COLLOQUIUM MATHEMATICUM

ON WEAKLY MIXING AND DOUBLY ERGODIC NONSINGULAR ACTIONS

BY
SARAH IAMS (Williamstown, MA, and Cambridge, UK), BRIAN KATZ (Williamstown, MA, and Austin, TX), CESAR E. SILVA (Williamstown, MA), BRIAN STREET (Charlottesville, VA, and Princeton, NJ) and KIRSTEN WICKELGREN (Cambridge, MA, and Palo Alto, CA)

Abstract

We study weak mixing and double ergodicity for nonsingular actions of locally compact Polish abelian groups. We show that if T is a nonsingular action of G, then T is weakly mixing if and only if for all cocompact subgroups A of G the action of T restricted to A is weakly mixing. We show that a doubly ergodic nonsingular action is weakly mixing and construct an infinite measure-preserving flow that is weakly mixing but not doubly ergodic. We also construct an infinite measure-preserving flow whose cartesian square is ergodic.

1. Preliminaries. In [17], Kakutani and Parry constructed an infinite measure-preserving invertible transformation T such that $T \times T$ is ergodic (and conservative) but $T \times T \times T$ is not conservative, hence not ergodic. They also constructed other examples including one where all finite cartesian products are ergodic. Since that time there has been interest in understanding dynamical properties for infinite measure-preserving and nonsingular transformations that are analogous to the weak mixing property for finite measure-preserving transformations.

In [1], Aaronson, Lin and Weiss studied the notion of weak mixing for nonsingular and infinite measure-preserving transformations. A nonsingular transformation T is said to be weakly mixing if whenever $f \circ T=\lambda f$ for $f \in L^{\infty}$ and $\lambda \in \mathbb{C}$, then f is constant a.e. They showed that T is weakly mixing if an only if for every ergodic finite measure-preserving transformation $S, T \times S$ is ergodic, and constructed an example of a weakly mixing transformation such that $T \times T$ is not conservative, hence not ergodic. In [2], Adams, Friedman and Silva showed that it can happen that T is weakly mixing with $T \times T$ conservative but still $T \times T$ not ergodic. Other unusual behavior has been shown to exist: there is an infinite measure-preserving

[^0]transformation T such that all its finite cartesian products are ergodic but $T \times T^{2}$ is not conservative [3].

These examples have been extended to the case of infinite measurepreserving and nonsingular actions of countable discrete abelian groups by Danilenko [7]. More recently, these notions have been studied in the context of multiple recurrence by Danilenko and Silva [8]. We refer to [7] and [8] for a more detailed history of these problems. However, both [7] and [8] and earlier work consider only actions of countable discrete abelian groups. In this work we are interested in studying notions such as weak mixing and its generalizations for infinite measure-preserving and nonsingular actions of continuous groups such as \mathbb{R}.

We start with a section of preliminary definitions where we review equivalent characterizations of ergodicity. In our definitions and general theorems we treat actions of a locally compact Polish abelian group G, and in our examples we specialize to the case when $G=\mathbb{R}$. We then define double ergodicity for nonsingular actions of G and show it implies weak mixing. Weak mixing for finite measure-preserving actions of amenable groups was studied by Dye [10], and these characterizations were extended to the case of finite measure-preserving actions of σ-compact locally compact groups by Bergelson and Rosenblatt [4]. (For the weak mixing property of finite measurepreserving actions of groups the reader may refer to [10], [20], [4], and [5].)

In Section 4 we characterize weak mixing for nonsingular G-actions, extending an old result of Hopf [15], where he showed that a finite measurepreserving \mathbb{R}-action is weakly mixing if and only if each nonzero time transformation is ergodic, and a result of Bergelson and Rosenblatt [4, 1.15], where the theorem is shown in the finite measure-preserving case. In Section 5 we construct an \mathbb{R}-action that is weakly mixing but not doubly ergodic. In Section 6 we construct an infinite measure-preserving \mathbb{R}-action whose cartesian square is ergodic, and briefly discuss how to construct doubly ergodic \mathbb{R}^{d}-actions.

Acknowledgments. This paper is based on research in the Ergodic Theory group of the 2002 SMALL Undergraduate Summer Research Project at Williams College, with Silva as faculty advisor. Support for the project was provided by a National Science Foundation REU Grant and the Bronfman Science Center of Williams College. The Ergodic Theory SMALL group would also like to thank Joe Rabinoff for his helpful comments on representation theory. We are indebted to the referee for several comments and suggestions that improved the exposition.
2. Definitions. Let (X, \mathcal{B}, μ) denote a σ-finite nonatomic Lebesgue measure space. In our applications, (X, μ) will have infinite measure. A non-
singular automorphism ϕ on (X, \mathcal{B}, μ) is a measurable invertible map on X such that $\mu(A)=0$ if and only if for all $A \in \mathcal{B}, \mu\left(\phi^{-1}(A)\right)=0 ; \phi$ is measurepreserving if for all $A \in \mathcal{B}, \mu\left(\phi^{-1}(A)\right)=\mu(A)$. Let G be a locally compact Polish (separable completely metrizable) abelian topological group. An action T of G on X consists of a family of automorphisms $T=\left\{T^{g}: g \in G\right\}$ such that the map $G \times X \rightarrow X,(g, x) \mapsto T^{g} x$, is measurable and for all $x \in X_{0}, X_{0} \subset X, \mu\left(X \backslash X_{0}\right)=0$, we have $T^{g} T^{h} x=T^{g h} x$ and $T^{e} x=x$, where e is the identity element in G. We may and do assume (see e.g. [21]) that our actions are continuous, i.e., for all $A \in \mathcal{B}, \mu\left(T^{g}(A) \triangle A\right) \rightarrow 0$ as $g \rightarrow e$.

We say that a measurable set A is almost invariant if, for all $g \in G$, $\mu\left(T^{g}(A) \triangle A\right)=0$. Similarly, we say that a measurable function f is almost invariant if for a.e. $x, f\left(T^{g} x\right)=f(x)$ for all $g \in G$. A measurable set $A \subset X$ has partial measure if $\mu(A)>0$ and $\mu\left(A^{c}\right)>0$.

An action T is ergodic if there are no sets of partial measure that are almost invariant under T.

The following proposition shows the equivalence of two definitions of ergodicity; its proof is standard and left to the reader.

Proposition 2.1. Let $T=\left\{T^{g}: g \in G\right\}$ be a nonsingular action of G on (X, μ). Then T is ergodic if and only if for every pair of measurable sets A and B in X there exists a $g \in G$ such that $\mu\left(T^{g} A \cap B\right)>0$.

