R.

We start with a section of preliminary definitions where we review equiva-
lent characterizations of ergodicity. In our definitions and general theorems
we treat actions of a locally compact Polish abelian group G, and in our
examples we specialize to the case when G = R. We then define double er-
godicity for nonsingular actions of G and show it implies weak mixing. Weak
mixing for finite measure-preserving actions of amenable groups was studied
by Dye [10], and these characterizations were extended to the case of finite
measure-preserving actions of σ-compact locally compact groups by Bergel-
son and Rosenblatt [4]. (For the weak mixing property of finite measure-
preserving actions of groups the reader may refer to [10], [20], [4], and [5].)

In Section 4 we characterize weak mixing for nonsingular G-actions, ex-
tending an old result of Hopf [15], where he showed that a finite measure-
preserving R-action is weakly mixing if and only if each nonzero time trans-
formation is ergodic, and a result of Bergelson and Rosenblatt [4, 1.15],
where the theorem is shown in the finite measure-preserving case. In Sec-
tion 5 we construct an R-action that is weakly mixing but not doubly er-
godic. In Section 6 we construct an infinite measure-preserving R-action
whose cartesian square is ergodic, and briefly discuss how to construct dou-
bly ergodic Rd-actions.

Acknowledgments. This paper is based on research in the Ergodic
Theory group of the 2002 SMALL Undergraduate Summer Research Project
at Williams College, with Silva as faculty advisor. Support for the project
was provided by a National Science Foundation REU Grant and the Bronf-
man Science Center of Williams College. The Ergodic Theory SMALL group
would also like to thank Joe Rabinoff for his helpful comments on represen-
tation theory. We are indebted to the referee for several comments and
suggestions that improved the exposition.

2. Definitions. Let (X,B, µ) denote a σ-finite nonatomic Lebesgue
measure space. In our applications, (X, µ) will have infinite measure. A non-
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singular automorphism φ on (X,B, µ) is a measurable invertible map on X
such that µ(A) = 0 if and only if for all A ∈ B, µ(φ−1(A)) = 0; φ is measure-

preserving if for all A ∈ B, µ(φ−1(A)) = µ(A). Let G be a locally compact
Polish (separable completely metrizable) abelian topological group. An ac-

tion T of G on X consists of a family of automorphisms T = {T g : g ∈ G}
such that the map G × X → X, (g, x) 7→ T gx, is measurable and for all
x ∈ X0, X0 ⊂ X, µ(X\X0) = 0, we have T gT hx = T ghx and T ex = x, where
e is the identity element in G. We may and do assume (see e.g. [21]) that
our actions are continuous, i.e., for all A ∈ B, µ(T g(A) △ A) → 0 as g → e.

We say that a measurable set A is almost invariant if, for all g ∈ G,
µ(T g(A)△A) = 0. Similarly, we say that a measurable function f is almost

invariant if for a.e. x, f(T gx) = f(x) for all g ∈ G. A measurable set A ⊂ X
has partial measure if µ(A) > 0 and µ(Ac) > 0.

An action T is ergodic if there are no sets of partial measure that are
almost invariant under T .

The following proposition shows the equivalence of two definitions of
ergodicity; its proof is standard and left to the reader.

Proposition 2.1. Let T = {T g : g ∈ G} be a nonsingular action of G
on (X, µ). Then T is ergodic if and only if for every pair of measurable sets

A and B in X there exists a g ∈ G such that µ(T gA ∩ B) > 0.

Remark 2.2. (a) It can be shown as in [21, Proposition 2.2.16] that T
is ergodic if and only if T does not admit any strictly invariant set A (i.e.,
T g(A) = A for all g ∈ G) of partial measure.

(b) For the remainder of this paper, equality means equality except on
a set of measure zero where not specified.

A group action T is weakly mixing if whenever f ∈ L∞(X, µ) satisfies
T gf = λgf a.e., for all g ∈ G, with λg ∈ C, then f is constant a.e. This
clearly implies that T does not admit almost invariant sets of partial mea-
sure, and so T must be ergodic.

We define a G-action T on (X, µ) to be doubly ergodic if for any mea-
surable sets A, B ⊂ X of positive measure, there exists an element g ∈ G
such that µ(T gA ∩ A) > 0 and µ(T gA ∩ B) > 0. It is easy to see that,
in the definition of double ergodicity, one may assume g 6= e. In the fi-
nite measure-preserving transformation case, it was shown by Furstenberg
[13] that double ergodicity is equivalent to weak mixing. However, as shown
in [6], the situation in the infinite measure-preserving case is quite different.
It is easy to see that the ergodic cartesian square property, both for transfor-
mations and group actions, implies double ergodicity, but it was shown in [6]
that there exist infinite measure-preserving transformations that are doubly
ergodic but have nonergodic cartesian square. It was also shown in [6] that
for nonsingular transformations, double ergodicity implies weak mixing, and
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it was observed that the infinite measure-preserving transformation that was
shown in [2] to be weakly mixing but with nonconservative cartesian square
is not doubly ergodic. For the case of transformations the reader may refer
to [2], [6], [14]; we discuss these implications for the case of group actions in
the following sections.