Remark 2.2. (a) It can be shown as in [21, Proposition 2.2.16] that T is ergodic if and only if T does not admit any strictly invariant set A (i.e., $T^{g}(A)=A$ for all $\left.g \in G\right)$ of partial measure.
(b) For the remainder of this paper, equality means equality except on a set of measure zero where not specified.

A group action T is weakly mixing if whenever $f \in L^{\infty}(X, \mu)$ satisfies $T^{g} f=\lambda_{g} f$ a.e., for all $g \in G$, with $\lambda_{g} \in \mathbb{C}$, then f is constant a.e. This clearly implies that T does not admit almost invariant sets of partial measure, and so T must be ergodic.

We define a G-action T on (X, μ) to be doubly ergodic if for any measurable sets $A, B \subset X$ of positive measure, there exists an element $g \in G$ such that $\mu\left(T^{g} A \cap A\right)>0$ and $\mu\left(T^{g} A \cap B\right)>0$. It is easy to see that, in the definition of double ergodicity, one may assume $g \neq e$. In the finite measure-preserving transformation case, it was shown by Furstenberg [13] that double ergodicity is equivalent to weak mixing. However, as shown in [6], the situation in the infinite measure-preserving case is quite different. It is easy to see that the ergodic cartesian square property, both for transformations and group actions, implies double ergodicity, but it was shown in [6] that there exist infinite measure-preserving transformations that are doubly ergodic but have nonergodic cartesian square. It was also shown in [6] that for nonsingular transformations, double ergodicity implies weak mixing, and
it was observed that the infinite measure-preserving transformation that was shown in [2] to be weakly mixing but with nonconservative cartesian square is not doubly ergodic. For the case of transformations the reader may refer to [2], [6], [14]; we discuss these implications for the case of group actions in the following sections.
3. Double ergodicity implies weak mixing. In this section we show that double ergodicity implies weak mixing for nonsingular G-actions. The idea of the proof is as in Furstenberg's proof [13, Theorem 4.31] for the finite measure-preserving transformation case. The fact that the converse does not hold is shown in Section 5. We note that in [6] it is shown directly that if T is a nonsingular transformation that is doubly ergodic then for all ergodic finite measure-preserving transformations $S, T \times S$ is ergodic.

Proposition 3.1. Let T be a nonsingular G-action. If T is doubly ergodic, then it is weakly mixing.

Proof. Suppose T is not weakly mixing. Then there exists a nonconstant $f \in L^{\infty}$ such that $T^{g} f=\lambda_{g} f$ for all $g \in G$. Since T^{g} is an L^{∞} isometry, $\left|\lambda_{g}\right|=1$ for all $g \in G$. Note that $|f|$ is constant a.e., since $T^{g}|f|=\left|\lambda_{g} f\right|=|f|$ and T is ergodic, as it is doubly ergodic. Without loss of generality, take $|f|=1$ a.e. Letting $* \lambda_{g}$ denote multiplication by λ_{g} on S^{1}, we have $f \circ T^{g}=$ $* \lambda_{g} \circ f$. We get the following commutative diagram:

For this proof, consider S^{1} under the canonical identification with $[0,1)$. Let $B_{n, k}:=\left[k / 2^{n},(k+1) / 2^{n}\right)$ for $0 \leq k<2^{n}$. Since f is nonconstant we may take n so large that $\mu\left(f^{-1}\left(B_{n, k_{i}}\right)\right) \neq 0$ for at least two $B_{n, k_{i}}$ which are not next to each other $(\bmod 1)$. Let A and B be two such sets.

Since multiplication by λ_{g} in S^{1} corresponds to translation in $[0,1)$, we see that either $\lambda_{g} A \cap B=\emptyset$ or $\lambda_{g} A \cap A=\emptyset$, for all $g \in G$, since they are not next to each other. Thus, by the commutativity of the diagram, we see that for all $g \in G, \mu\left(T^{g} f^{-1}(A) \cap f^{-1}(A)\right)=0$ or $\mu\left(T^{g} f^{-1}(A) \cap f^{-1}(B)\right)=0$. Hence, T is not doubly ergodic, completing the proof.
4. Weak mixing. In this section we study subactions of weakly mixing nonsingular group actions. In particular, if A is a cocompact subgroup of G (i.e., A is a closed subgroup of G such that G / A is compact), what can we learn by investigating the restriction of the group action to A ? Our main result is Theorem 4.3, which generalizes a result of Bergelson and Rosen-
blatt [4, 1.15] from the finite measure-preserving case to the nonsingular case, though in our case we assume our groups are abelian, which [4] does not. In Corollary 4.4 we obtain an extension of an old result of Hopf [15], who showed that a finite measure-preserving flow is weakly mixing if and only if every nontrivial time of the flow is an ergodic transformation, to the case of nonsingular \mathbb{R}^{d}-actions. Our methods of proof are different from [4] and [15].

In this section we keep the same assumptions on T and G as in the rest of the paper. We require two lemmas.

Lemma 4.1. Let A be a cocompact subgroup of G, let ν be Haar measure on G / A, and let T be a nonsingular G-action on (X, μ). Suppose there exists $f \in L^{\infty}(X, \mu)$ such that $T^{a} f=f$ for all $a \in A$. For $\phi \in \widehat{G / A}$, define

$$
k_{\phi}(x)=\int_{G / A} \overline{\phi([g])} f\left(T^{g} x\right) d \nu([g])
$$

Then $k_{\phi} \in L^{\infty}(X, \mu)$ is well defined, and

$$
T^{h} k_{\phi}(x)=\overline{\phi\left(\left[h^{-1}\right]\right)} k_{\phi}(x)
$$

Proof. Fix $g \in G$ and $a \in A$. Then we see, for a.e. $x \in X$,

$$
\begin{equation*}
f\left(T^{g a} x\right)=f\left(T^{g} x\right) \tag{2}
\end{equation*}
$$

It follows that $k_{\phi} \in L^{\infty}(X, \mu)$ is well defined. To complete the proof, it remains to change variables and use the invariance of Haar measure.

Lemma 4.2. Let A be a cocompact subgroup of G. Let T be a nonsingular ergodic G-action on (X, μ). Suppose $\left.T\right|_{A}$ is not ergodic, i.e., there exists a measurable set $B \subset X$ of partial measure such that for all $a \in A, T^{a} B=B$. Then T is not weakly mixing.