3. Double ergodicity implies weak mixing. In this section we show
that double ergodicity implies weak mixing for nonsingular G-actions. The
idea of the proof is as in Furstenberg’s proof [13, Theorem 4.31] for the finite
measure-preserving transformation case. The fact that the converse does not
hold is shown in Section 5. We note that in [6] it is shown directly that if T
is a nonsingular transformation that is doubly ergodic then for all ergodic
finite measure-preserving transformations S, T × S is ergodic.

Proposition 3.1. Let T be a nonsingular G-action. If T is doubly er-

godic, then it is weakly mixing.

Proof. Suppose T is not weakly mixing. Then there exists a nonconstant
f ∈ L∞ such that T gf = λgf for all g ∈ G. Since T g is an L∞ isometry,
|λg| = 1 for all g ∈ G. Note that |f | is constant a.e., since T g|f | = |λgf | = |f |
and T is ergodic, as it is doubly ergodic. Without loss of generality, take
|f | = 1 a.e. Letting ∗λg denote multiplication by λg on S1, we have f ◦T g =
∗λg ◦ f . We get the following commutative diagram:

(1)

X
T g

−−−−→ X

f

y
yf

S1 ∗λg
−−−−→ S1

For this proof, consider S1 under the canonical identification with [0, 1).
Let Bn,k := [k/2n, (k + 1)/2n) for 0 ≤ k < 2n. Since f is nonconstant we
may take n so large that µ(f−1(Bn,ki

)) 6= 0 for at least two Bn,ki
which are

not next to each other (mod 1). Let A and B be two such sets.
Since multiplication by λg in S1 corresponds to translation in [0, 1), we

see that either λgA∩B = ∅ or λgA∩A = ∅, for all g ∈ G, since they are not
next to each other. Thus, by the commutativity of the diagram, we see that
for all g ∈ G, µ(T gf−1(A) ∩ f−1(A)) = 0 or µ(T gf−1(A) ∩ f−1(B)) = 0.
Hence, T is not doubly ergodic, completing the proof.

4. Weak mixing. In this section we study subactions of weakly mixing
nonsingular group actions. In particular, if A is a cocompact subgroup of G
(i.e., A is a closed subgroup of G such that G/A is compact), what can we
learn by investigating the restriction of the group action to A? Our main
result is Theorem 4.3, which generalizes a result of Bergelson and Rosen-
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blatt [4, 1.15] from the finite measure-preserving case to the nonsingular
case, though in our case we assume our groups are abelian, which [4] does
not. In Corollary 4.4 we obtain an extension of an old result of Hopf [15],
who showed that a finite measure-preserving flow is weakly mixing if and
only if every nontrivial time of the flow is an ergodic transformation, to the
case of nonsingular Rd-actions. Our methods of proof are different from [4]
and [15].

In this section we keep the same assumptions on T and G as in the rest
of the paper. We require two lemmas.

Lemma 4.1. Let A be a cocompact subgroup of G, let ν be Haar measure

on G/A, and let T be a nonsingular G-action on (X, µ). Suppose there exists

f ∈ L∞(X, µ) such that T af = f for all a ∈ A. For φ ∈ Ĝ/A, define

kφ(x) =
\

G/A

φ([g])f(T gx) dν([g]).

Then kφ ∈ L∞(X, µ) is well defined , and

T hkφ(x) = φ([h−1])kφ(x).

Proof. Fix g ∈ G and a ∈ A. Then we see, for a.e. x ∈ X,

(2) f(T gax) = f(T gx).

It follows that kφ ∈ L∞(X, µ) is well defined. To complete the proof, it
remains to change variables and use the invariance of Haar measure.

Lemma 4.2. Let A be a cocompact subgroup of G. Let T be a nonsingular

ergodic G-action on (X, µ). Suppose T |A is not ergodic, i.e., there exists a

measurable set B ⊂ X of partial measure such that for all a ∈ A, T aB = B.

Then T is not weakly mixing.

Proof. Since T aχB = χB for all a ∈ A, letting ν be Haar measure on

G/A, Lemma 4.1 gives kφ(x) =
T
φ([g])χB(T gx)dν([g]) for each φ ∈ Ĝ/A

and tells us T hkφ(x) = φ([h−1])kφ(x). Suppose, for a contradiction, that T
is weakly mixing. Hence, for all φ 6≡ 1, kφ(x) = 0. Thus kφ(x) = 0 a.e. for

all φ ∈ Ĝ/A. Since G/A is compact and metrizable, Ĝ/A is countable, and

so for a.e. x, kφ(x) = 0 for all φ ∈ Ĝ/A.