Proof. Since $T^{a} \chi_{B}=\chi_{B}$ for all $a \in A$, letting ν be Haar measure on G / A, Lemma 4.1 gives $k_{\phi}(x)=\int \overline{\phi([g])} \chi_{B}\left(T^{g} x\right) d \nu([g])$ for each $\phi \in \widehat{G / A}$ and tells us $T^{h} k_{\phi}(x)=\overline{\phi\left(\left[h^{-1}\right]\right)} k_{\phi}(x)$. Suppose, for a contradiction, that T is weakly mixing. Hence, for all $\phi \not \equiv 1, k_{\phi}(x)=0$. Thus $k_{\phi}(x)=0$ a.e. for all $\phi \in \widehat{G / A}$. Since G / A is compact and metrizable, $\widehat{G / A}$ is countable, and so for a.e. $x, k_{\phi}(x)=0$ for all $\phi \in \widehat{G / A}$.

Pick a representative from each coset, say $b_{g} \in[g] \subset G$. Let $j([g], x) \equiv$ $\chi_{B}\left(T^{b_{g}} x\right)$. By the well definedness of k_{ϕ}, we see, for a.e. $x, 0=k_{\phi}(x)=$ $\langle j(\cdot, x), \phi\rangle$, for all $\phi \neq 1$. So, by the Peter-Weyl theorem [as $\widehat{G / A}$ forms an orthonormal basis for $L^{2}(G / A)$], for a.e. $[g]$ and a.e. x, we have

$$
j([g], x)=\sum_{\phi \in \widehat{G / A}} k_{\phi}(x) \phi([g])=k_{1}(x)
$$

Here we use the fact that $\chi_{B}\left(T^{b_{g}}\right) \in L^{2}(G / A, d \nu)$. This is not hard to see, since ν is finite and $\chi_{B}\left(T^{b_{g}}\right) \leq 1$ for all g and x, so it suffices to see that $\chi_{B}\left(T^{b_{g}}\right)$ is ν-measurable. Since T acts continuously on the measurable functions by assumption (in the topology of convergence of measure) and since $\chi_{B}\left(T^{g}\right)$ is well defined on the quotient space $G / A, \chi_{B}\left(T^{b_{g}}\right)=\chi_{B}\left(T^{g}\right)$ is continuous and therefore measurable.

Since T is ergodic, we see $k_{1}(x)$ is constant almost everywhere. Thus, for ν-a.e. $[g]$ and μ-a.e. $x, j([g], x)=c$. But equation (2) from Lemma 4.1 tells us that $c=j([g], x)=\chi_{B}\left(T^{g} x\right)$ a.e. in [g], a.e. in x. This contradicts the fact that T is nonsingular and ergodic.

Theorem 4.3. Let T be a nonsingular G-action on (X, μ). Then T is weakly mixing if and only if for all cocompact subgroups A of G, T restricted to A is weakly mixing, i.e., if $f \in L^{\infty}(X, \mu)$ is such that $T^{a} f=\gamma(a) f$ for all $a \in A$, then f is constant a.e.

Proof. Suppose that T is weakly mixing and take a subgroup A of G such that G / A is compact. Then Lemma 4.2 implies that $\left.T\right|_{A}$ is ergodic. As pointed out to us by the referee, the result now follows from the well known fact that if T is a weakly mixing G_{1} action and S is an ergodic G_{2} action that commutes with T, then S is weakly mixing.

For the converse we note that if f is a nonconstant eigenfunction of T, it is also an eigenfunction of $\left.T\right|_{A}$ for each closed subgroup A of G. -

Corollary 4.4. Let T be a nonsingular \mathbb{R}^{d}-action on a possibly infinite measure space (X, μ). Then the following are equivalent:
(i) there exists a basis $\left\{a_{1}, \ldots, a_{d}\right\}$ of \mathbb{R}^{d} and a measurable set $A \subset X$ of partial measure such that $T^{a_{1}} A=\cdots=T^{a_{d}} A=A$,
(ii) there exists a basis $\left\{a_{1}, \ldots, a_{d}\right\}$ of \mathbb{R}^{d} and a nonconstant $f \in$ $L^{\infty}(X, \mu)$ such that $T^{a_{i}} f=\lambda_{i} f, i=1, \ldots, d$,
(iii) T is not weakly mixing.

Proof. Clearly (i) \Rightarrow (ii). Taking $G=\mathbb{R}^{d}, A=\left\langle a_{1}, \ldots, a_{d}\right\rangle$ from the theorem, we get (ii) \Rightarrow (iii). Suppose that T is not weakly mixing. Say $T^{g} f=\lambda_{g} f$, f nonconstant, $f \in L^{\infty}(X, \mu)$. In particular, $T^{t e_{i}} f=e^{2 \pi i \lambda_{i} t} f$, where e_{i} is the standard basis. Taking $t_{i}=1 / \lambda_{i}$, we get $T^{t_{i} e_{i}} f=f$. Since f is nonconstant, either $\operatorname{Re}(f)$ or $\operatorname{Im}(f)$ is nonconstant. Let g be this nonconstant function. Note that $T^{t_{i} e_{i}} g=g$. Take α such that $A \equiv\{x: g(x)>\alpha\} \neq X, \emptyset$. Note $T^{t_{i} e_{i}} A=A$. Thus (iii) $\Rightarrow(\mathrm{i})$.

The following corollary in the case when the flow is finite measurepreserving was shown by Hopf [15].

Corollary 4.5. Let T be a nonsingular \mathbb{R}-action on (X, μ). Then the following are equivalent:
(i) T is weakly mixing,
(ii) for all $a \in \mathbb{R} \backslash\{0\}, T^{a}$ is an ergodic \mathbb{Z}-action,
(iii) for all $a \in \mathbb{R} \backslash\{0\}$, T^{a} is a weakly mixing \mathbb{Z}-action.

Proof. Let $d=1$ in Corollary 4.4. -
Corollary 4.6. Let T be a nonsingular \mathbb{Z}^{d}-action on (X, μ). Suppose there exists a basis $\left\{a_{1}, \ldots, a_{d}\right\} \subset \mathbb{Z}^{d}$ of \mathbb{R}^{d} and a nonconstant $f \in L^{\infty}(X, \mu)$ such that $T^{a_{i}} f=\lambda_{i} f, i=1, \ldots, d$. Then T is not weakly mixing.

Proof. Let $G=\mathbb{Z}^{d}, A=\left\langle a_{1}, \ldots, a_{d}\right\rangle$ in the theorem.
5. Weakly mixing but not doubly ergodic. In this section we construct an infinite measure-preserving flow that is weakly mixing but not doubly ergodic. The construction is by the process of cutting and stacking rectangles in the plane. Cutting and stacking techniques for constructing rank-one transformations are well known (see e.g. [12]). A standard way to construct flows is using the notion of a flow built under a function, such as in [16], where the Chacon finite measure-preserving flow is constructed and shown to be weakly mixing, and to have the stronger property of minimal self-joinings that we do not study here.