Pick a representative from each coset, say bg ∈ [g] ⊂ G. Let j([g], x) ≡
χB(T bgx). By the well definedness of kφ, we see, for a.e. x, 0 = kφ(x) =

〈j(·, x), φ〉, for all φ 6= 1. So, by the Peter–Weyl theorem [as Ĝ/A forms an
orthonormal basis for L2(G/A)], for a.e. [g] and a.e. x, we have

j([g], x) =
∑

φ∈Ĝ/A

kφ(x)φ([g]) = k1(x).
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Here we use the fact that χB(T bg) ∈ L2(G/A, dν). This is not hard to
see, since ν is finite and χB(T bg) ≤ 1 for all g and x, so it suffices to see
that χB(T bg) is ν-measurable. Since T acts continuously on the measurable
functions by assumption (in the topology of convergence of measure) and
since χB(T g) is well defined on the quotient space G/A, χB(T bg) = χB(T g)
is continuous and therefore measurable.

Since T is ergodic, we see k1(x) is constant almost everywhere. Thus, for
ν-a.e. [g] and µ-a.e. x, j([g], x) = c. But equation (2) from Lemma 4.1 tells
us that c = j([g], x) = χB(T gx) a.e. in [g], a.e. in x. This contradicts the
fact that T is nonsingular and ergodic.

Theorem 4.3. Let T be a nonsingular G-action on (X, µ). Then T is

weakly mixing if and only if for all cocompact subgroups A of G, T restricted

to A is weakly mixing , i.e., if f ∈ L∞(X, µ) is such that T af = γ(a)f for

all a ∈ A, then f is constant a.e.

Proof. Suppose that T is weakly mixing and take a subgroup A of G
such that G/A is compact. Then Lemma 4.2 implies that T |A is ergodic. As
pointed out to us by the referee, the result now follows from the well known
fact that if T is a weakly mixing G1 action and S is an ergodic G2 action
that commutes with T , then S is weakly mixing.

For the converse we note that if f is a nonconstant eigenfunction of T ,
it is also an eigenfunction of T |A for each closed subgroup A of G.

Corollary 4.4. Let T be a nonsingular Rd-action on a possibly infinite

measure space (X, µ). Then the following are equivalent :

(i) there exists a basis {a1, . . . , ad} of Rd and a measurable set A ⊂ X
of partial measure such that T a1A = · · · = T adA = A,

(ii) there exists a basis {a1, . . . , ad} of Rd and a nonconstant f ∈
L∞(X, µ) such that T aif = λif , i = 1, . . . , d,

(iii) T is not weakly mixing.

Proof. Clearly (i)⇒(ii). Taking G = Rd, A = 〈a1, . . . , ad〉 from the theo-
rem, we get (ii)⇒(iii). Suppose that T is not weakly mixing. Say T gf = λgf ,
f nonconstant, f ∈ L∞(X, µ). In particular, T teif = e2πiλitf , where ei is the
standard basis. Taking ti = 1/λi, we get T tieif = f . Since f is nonconstant,
either Re(f) or Im(f) is nonconstant. Let g be this nonconstant function.
Note that T tieig = g. Take α such that A ≡ {x : g(x) > α} 6= X, ∅. Note
T tieiA = A. Thus (iii)⇒(i).

The following corollary in the case when the flow is finite measure-
preserving was shown by Hopf [15].

Corollary 4.5. Let T be a nonsingular R-action on (X, µ). Then the

following are equivalent :



NONSINGULAR ACTIONS 253

(i) T is weakly mixing ,
(ii) for all a ∈ R \ {0}, T a is an ergodic Z-action,
(iii) for all a ∈ R \ {0}, T a is a weakly mixing Z-action.

Proof. Let d = 1 in Corollary 4.4.

Corollary 4.6. Let T be a nonsingular Zd-action on (X, µ). Suppose

there exists a basis {a1, . . . , ad} ⊂ Zd of Rd and a nonconstant f ∈ L∞(X, µ)
such that T aif = λif , i = 1, . . . , d. Then T is not weakly mixing.

Proof. Let G = Zd, A = 〈a1, . . . , ad〉 in the theorem.

5. Weakly mixing but not doubly ergodic. In this section we con-
struct an infinite measure-preserving flow that is weakly mixing but not
doubly ergodic. The construction is by the process of cutting and stacking
rectangles in the plane. Cutting and stacking techniques for constructing
rank-one transformations are well known (see e.g. [12]). A standard way to
construct flows is using the notion of a flow built under a function, such as
in [16], where the Chacon finite measure-preserving flow is constructed and
shown to be weakly mixing, and to have the stronger property of minimal
self-joinings that we do not study here.

There is a natural isomorphism between the cutting and stacking rectan-
gles constructions in the plane and the constructions using a flow built un-
der a function, but we find the first more geometric, in particular when con-
structing Rd-actions. Finite measure-preserving flows have been constructed
earlier using the process of cutting and stacking rectangles in the plane in
[18] and [19]. They were constructed as examples of finite measure-preserving
weakly mixing flows that are not mixing. However, as we show in Remark 5.2,
the flow constructed in [18] is not weakly mixing. The flow in [19] is weakly
mixing, but the choice of the “spacers” is different from ours, in addition to
the fact that our examples are infinite measure-preserving. More recently,
Fayad [11] has constructed, in the finite measure-preserving case, smooth
rank-one mixing flows.