There is a natural isomorphism between the cutting and stacking rectangles constructions in the plane and the constructions using a flow built under a function, but we find the first more geometric, in particular when constructing \mathbb{R}^{d}-actions. Finite measure-preserving flows have been constructed earlier using the process of cutting and stacking rectangles in the plane in [18] and [19]. They were constructed as examples of finite measure-preserving weakly mixing flows that are not mixing. However, as we show in Remark 5.2, the flow constructed in [18] is not weakly mixing. The flow in [19] is weakly mixing, but the choice of the "spacers" is different from ours, in addition to the fact that our examples are infinite measure-preserving. More recently, Fayad [11] has constructed, in the finite measure-preserving case, smooth rank-one mixing flows.

We now describe our construction. Let α be a positive irrational number. We recursively define a sequence of columns $C_{n}, n \geq 0$; each column will be a well defined rectangle in the plane. Let $C_{0}=[0,1) \times[0,1)$ of height $h_{0}=1$ and width $w_{0}=1$. A column partially defines a flow in the following way: for $(x, y) \in[0,1) \times[0,1)$ and $r \geq 0$ define $T^{r}(x, y)=(x, y+r)$ if $y+r<1$, and otherwise $T^{r}(x, y)$ remains undefined. Now given C_{n} of height h_{n} and width w_{n}, define C_{n+1} by first (vertically) cutting C_{n} into two equal subcolumns, and placing a spacer of height $2 h_{n}+\alpha$ and width $w_{n} / 2$ over the right hand subcolumn. By a spacer we mean a rectangle in the plane of the specified width and height that is disjoint from the current column. Now move the left hand column underneath the right hand column
to make a column of height $h_{n+1}=4 h_{n}+\alpha$ and width $w_{n+1}=w_{n} / 2$. Call this new column C_{n+1} (see Figure 1). In C_{n} we define $L_{n, h, s}$ to be a rectangle of height h of full width in C_{n}, starting at a distance of s from the top of C_{n}.

Fig. 1. C_{n+1} out of C_{n}
The partial flow $T_{C_{n}}^{r}$ for $r \in \mathbb{R}$ is defined by the translation that maps $(x, y) \in C_{n}$ to $(x, y+r)$ if $(x, y+r) \in C_{n}$, otherwise the flow remains undefined. Note that $T_{C_{n+1}}$ is defined wherever $T_{C_{n}}$ is defined, and they agree wherever both are defined. Now let $X=\bigcup_{n \geq 0} C_{n}$ and define

$$
T^{r}:=\lim _{n \rightarrow \infty} T_{C_{n}}^{r} .
$$

Proposition 5.1. T is an infinite measure-preserving weakly mixing flow.

Proof. It is clear from the construction that T is measure-preserving and ergodic, and that the space X where it is defined has infinite measure. Suppose f is an eigenfunction of T with eigenfrequency other than 0 . So $T^{r} f=e^{2 \pi i \lambda r} f, \lambda \neq 0$, for all $r \in \mathbb{R}$. Clearly T is ergodic, so $|f|=1$ a.e. Let d be the metric on S^{1} given by identifying S^{1} with $[0,1)$ and using the usual Euclidean metric on $[0,1)$. Note that d is rotationally invariant, i.e. rotation is an isometry with respect to d. Also note that if $d(z, 1)=\delta<$ $1 / 2 m$, then $d\left(z^{m}, 1\right)=m \delta$. Fix $\varepsilon>0$. Find a constant $c \in S^{1}$ such that $A:=f^{-1}\left(\left\{z \in S^{1}: d(z, c)<\varepsilon\right\}\right)$ has positive measure. We may find some $R:=L_{n, h, s}$ which is $\frac{3}{4}$ full of A (i.e., $\left.\mu(R \cap A) \geq \frac{3}{4} \mu(R)\right)$. Note that, for $m \geq n, \mu\left(T^{h_{m}} R \cap R\right)=\frac{1}{2} \mu(R)$. This is clear for $m=n$ as the left half of R is moved to the right half of R. For $m>n$ we may think of R as the union of level rectangles, $L_{m, h, s_{i}}$, and the result follows.

Let $m \geq n$. Now, since R was $\frac{3}{4}$ full of A, at least one half of R must be $\frac{3}{4}$ full of A, and more than $\frac{1}{2}$ of R hits itself under $T^{h_{m}}$, we see that $\mu\left(T^{h_{m}} A \cap A\right)>0$. And so for a fixed $m \geq n$, on a set of positive measure, we see that $d(f(x), c)<\varepsilon$ and $d\left(f\left(T^{h_{m}} x\right), c\right)<\varepsilon$. Thus,

$$
\begin{equation*}
d\left(e^{2 \pi i \lambda h_{m}}, 1\right)=d\left(e^{2 \pi i \lambda h_{m}} f(x), f(x)\right)=d\left(f\left(T^{h_{m}} x\right), f(x)\right)<2 \varepsilon=: \varepsilon^{\prime} \tag{3}
\end{equation*}
$$

We know that $h_{n+1}=4 h_{n}+\alpha$, and thus we get $d\left(e^{2 \pi i \lambda\left(4 h_{n}+\alpha\right)}, c\right)<\varepsilon^{\prime}$. Using this in addition to $d\left(e^{2 \pi i \lambda h_{n}}, c\right)<\varepsilon^{\prime}$, and rotational invariance of d, we get $d\left(1, e^{2 \pi i \lambda \alpha}\right)=d\left(e^{8 \pi i \lambda h_{n}}, e^{2 \pi i \lambda\left(4 h_{n}+\alpha\right)}\right)<5 \varepsilon^{\prime}$. Letting $\varepsilon^{\prime} \rightarrow 0$, we see that $\lambda=k / \alpha$ for some integer k. Let $\kappa:=e^{2 \pi i k / a}$.

Solving the recurrence relation for h_{m}, we get $h_{m}=(1+\alpha / 3) 4^{m-1}-\alpha / 3$ $=4^{m-1}+p_{m} \alpha$, where p_{m} is some integer depending on m. For $m \geq n$, we get $d\left(\kappa^{4^{m}}, \kappa^{4^{m-1}}\right)=d\left(e^{2 \pi i \lambda h_{m+1}}, e^{2 \pi i \lambda h_{m}}\right)<2 \varepsilon^{\prime}$. Using the rotational invariance of d (dividing by $\left.\kappa^{4^{m-1}}\right)$, we get $d\left(\kappa^{4^{m-1} 3}, 1\right)<2 \varepsilon^{\prime}$. And so, $d\left(\kappa^{4^{m-1}}, 1\right)<$ $\frac{2}{3} \varepsilon^{\prime}$. Since we started this argument with $d\left(\kappa^{4^{m-1}}, 1\right)=d\left(e^{2 \pi i \lambda h_{m}}, 1\right)<\varepsilon^{\prime}$ (see equation (3)), repeating, we get $d\left(\kappa^{4^{m-1}}, 1\right)<\left(\frac{2}{3}\right)^{j} \varepsilon^{\prime}$ for all $j \geq 1$. Thus $\kappa^{4^{m-1}}=1$, which contradicts the irrationality of α.