We now describe our construction. Let α be a positive irrational number.
We recursively define a sequence of columns Cn, n ≥ 0; each column will
be a well defined rectangle in the plane. Let C0 = [0, 1) × [0, 1) of height
h0 = 1 and width w0 = 1. A column partially defines a flow in the following
way: for (x, y) ∈ [0, 1) × [0, 1) and r ≥ 0 define T r(x, y) = (x, y + r) if
y + r < 1, and otherwise T r(x, y) remains undefined. Now given Cn of
height hn and width wn, define Cn+1 by first (vertically) cutting Cn into
two equal subcolumns, and placing a spacer of height 2hn + α and width
wn/2 over the right hand subcolumn. By a spacer we mean a rectangle in
the plane of the specified width and height that is disjoint from the current
column. Now move the left hand column underneath the right hand column
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to make a column of height hn+1 = 4hn + α and width wn+1 = wn/2. Call
this new column Cn+1 (see Figure 1). In Cn we define Ln,h,s to be a rectangle
of height h of full width in Cn, starting at a distance of s from the top of Cn.

Fig. 1. Cn+1 out of Cn

The partial flow T r
Cn

for r ∈ R is defined by the translation that maps
(x, y) ∈ Cn to (x, y + r) if (x, y + r) ∈ Cn, otherwise the flow remains
undefined. Note that TCn+1

is defined wherever TCn is defined, and they
agree wherever both are defined. Now let X =

⋃
n≥0 Cn and define

T r := lim
n→∞

T r
Cn

.

Proposition 5.1. T is an infinite measure-preserving weakly mixing

flow.

Proof. It is clear from the construction that T is measure-preserving
and ergodic, and that the space X where it is defined has infinite measure.
Suppose f is an eigenfunction of T with eigenfrequency other than 0. So
T rf = e2πiλrf , λ 6= 0, for all r ∈ R. Clearly T is ergodic, so |f | = 1 a.e.
Let d be the metric on S1 given by identifying S1 with [0, 1) and using the
usual Euclidean metric on [0, 1). Note that d is rotationally invariant, i.e.
rotation is an isometry with respect to d. Also note that if d(z, 1) = δ <
1/2m, then d(zm, 1) = mδ. Fix ε > 0. Find a constant c ∈ S1 such that
A := f−1({z ∈ S1 : d(z, c) < ε}) has positive measure. We may find some
R := Ln,h,s which is 3

4 full of A (i.e., µ(R ∩ A) ≥ 3
4µ(R)). Note that, for

m ≥ n, µ(T hmR ∩R) = 1
2µ(R). This is clear for m = n as the left half of R

is moved to the right half of R. For m > n we may think of R as the union
of level rectangles, Lm,h,si

, and the result follows.
Let m ≥ n. Now, since R was 3

4 full of A, at least one half of R must

be 3
4 full of A, and more than 1

2 of R hits itself under T hm , we see that

µ(T hmA ∩ A) > 0. And so for a fixed m ≥ n, on a set of positive measure,
we see that d(f(x), c) < ε and d(f(T hmx), c) < ε. Thus,

(3) d(e2πiλhm , 1) = d(e2πiλhmf(x), f(x)) = d(f(T hmx), f(x)) < 2ε =: ε′.
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We know that hn+1 = 4hn + α, and thus we get d(e2πiλ(4hn+α), c) < ε′.
Using this in addition to d(e2πiλhn , c) < ε′, and rotational invariance of d,
we get d(1, e2πiλα) = d(e8πiλhn , e2πiλ(4hn+α)) < 5ε′. Letting ε′ → 0, we see
that λ = k/α for some integer k. Let κ := e2πik/a.

Solving the recurrence relation for hm, we get hm = (1+α/3)4m−1−α/3
= 4m−1+pmα, where pm is some integer depending on m. For m ≥ n, we get
d(κ4m

, κ4m−1

) = d(e2πiλhm+1 , e2πiλhm) < 2ε′. Using the rotational invariance

of d (dividing by κ4m−1

), we get d(κ4m−13, 1) < 2ε′. And so, d(κ4m−1

, 1) <
2
3ε′. Since we started this argument with d(κ4m−1

, 1) = d(e2πiλhm , 1) < ε′

(see equation (3)), repeating, we get d(κ4m−1

, 1) <
(

2
3

)j
ε′ for all j ≥ 1. Thus

κ4m−1

= 1, which contradicts the irrationality of α.
Hence, the only eigenfunctions of T have eigenvalue 1. By the ergodicity

of T , these eigenfunctions are all constant; therefore T is weakly mixing.

Remark 5.2. (a) In [18] a similar example is constructed. Instead of
spacers of height 2hn+α, [18] uses spacers of height 1. However, the example
in [18] is not weakly mixing. This can be seen by finding a nonergodic
nonzero time. In fact, let A be the union of all level sets, in any fixed column,
of height 1

4 whose lowest x coordinate is an integer. This set is clearly fixed
under the time 1 map, and is clearly not the whole space. Thus the map
cannot be weakly mixing. (We note that [18] uses an incorrect definition for
weak mixing.)

(b) If in our example we take spacers of height α we obtain a finite
measure-preserving flow and the same proof applies to show that it is weakly
mixing.