Hence, the only eigenfunctions of T have eigenvalue 1 . By the ergodicity of T, these eigenfunctions are all constant; therefore T is weakly mixing.

Remark 5.2. (a) In [18] a similar example is constructed. Instead of spacers of height $2 h_{n}+\alpha$, [18] uses spacers of height 1 . However, the example in [18] is not weakly mixing. This can be seen by finding a nonergodic nonzero time. In fact, let A be the union of all level sets, in any fixed column, of height $\frac{1}{4}$ whose lowest x coordinate is an integer. This set is clearly fixed under the time 1 map, and is clearly not the whole space. Thus the map cannot be weakly mixing. (We note that [18] uses an incorrect definition for weak mixing.)
(b) If in our example we take spacers of height α we obtain a finite measure-preserving flow and the same proof applies to show that it is weakly mixing.

Proposition 5.3. T is not doubly ergodic.
Proof. This proof is a modification of one found in [2]. Take A and B to be thin level rectangles in C_{1}, separated by d and of height less than d, as shown in Figure 2.

Fig. 2. The sets A and B
Define an \mathbb{R}-action R_{n} on C_{n} which agrees with $T_{C_{n}}$ wherever $T_{C_{n}}$ is defined and maps the very top row back to the bottom, i.e. a rotation on C_{n}.

Define

$$
I_{n}(A, L):=\left\{r: 0 \leq r<h_{n}, \mu\left(R_{n}^{r} A \cap L\right)>0\right\}, \quad I_{n}:=I_{n}(A, A) \cap I_{n}(A, B) .
$$

We proceed by induction to show $I_{n}=\emptyset$ for all $n \in \mathbb{N}$. Clearly $I_{1}=\emptyset$, and for the induction, assume $I_{j}=\emptyset$ for $j \in \mathbb{N}$. Because, for all $r \in\left[2 h_{j}, 2 h_{j}+\alpha\right]$, $R_{j+1}^{r} A$ is contained in the spacers placed on the right subcolumn of C_{j}, we have the following inclusion for $L=A$ or $L=B$:

$$
\begin{aligned}
I_{j+1}(A, L) \subset & I_{j}(A, L) \cup\left(I_{j}(A, L)+h_{j}\right) \\
& \cup\left(I_{j}(A, L)+2 h_{j}+\alpha\right) \cup\left(I_{j}(A, L)+3 h_{j}+\alpha\right) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
I_{j+1}= & I_{j+1}(A, A) \cap I_{j+1}(A, B) \\
\subset & I_{j}(A, A) \cap I_{j}(A, B) \\
& \cup\left(I_{j}(A, A)+h_{j}\right) \cap\left(I_{j}(A, B)+h_{j}\right) \\
& \cup\left(I_{j}(A, A)+2 h_{j}+\alpha\right) \cap\left(I_{j}\left(A, B+2 h_{j}+\alpha\right)\right. \\
& \cup\left(I_{j}(A, A)+3 h_{j}+\alpha\right) \cap\left(I_{j}(A, B)+3 h_{j}+\alpha\right) .
\end{aligned}
$$

By induction, each row in the above expression is the empty set; therefore $I_{j+1}=\emptyset$. Noting that for all $r \in \mathbb{R}$, there exists an $n>0$ such that $T^{r} A=$ $R_{n}^{r} A$, we have $\mu\left(T^{r} A \cap A\right) \mu\left(T^{r} A \cap B\right)=0$. This completes the proof.

6. Cartesian square ergodicity for an infinite measure-preserv-

 ing \mathbb{R}-action. We now construct a rank-one, infinite measure-preserving flow T such that $T \times T$ is ergodic. The construction of the flow is similar to the construction of the infinite measure-preserving transformation in [9] that has all finite cartesian products of nonzero powers ergodic. However, the proof is significantly different, as it is not clear how to extend the approximation arguments in [9] to the case of flows.We define recursively a sequence of columns $C_{n}, n \geq 0$. Let $C_{0}=[0,1) \times$ $[0,1)$. Let $\alpha \in \mathbb{R}^{+} \backslash \mathbb{Q}$ and $h_{0}=1$. Assume a column C_{n} of height h_{n} has been defined. Let $\left\lceil h_{n}\right\rceil$ denote the least integer greater than or equal to h_{n}. Then to define C_{n+1}, cut C_{n} into four equal subcolumns, place a spacer of height $\left\lceil h_{n}\right\rceil \alpha$ on the second subcolumn and place a spacer of height α on the fourth subcolumn. We then stack the subcolumns from left to right with the first placed below the second, the second below the third (with the spacer on it) and the third below the fourth. Note that

$$
h_{n+1} \geq 4 h_{n}+\left(h_{n}+1\right) \alpha .
$$

Each column C_{n} defines a partial flow $T_{C_{n}}^{g}$ for $g \in \mathbb{R}$ by the translation that maps $(x, y) \in C_{n}$ to $(x, y+g)$ if $(x, y+g) \in C_{n}$. Otherwise $T_{C_{n}}^{g}$ remains undefined in C_{n}. Let $X=\bigcup_{n=0}^{\infty} C_{n}$. Then $X \subset \mathbb{R}^{2}$ has infinite measure as
$\mu\left(C_{n+1}\right)>(1+\alpha / 4) \mu\left(C_{n}\right)$. Then define the flow as

$$
T^{g}=\lim _{n \rightarrow \infty} T_{C_{n}}^{g}
$$

Let $0<n, 0<\eta \leq h_{n}$ and $0<s \leq h_{n}$. A level of C_{n} is defined to be a rectangle of height η of full width in C_{n}, starting at a distance of s from the top of C_{n}; we denote it by $L_{n, \eta, s}$. We now consider $T^{h_{n}} L_{n, \eta, s}$. The intersection of $T^{h_{n}} L_{n, \eta, s}$ with C_{n} is called the crescent of $L_{n, \eta, s}$. The crescent of $L_{n, \eta, s}$ contains the blackened region of Figure 3. (When $\alpha>1$,

Fig. 3. $T^{h_{n}} L_{n, \eta, s}$
the crescent of $L_{n, \eta, s}$ is equal to the blackened region of Figure 3.) The crescent has levels of height η, separated by α and decreasing in measure by a factor of $\frac{1}{4}$ with each successive level. For $n \geq 0, l \geq 1$, we have

$$
\begin{equation*}
\mu\left(T^{h_{n}} L_{n, \eta, s} \cap L_{n, \eta, l \alpha+s}\right) \geq \mu\left(L_{n, \eta, s}\right) /\left(2 \cdot 4^{l}\right), \tag{4}
\end{equation*}
$$

provided that $L_{n, \eta, l \alpha+s}$ is actually defined, i.e. provided that $l \alpha+s+\eta \leq h_{n}$.
If we fix k and let $n>k$ then column C_{k} appears in C_{n} as 4^{n-k} disjoint levels of height h_{k}. Each of these is called a copy of C_{k}. Thus there are 4^{n-k} copies of C_{k} in C_{n}.

Definition 6.1. Let A be a measurable set in X and let $I=L_{k, \eta, s}$ be a level, for some k, η, s. Define

$$
\operatorname{Full}(A, I)=\frac{\mu(A \cap I)}{\mu(I)} .
$$

Analogously, for $A \subset X \times X$ define

$$
\operatorname{Full}(A, I \times J)=\frac{\mu \times \mu(A \cap I \times J)}{\mu \times \mu(I \times J)} .
$$

Theorem 6.2. Let T be the flow defined above by cutting each column C_{n} into four subcolumns, adding spacers, and stacking. Then $T \times T$ is an ergodic flow.

Proof. Let A and B be subsets of $X \times X$ of positive measure. Given $\frac{1}{15}>\delta>0, A$ and B can be approximated by the cartesian product of full levels $I_{1}, I_{2}, J_{1}, J_{2}$ of the form $L_{k, \eta, x_{i}}$ for fixed $k \geq 0$ and $\eta>0$ with
$x_{i}=x_{I_{1}}, x_{I_{2}}, x_{J_{1}}$ or $x_{J_{2}}$, where $x_{I_{i}}$ stands for the distance from the top of C_{k} to the start of $I_{i}, x_{J_{i}}$ stands for the distance from the top of C_{k} to the start of J_{i}, and

$$
\operatorname{Full}\left(A, I_{1} \times I_{2}\right)>1-\delta, \quad \operatorname{Full}\left(B, J_{1} \times J_{2}\right)>1-\delta
$$

For $n>k$ let $s_{n}=h_{n}+\left(x_{I_{1}}-x_{J_{1}}\right)$. One can verify that $\mu\left(T^{s_{n}} I_{1} \cap J_{1}\right)=$ $\mu\left(I_{1}\right) / 2$.

We are going to show that at one of the times $s_{n},(T \times T)^{s_{n}} A$ intersects B in a positive measure set. To do this, we are going to consider $T^{s_{n}} I_{1} \cap J_{1}$ and $T^{s_{n}} I_{2} \cap J_{2}$. As previously noted, $\mu\left(T^{s_{n}} I_{1} \cap J_{1}\right)=\mu\left(I_{1}\right) / 2$, so our primary concern is $T^{s_{n}} I_{2} \cap J_{2}$. Note that I_{2} is a union of levels in C_{n} and that $\left|x_{I_{1}}-x_{J_{1}}\right|$ is smaller than h_{k} which in turn is smaller than h_{n}. Therefore, much of $T^{s_{n}} I_{2}$ is simply a translate in C_{n} of $T^{h_{n}} I_{2} \cap C_{n}$ (expecially for large n) and $T^{h_{n}} I_{2} \cap C_{n}$ is in turn a union of crescents.

For $T^{s_{n}} I_{2}$ to intersect J_{2}, we want the distance between a copy of I_{2} in C_{n} translated by $x_{I_{1}}-x_{J_{1}}$ and a copy of J_{2} in C_{n} to be close to a positive integer times α, because then we may apply (4). The distance between two copies of C_{k} in C_{n} is of the form $a h_{k}+b \alpha$ for positive integers a, b since all the spacers added are of heights which are integer multiples of α. Let $I_{2, n}$ denote a full level subset of I_{2} in C_{n} and $J_{2, n}$ a full level subset of J_{2} in C_{n} which lies under $I_{2, n}$. Let $\operatorname{dist}\left(I_{2, n}, J_{2, n}\right)$ denote the distance from the top of $I_{2, n}$ to the top of $J_{2, n}$. Then for some positive integers a, b,

$$
\operatorname{dist}\left(I_{2, n}, J_{2, n}\right)+x_{I_{2}}-x_{J_{2}}=a h_{k}+b \alpha
$$

And we desire to have $\operatorname{dist}\left(I_{2, n}, J_{2, n}\right)+\left(x_{I_{1}}-x_{J_{1}}\right)$ close to a positive integer times α.

Since α is irrational and h_{k} is of the form $M+N \alpha$ for some integers M and N, for all $\varepsilon>0$, there exist integers m, r such that $m \geq 0$ and

$$
\left|m h_{k}+r \alpha-\left(x_{I_{2}}-x_{J_{2}}\right)+\left(x_{I_{1}}-x_{J_{1}}\right)\right|<\varepsilon \eta .
$$

Fix ε such that $1-12 \delta>\varepsilon>0$ and let m, r be as above.
For any $n>k$, call an $I_{2, n}$ good if there exists a $J_{2, n}$ beneath it such that the distance between them is $m h_{k}+b \alpha-\left(x_{I_{2}}-x_{J_{2}}\right)$ for some positive integer b. By construction, the distance between such an $I_{2, n}$ and $J_{2, n}$ is close to a positive integer multiple of α minus $x_{I_{1}}-x_{J_{1}}$, causing $T^{s_{n}} I_{2, n}$ to intersect $J_{2, n}$. A good $I_{2, n}$ with its corresponding $J_{2, n}$ is shown in Figure 4 for $m=3$. For such an $I_{2, n}$ and $J_{2, n}$, we see by (4) that

$$
\mu\left(T^{s_{n}} I_{2, n} \cap J_{2, n}\right)>(1-\varepsilon) \frac{1}{2 \cdot 4^{M_{n}}} \mu\left(I_{2, n}\right)
$$

where M_{n} is greater than $\left(\operatorname{dist}\left(I_{2, n}, J_{2, n}\right)+\left(x_{I_{1}}-x_{I_{2}}\right)\right) / \alpha$. For instance we can take $M_{n}=\left\lceil h_{n} / \alpha\right\rceil$.