Proposition 5.3. T is not doubly ergodic.

Proof. This proof is a modification of one found in [2]. Take A and B to
be thin level rectangles in C1, separated by d and of height less than d, as
shown in Figure 2.

Fig. 2. The sets A and B

Define an R-action Rn on Cn which agrees with TCn wherever TCn is
defined and maps the very top row back to the bottom, i.e. a rotation on Cn.
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Define

In(A, L) := {r : 0 ≤ r < hn, µ(Rr
nA∩L) > 0}, In := In(A, A)∩ In(A, B).

We proceed by induction to show In = ∅ for all n ∈ N. Clearly I1 = ∅, and
for the induction, assume Ij = ∅ for j ∈ N. Because, for all r ∈ [2hj, 2hj +α],
Rr

j+1A is contained in the spacers placed on the right subcolumn of Cj , we
have the following inclusion for L = A or L = B:

Ij+1(A, L) ⊂ Ij(A, L) ∪ (Ij(A, L) + hj)

∪ (Ij(A, L) + 2hj + α) ∪ (Ij(A, L) + 3hj + α).

Hence,

Ij+1 = Ij+1(A, A) ∩ Ij+1(A, B)

⊂ Ij(A, A) ∩ Ij(A, B)

∪ (Ij(A, A) + hj) ∩ (Ij(A, B) + hj)

∪ (Ij(A, A) + 2hj + α) ∩ (Ij(A, B + 2hj + α)

∪ (Ij(A, A) + 3hj + α) ∩ (Ij(A, B) + 3hj + α).

By induction, each row in the above expression is the empty set; therefore
Ij+1 = ∅. Noting that for all r ∈ R, there exists an n > 0 such that T rA =
Rr

nA, we have µ(T rA ∩ A)µ(T rA ∩ B) = 0. This completes the proof.

6. Cartesian square ergodicity for an infinite measure-preserv-

ing R-action. We now construct a rank-one, infinite measure-preserving
flow T such that T × T is ergodic. The construction of the flow is simi-
lar to the construction of the infinite measure-preserving transformation in
[9] that has all finite cartesian products of nonzero powers ergodic. How-
ever, the proof is significantly different, as it is not clear how to extend the
approximation arguments in [9] to the case of flows.

We define recursively a sequence of columns Cn, n ≥ 0. Let C0 = [0, 1)×
[0, 1). Let α ∈ R+ \ Q and h0 = 1. Assume a column Cn of height hn has
been defined. Let ⌈hn⌉ denote the least integer greater than or equal to hn.
Then to define Cn+1, cut Cn into four equal subcolumns, place a spacer of
height ⌈hn⌉α on the second subcolumn and place a spacer of height α on the
fourth subcolumn. We then stack the subcolumns from left to right with the
first placed below the second, the second below the third (with the spacer
on it) and the third below the fourth. Note that

hn+1 ≥ 4hn + (hn + 1)α.

Each column Cn defines a partial flow T g
Cn

for g ∈ R by the translation

that maps (x, y) ∈ Cn to (x, y+g) if (x, y+g) ∈ Cn. Otherwise T g
Cn

remains

undefined in Cn. Let X =
⋃∞

n=0 Cn. Then X ⊂ R2 has infinite measure as
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µ(Cn+1) > (1 + α/4)µ(Cn). Then define the flow as

T g = lim
n→∞

T g
Cn

.

Let 0 < n, 0 < η ≤ hn and 0 < s ≤ hn. A level of Cn is defined to
be a rectangle of height η of full width in Cn, starting at a distance of s
from the top of Cn; we denote it by Ln,η,s. We now consider T hnLn,η,s.
The intersection of T hnLn,η,s with Cn is called the crescent of Ln,η,s. The
crescent of Ln,η,s contains the blackened region of Figure 3. (When α > 1,

Fig. 3. T
hnLn,η,s

the crescent of Ln,η,s is equal to the blackened region of Figure 3.) The
crescent has levels of height η, separated by α and decreasing in measure by
a factor of 1

4 with each successive level. For n ≥ 0, l ≥ 1, we have

(4) µ(T hnLn,η,s ∩ Ln,η,lα+s) ≥ µ(Ln,η,s)/(2 · 4l),

provided that Ln,η,lα+s is actually defined, i.e. provided that lα+s+η ≤ hn.
If we fix k and let n > k then column Ck appears in Cn as 4n−k disjoint

levels of height hk. Each of these is called a copy of Ck. Thus there are 4n−k

copies of Ck in Cn.

Definition 6.1. Let A be a measurable set in X and let I = Lk,η,s be
a level, for some k, η, s. Define

Full(A, I) =
µ(A ∩ I)

µ(I)
.

Analogously, for A ⊂ X × X define

Full(A, I × J) =
µ × µ(A ∩ I × J)

µ × µ(I × J)
.

Theorem 6.2. Let T be the flow defined above by cutting each column

Cn into four subcolumns, adding spacers, and stacking. Then T × T is an

ergodic flow.