Fig. 4. The top $I_{2, n}$ has a partner in $J_{2, n}$
Note that for any $n>k$, a copy $I_{2, n}$ is good precisely when there are m copies of h_{k} below the copy of h_{k} in which $I_{2, n}$ is located. This is because all spacers inserted to make C_{n} from C_{k} are of height which is an integer multiple of α. Thus, in C_{n} all but m of the 4^{n-k} copies of I_{2} are good.

Choose N such that $\delta / 2>m / 4^{N-k}$. For all $l>N$, each $I_{2, l}$ is a copy of some $I_{2, N}$. Note that $I_{2, l}$ is good if it is a copy of a good $I_{2, N}$, but that there are some $I_{2, l}$ which are good but are not copies of a good $I_{2, N}$. We redefine good to ignore such copies, i.e. for $l>N$ a copy $I_{2, l}$ of I_{2} is good precisely if $I_{2, l}$ is a copy of a good $I_{2, N}$. Thus M_{N} is greater than $\left(\operatorname{dist}\left(I_{2, l}, J_{2, l}\right)+\left(x_{I_{1}}-x_{J_{1}}\right)\right) / \alpha$ for any good $I_{2, l}$ and its corresponding $J_{2, l}$. Thus, for all $l>N$ and all good $I_{2, l}$ and corresponding $J_{2, l}$,

$$
\mu\left(T^{s l} I_{2, l} \cap J_{2, l}\right)>(1-\varepsilon) \frac{1}{2 \cdot 4^{M_{N}}} \mu\left(I_{2, l}\right) .
$$

Let

$$
I_{2}^{\prime}=\bigcup_{\operatorname{good} I_{2, N}} I_{2, N}, \quad J_{2}^{\prime}=\bigcup_{\text {partner }\left(\operatorname{good} I_{2, N}\right)} J_{2, N} .
$$

Then

$$
\begin{equation*}
\mu\left(I_{2}^{\prime}\right)>(1-\delta / 2) \mu\left(I_{2}\right), \quad \mu\left(J_{2}^{\prime}\right)>(1-\delta / 2) \mu\left(J_{2}\right) . \tag{5}
\end{equation*}
$$

Take a good $I_{2, l}$ and its corresponding $J_{2, l}$. By definition of good, there is a positive integer d such that $d \alpha$ is close to

$$
\operatorname{dist}\left(T^{x_{I_{1}}-x_{J_{1}}} I_{2, l}, J_{2, l}\right)=\operatorname{dist}\left(I_{2, l}, J_{2, l}\right)+\left(x_{I_{1}}-x_{J_{1}}\right) .
$$

More precisely, $\left|d \alpha-\left(\operatorname{dist}\left(I_{2, l}, J_{2, l}\right)+\left(x_{I_{1}}-x_{J_{1}}\right)\right)\right|<\varepsilon \eta$. Note that $d \leq M_{n}$. By examining the crescent, we see that the part of $I_{2, l}$ which is taken under $T^{s_{l}}$ to $J_{2, l}$ is the part obtained by dividing $I_{2, l}$ into 4^{d+1} equal vertical pieces and taking the second and the fourth piece from the right. Call this part $I_{2, l}^{\prime} ;$ it is illustrated by the two black squares in the upper right of Figure 5. Let $J_{2, l}^{\prime}$ be the part of $J_{2, l}$ obtained by dividing $J_{2, l}$ into 4^{d+1} equal vertical pieces and taking the second and the fourth from the left. $J_{2, l}^{\prime}$ is illustrated

Fig. 5. Column C_{n}
by the two black squares in the lower left of Figure 5. Note that

$$
\begin{equation*}
\mu\left(T^{s l} I_{2, l}^{\prime} \cap J_{2, l}^{\prime}\right)=(1-\varepsilon) \mu\left(I_{2, l}^{\prime}\right)=(1-\varepsilon) \mu\left(J_{2, l}^{\prime}\right) . \tag{6}
\end{equation*}
$$

The rough idea for how to proceed is as follows: since the intersections $T^{s_{l}} I_{2, l}^{\prime} \cap J_{2, l}^{\prime}$ and $T^{s_{l}} I_{1} \cap J_{1}$ are large portions of the pieces involved, if $(T \times T)^{s_{l}} A$ and B do not intersect (in a nonnull set), then $I_{1, l} \times I_{2, l}^{\prime}$ and $J_{1, l} \times J_{2, l}^{\prime}$ cannot be very full of A and B respectively. Since $I_{1, l} \times I_{2, l}^{\prime}$ and $J_{1, l} \times J_{2, l}^{\prime}$ are small compared to $I_{1} \times I_{2}$ and $J_{1} \times J_{2}$, this will not directly produce a contradiction for any fixed l, and we must keep track of all the $I_{1, l} \times I_{2, l}^{\prime}$ and $J_{1, l} \times J_{2, l}^{\prime}$ for all l. To do this rigorously, we use a partnered partition, defined in the following manner:

A partnered partition of (I, J) is defined to be an ordered triple $\left(\mathcal{P}_{I}, \mathcal{P}_{J}, \sigma\right)$ such that \mathcal{P}_{I} is a partition of I, \mathcal{P}_{J} is a partition of J and σ is a measurepreserving bijection $\sigma: \mathcal{P}_{I} \rightarrow \mathcal{P}_{J}$, i.e. for all $\tilde{I} \in \mathcal{P}_{I}, \mu(\tilde{I})=\mu(\sigma(\tilde{I}))$. We now define a partnered partition ($\left.\mathcal{P}_{I_{2}^{\prime}}, \mathcal{P}_{J_{2}^{\prime}}, \sigma\right)$ by inductively defining partnered partitions $\left(\mathcal{P}_{I_{2}^{\prime \prime n}}, \mathcal{P}_{J_{2}^{\prime, n}}, \sigma_{n}\right)$ for $n=N, N+M_{N}, N+2 M_{N}, N+3 M_{N}, \ldots$ where $I_{2}^{\prime, n}$ and $J_{2}^{\prime, n}$ are larger and larger portions of I_{2}^{\prime} and J_{2}^{\prime} respectively. For any good $I_{2, n}$, recall the definition of $I_{2, n}^{\prime}$ and $J_{2, n}^{\prime}$ given above and illustrated in black in Figure 5. Let $I_{2, n}^{*}$ denote the subset of $I_{2, n}$ directly above $J_{2, n}^{\prime}$. Let $J_{2, n}^{*}$ denote the subset of $J_{2, n}$ directly below $I_{2, n}^{\prime}$. The sets $I_{2, n}^{*}$ and $J_{2, n}^{*}$ are illustrated by white squares in the upper left and lower right, respectively, in Figure 5. Then σ_{N} is a partnered partition of

$$
\left(I_{2}^{\prime, N}=\bigcup_{\operatorname{good} I_{2, N}}\left(I_{2, N}^{\prime} \cup I_{2, N}^{*}\right), J_{2}^{\prime, N}=\bigcup_{\text {partner }\left(\operatorname{good} I_{2, N}\right)}\left(J_{2, N}^{\prime} \cup J_{2, N}^{*}\right)\right),
$$