Proof. Let A and B be subsets of X × X of positive measure. Given
1
15 > δ > 0, A and B can be approximated by the cartesian product of
full levels I1, I2, J1, J2 of the form Lk,η,xi

for fixed k ≥ 0 and η > 0 with
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xi = xI1 , xI2 , xJ1
or xJ2

, where xIi
stands for the distance from the top of

Ck to the start of Ii, xJi
stands for the distance from the top of Ck to the

start of Ji, and

Full(A, I1 × I2) > 1 − δ, Full(B, J1 × J2) > 1 − δ.

For n > k let sn = hn +(xI1 −xJ1
). One can verify that µ(T snI1 ∩J1) =

µ(I1)/2.

We are going to show that at one of the times sn, (T×T )snA intersects B
in a positive measure set. To do this, we are going to consider T snI1∩J1 and
T snI2 ∩ J2. As previously noted, µ(T snI1 ∩ J1) = µ(I1)/2, so our primary
concern is T snI2 ∩ J2. Note that I2 is a union of levels in Cn and that
|xI1 − xJ1

| is smaller than hk which in turn is smaller than hn. Therefore,
much of T snI2 is simply a translate in Cn of T hnI2 ∩ Cn (expecially for
large n) and T hnI2 ∩ Cn is in turn a union of crescents.

For T snI2 to intersect J2, we want the distance between a copy of I2 in
Cn translated by xI1 − xJ1

and a copy of J2 in Cn to be close to a positive
integer times α, because then we may apply (4). The distance between two
copies of Ck in Cn is of the form ahk + bα for positive integers a, b since all
the spacers added are of heights which are integer multiples of α. Let I2,n

denote a full level subset of I2 in Cn and J2,n a full level subset of J2 in Cn

which lies under I2,n. Let dist(I2,n, J2,n) denote the distance from the top of
I2,n to the top of J2,n. Then for some positive integers a, b,

dist(I2,n, J2,n) + xI2 − xJ2
= ahk + bα.

And we desire to have dist(I2,n, J2,n)+(xI1 −xJ1
) close to a positive integer

times α.

Since α is irrational and hk is of the form M + Nα for some integers M
and N , for all ε > 0, there exist integers m, r such that m ≥ 0 and

|mhk + rα − (xI2 − xJ2
) + (xI1 − xJ1

)| < εη.

Fix ε such that 1 − 12δ > ε > 0 and let m, r be as above.

For any n > k, call an I2,n good if there exists a J2,n beneath it such
that the distance between them is mhk + bα− (xI2 − xJ2

) for some positive
integer b. By construction, the distance between such an I2,n and J2,n is
close to a positive integer multiple of α minus xI1 − xJ1

, causing T snI2,n to
intersect J2,n. A good I2,n with its corresponding J2,n is shown in Figure 4
for m = 3. For such an I2,n and J2,n, we see by (4) that

µ(T snI2,n ∩ J2,n) > (1 − ε)
1

2 · 4Mn
µ(I2,n)

where Mn is greater than (dist(I2,n, J2,n) + (xI1 − xI2))/α. For instance we
can take Mn = ⌈hn/α⌉.
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Fig. 4. The top I2,n has a partner in J2,n

Note that for any n > k, a copy I2,n is good precisely when there are m
copies of hk below the copy of hk in which I2,n is located. This is because
all spacers inserted to make Cn from Ck are of height which is an integer
multiple of α. Thus, in Cn all but m of the 4n−k copies of I2 are good.

Choose N such that δ/2 > m/4N−k. For all l > N , each I2,l is a copy
of some I2,N . Note that I2,l is good if it is a copy of a good I2,N , but
that there are some I2,l which are good but are not copies of a good I2,N .
We redefine good to ignore such copies, i.e. for l > N a copy I2,l of I2 is
good precisely if I2,l is a copy of a good I2,N . Thus MN is greater than
(dist(I2,l, J2,l) + (xI1 − xJ1

))/α for any good I2,l and its corresponding J2,l.
Thus, for all l > N and all good I2,l and corresponding J2,l,

µ(T slI2,l ∩ J2,l) > (1 − ε)
1

2 · 4MN
µ(I2,l).

Let

I ′2 =
⋃

good I2,N

I2,N , J ′
2 =

⋃

partner(good I2,N )

J2,N .

Then

(5) µ(I ′2) > (1 − δ/2)µ(I2), µ(J ′
2) > (1 − δ/2)µ(J2).

Take a good I2,l and its corresponding J2,l. By definition of good, there
is a positive integer d such that dα is close to

dist(T xI1
−xJ1 I2,l, J2,l) = dist(I2,l, J2,l) + (xI1 − xJ1

).

More precisely, |dα− (dist(I2,l, J2,l) + (xI1 −xJ1
))| < εη. Note that d ≤ Mn.

By examining the crescent, we see that the part of I2,l which is taken under
T sl to J2,l is the part obtained by dividing I2,l into 4d+1 equal vertical pieces
and taking the second and the fourth piece from the right. Call this part
I ′2,l; it is illustrated by the two black squares in the upper right of Figure 5.

Let J ′
2,l be the part of J2,l obtained by dividing J2,l into 4d+1 equal vertical

pieces and taking the second and the fourth from the left. J ′
2,l is illustrated
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Fig. 5. Column Cn

by the two black squares in the lower left of Figure 5. Note that

(6) µ(T slI ′2,l ∩ J ′
2,l) = (1 − ε)µ(I ′2,l) = (1 − ε)µ(J ′

2,l).

The rough idea for how to proceed is as follows: since the intersections
T slI ′2,l ∩ J ′

2,l and T slI1 ∩ J1 are large portions of the pieces involved, if

(T × T )slA and B do not intersect (in a nonnull set), then I1,l × I ′2,l and

J1,l × J ′
2,l cannot be very full of A and B respectively. Since I1,l × I ′2,l and

J1,l × J ′
2,l are small compared to I1 × I2 and J1 × J2, this will not directly

produce a contradiction for any fixed l, and we must keep track of all the
I1,l × I ′2,l and J1,l × J ′

2,l for all l. To do this rigorously, we use a partnered
partition, defined in the following manner:

A partnered partition of (I, J) is defined to be an ordered triple (PI ,PJ , σ)
such that PI is a partition of I, PJ is a partition of J and σ is a measure-
preserving bijection σ : PI → PJ , i.e. for all Ĩ ∈ PI , µ(Ĩ) = µ(σ(Ĩ)). We now
define a partnered partition (PI′

2
,PJ ′

2
, σ) by inductively defining partnered

partitions (PI′,n
2

,PJ ′,n
2

, σn) for n = N, N + MN , N + 2MN , N + 3MN , . . .

where I ′,n2 and J ′,n
2 are larger and larger portions of I ′2 and J ′

2 respectively.
For any good I2,n, recall the definition of I ′2,n and J ′

2,n given above and
illustrated in black in Figure 5. Let I∗2,n denote the subset of I2,n directly
above J ′

2,n. Let J∗
2,n denote the subset of J2,n directly below I ′2,n. The sets

I∗2,n and J∗
2,n are illustrated by white squares in the upper left and lower

right, respectively, in Figure 5. Then σN is a partnered partition of(
I ′,N2 =

⋃

good I2,N

(I ′2,N ∪ I∗2,N ), J ′,N
2 =

⋃

partner(good I2,N )

(J ′
2,N ∪ J∗

2,N )
)
,

P
I′,N
2

is the set of all I∗2,N ∪ I ′2,N as I2,N runs over the good copies of I2,

P
J ′,N
2

is the set of all the corresponding J∗
2,N ∪ J ′

2,N , and σN is defined by

σN (I ′2,N ∪ I∗2,N ) = J ′
2,N ∪ J∗

2,N .
After we have defined the partnered partition (PI′,n

2

,PJ ′,n
2

, σn) of

(I ′,n2 , J ′,n
2 ), we define σn+MN

as follows: for a given good copy I2,n of I2
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in Cn and its corresponding I ′2,n and J ′
2,n, recall the definition of d. For

l > n + d + 1, I ′2,n and I∗2,n are unions of good copies of I2 in Cl whose
corresponding copies of J2 are J∗

2,n and J ′
2,n respectively. Since Mn > d, if

l > n + MN then I ′,l2 \ I ′,n2 is a union of good copies of I2.

Let σn+MN
be a partnered partition of

(
I ′,n+MN

2 =
⋃

good I2,n+MN
⊂I′

2
\I′,n

2

(I ′2,n+MN
∪ I∗2,n+MN

),

J ′,n+MN

2 =
⋃

partner(good I2,n+MN
⊂I′

2
\I′,n

2
)

(J ′
2,n+MN

∪ J∗
2,n+MN

)
)
.

Let P
I
′,n+MN
2

be the union of PI′,n
2

and the set of all I∗2,n+MN
∪ I ′2,n+MN

as I2,n+MN
runs over the good copies of I2. Let P

J
′,n+MN
2

be the union

of PJ ′,n
2

and the set of all the corresponding J∗
2,n+MN

∪ J ′
2,n+MN

, and let

σn+MN
extend σn by σn+MN

(I ′2,n+MN
∪ I∗2,n+MN

) = J ′
2,n+MN

∪ J∗
2,n+MN

.
Since σn+MN

extends σn, we can define the partnered partition (PI′
2
,PJ ′

2
, σ)

of (
⋃∞

j=0 I ′,N+jMN

2 ,
⋃∞

j=0 J ′,N+jMN

2 ) as the limit of the σn. We claimed earlier

that (PI′
2
,PJ ′

2
, σ) would be a partnered partition of (I ′2, J

′
2), i.e. we have

claimed that ( ∞⋃

j=0

I ′,N+jMN

2 ,

∞⋃

j=0

J ′,N+jMN

2

)
= (I ′2, J

′
2).

To see this, note that the containment ⊂ is clear and that by the remarks
in the paragraph containing the definition of d,

µ(I ′2 \ I ′,n+MN

2 ) ≤

(
1 −

1

2 · 4MN

)
µ(I ′2 \ I ′,n2 ),

whence

µ(I ′2 \ I ′,N+jMN

2 ) ≤

(
1 −

1

2 · 4MN

)j

µ(I ′2),

which establishes the desired equality. Thus we have constructed the part-
nered partition (PI′

2
,PJ ′

2
, σ) of (I ′2, J

′
2).

Furthermore, by (6), for all Ĩ ∈ PI′
2
, there exists a positive integer n such

that

(7) µ(T sn Ĩ ∩ σ(Ĩ)) ≥
1

2
(1 − ε)µ(Ĩ).

Indeed, assume to the contrary that A and B do not intersect at any
time sn. Take Ĩ2 ∈ PI′

2
and let J̃2 = σ(Ĩ2). Let n be as in (7). Define K̃ =

(T × T )snI1 × Ĩ2 ∩ J1 × J̃2. As µ(T snI1 ∩ J1) ≥
1
2µ(J̃1) and µ(T sn Ĩ2 ∩ J̃2) ≥

((1− ε)/2)µ(J̃2), we have µ× µ(K̃) ≥ µ× µ(J̃1 × J̃2)(1− ε)/4. Since A and
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B do not intersect in a nonnull set, Full((T × T )snA, K̃) + Full(B, K̃) ≤ 1.
This implies

Full(A, I1 × Ĩ2) + Full(B, J1 × J̃2)

≤
1 − ε

4
+

(
1 −

1 − ε

4

)
+

(
1 −

1 − ε

4

)
= 2 −

1 − ε

4
.

Since the union over all Ĩ2 is I ′2 and the union over all J̃2 is J ′
2 (and

since the Ĩ2 are disjoint as are the J̃2), this implies that Full(A, I1 × I ′2) +
Full(B, J1 × J ′

2) ≤ 2 − (1 − ε)/4. By (5), this implies that

Full(A, I1 × I2) + Full(B, J1 × J2)

≤ 2 −
1 − ε

4
+ δ < 2 −

1 − (1 − 12δ)

4
+ δ = 2 − 2δ.

Since Full(A, I1 × I2) + Full(B, J1 × J2) = 2 − 2δ, we have a contradiction,
so there exists n such that µ × µ((T × T )snA ∩ B) > 0.

We conclude this section with a construction of measure-preserving rank-
one Rd-actions that can be shown to be doubly ergodic. Our initial construc-
tion is finite measure-preserving, but we show how it can be easily modified
to obtain infinite measure-preserving examples. We omit the proof that these
actions are doubly ergodic as our interest is to show how the previous con-
structions can be generalized to the case of Rd-actions. It is clear that these
constructions have some partial rigidity and therefore are not mixing.

Let e1, . . . , ed+1 be the standard basis of Rd+1. We define recursively
a sequence of (d + 1)-dimensional rectangular prisms Gn for n ≥ 0. Let
G0 = [0, 1) × · · · × [0, 1). Let

α0 =
1

2
,

α1 =
1

2
, α2 =

1

2
, α3 =

1

4
, α4 =

1

4
,

α5 =
1

2
, α6 =

1

2
, α7 =

1

2
, α8 =

1

4
, α9 =

1

4
, α10 =

1

4
, α11 =

1

8
, α12 =

1

8
, α13 =

1

8
,

...

and l0 = 1. Note that αn = 2−s for some integer s and that for a given k
and s there are infinitely many n such that αn = αn+1 = · · · = αn+k = 2−s.
Assume ln ∈ R>0 and Gn ⊂ Rd+1 have been defined and

Gn = [0, ln) × · · · × [0, ln) × [0, (2d)−n).

We think of the (d + 1)st dimension as the height (sometimes we may write
a vector in Rd+1 as (v, x) where v is in Rd and x ∈ R). Then to define Gn+1,
cut Gn along the (d + 1)st dimension with 2d − 1 cuts, into 2d pieces. Use
the pieces to tile the section of the e1, . . . , ed plane that is a d-dimensional
cube of side length 2ln. Now we have a rectangular prism twice as long in
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the e1, . . . , ed dimensions and 2−d as long in the ed+1 dimension. Then add
a spacer of length αn around the outside of the generalized “quadrant” in
which Gn is sitting, to create a (2ln + αn) × · · · × (2ln + αn) × (2d)−n−1

rectangular prism. This is shown for d = 2 and n = 1 in Figure 6. Note
ln+1 = 2ln + αn and Gn+1 has height of (2d)−n/2d = (2d)−n−1.

Fig. 6. Construction of G1 out of G0

Each Gn defines a partial flow T g
Gn

for g ∈ Rd by the translation that
maps (x1, . . . , xd, xd+1) ∈ Gn to ((x1, . . . , xd) + g, xd+1) if the latter is in
Gn. Otherwise T g

Gn
remains undefined in Gn. Define X =

⋃
n≥0 Gn and the

action as
T g

d = lim
n→∞

T g
Gn

.

It can be shown that one can vary the sequence αn and still obtain double
ergodicity provided αn has the property that for any positive integers s and k
there are infinitely many n such that αn = αn+1 = · · · = αn+k = 2−s. In
particular, if we insert a spacer of length ln every time αn 6= αn+1, we obtain
an infinite measure space with a doubly ergodic Rd-action.
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