$\mathcal{P}_{I_{2}^{\prime, N}}$ is the set of all $I_{2, N}^{*} \cup I_{2, N}^{\prime}$ as $I_{2, N}$ runs over the good copies of I_{2}, $\mathcal{P}_{J_{2}^{\prime, N}}$ is the set of all the corresponding $J_{2, N}^{*} \cup J_{2, N}^{\prime}$, and σ_{N} is defined by $\sigma_{N}\left(I_{2, N}^{\prime} \cup I_{2, N}^{*}\right)=J_{2, N}^{\prime} \cup J_{2, N}^{*}$.

After we have defined the partnered partition $\left(\mathcal{P}_{I_{2}^{\prime n}}, \mathcal{P}_{J_{2}^{\prime, n}}, \sigma_{n}\right)$ of $\left(I_{2}^{\prime, n}, J_{2}^{\prime, n}\right)$, we define $\sigma_{n+M_{N}}$ as follows: for a given good copy $I_{2, n}$ of I_{2}
in C_{n} and its corresponding $I_{2, n}^{\prime}$ and $J_{2, n}^{\prime}$, recall the definition of d. For $l>n+d+1, I_{2, n}^{\prime}$ and $I_{2, n}^{*}$ are unions of good copies of I_{2} in C_{l} whose corresponding copies of J_{2} are $J_{2, n}^{*}$ and $J_{2, n}^{\prime}$ respectively. Since $M_{n}>d$, if $l>n+M_{N}$ then $I_{2}^{\prime, l} \backslash I_{2}^{\prime, n}$ is a union of good copies of I_{2}.

Let $\sigma_{n+M_{N}}$ be a partnered partition of

$$
\begin{aligned}
\left(I_{2}^{\prime, n+M_{N}}=\bigcup_{\operatorname{good} I_{2, n+M_{N} \subset I_{2}^{\prime} \backslash I_{2}^{\prime, n}}\left(I_{2, n+M_{N}}^{\prime} \cup I_{2, n+M_{N}}^{*}\right)} \bigcup^{\operatorname{partner}\left(\operatorname{good} I_{2, n+M_{N}}^{\prime} \subset I_{2}^{\prime} \backslash I_{2}^{\prime, n}\right)}\left(J_{2, n+M_{N}}^{\prime} \cup J_{2, n+M_{N}}^{*}\right)\right)
\end{aligned}
$$

Let $\mathcal{P}_{I_{2}^{\prime, n+M_{N}}}$ be the union of $\mathcal{P}_{I_{2}^{\prime, n}}$ and the set of all $I_{2, n+M_{N}}^{*} \cup I_{2, n+M_{N}}^{\prime}$ as $I_{2, n+M_{N}}$ runs over the good copies of I_{2}. Let $\mathcal{P}_{J_{2}^{\prime, n+M_{N}}}$ be the union of $\mathcal{P}_{J_{2}^{\prime, n}}$ and the set of all the corresponding $J_{2, n+M_{N}}^{*} \cup J_{2, n+M_{N}}^{\prime}$, and let $\sigma_{n+M_{N}}$ extend σ_{n} by $\sigma_{n+M_{N}}\left(I_{2, n+M_{N}}^{\prime} \cup I_{2, n+M_{N}}^{*}\right)=J_{2, n+M_{N}}^{\prime} \cup J_{2, n+M_{N}}^{*}$. Since $\sigma_{n+M_{N}}$ extends σ_{n}, we can define the partnered partition ($\mathcal{P}_{I_{2}^{\prime}}, \mathcal{P}_{J_{2}^{\prime}}, \sigma$) of $\left(\bigcup_{j=0}^{\infty} I_{2}^{\prime, N+j M_{N}}, \bigcup_{j=0}^{\infty} J_{2}^{\prime, N+j M_{N}}\right)$ as the limit of the σ_{n}. We claimed earlier that $\left(\mathcal{P}_{I_{2}^{\prime}}, \mathcal{P}_{J_{2}^{\prime}}, \sigma\right)$ would be a partnered partition of $\left(I_{2}^{\prime}, J_{2}^{\prime}\right)$, i.e. we have claimed that

$$
\left(\bigcup_{j=0}^{\infty} I_{2}^{\prime, N+j M_{N}}, \bigcup_{j=0}^{\infty} J_{2}^{\prime, N+j M_{N}}\right)=\left(I_{2}^{\prime}, J_{2}^{\prime}\right)
$$

To see this, note that the containment \subset is clear and that by the remarks in the paragraph containing the definition of d,

$$
\mu\left(I_{2}^{\prime} \backslash I_{2}^{\prime, n+M_{N}}\right) \leq\left(1-\frac{1}{2 \cdot 4^{M_{N}}}\right) \mu\left(I_{2}^{\prime} \backslash I_{2}^{\prime, n}\right)
$$

whence

$$
\mu\left(I_{2}^{\prime} \backslash I_{2}^{\prime, N+j M_{N}}\right) \leq\left(1-\frac{1}{2 \cdot 4^{M_{N}}}\right)^{j} \mu\left(I_{2}^{\prime}\right)
$$

which establishes the desired equality. Thus we have constructed the partnered partition $\left(\mathcal{P}_{I_{2}^{\prime}}, \mathcal{P}_{J_{2}^{\prime}}, \sigma\right)$ of $\left(I_{2}^{\prime}, J_{2}^{\prime}\right)$.

Furthermore, by (6), for all $\tilde{I} \in \mathcal{P}_{I_{2}^{\prime}}$, there exists a positive integer n such that

$$
\begin{equation*}
\mu\left(T^{s_{n}} \tilde{I} \cap \sigma(\tilde{I})\right) \geq \frac{1}{2}(1-\varepsilon) \mu(\tilde{I}) \tag{7}
\end{equation*}
$$

Indeed, assume to the contrary that A and B do not intersect at any time s_{n}. Take $\tilde{I}_{2} \in \mathcal{P}_{I_{2}^{\prime}}$ and let $\widetilde{J}_{2}=\sigma\left(\tilde{I}_{2}\right)$. Let n be as in (7). Define $\widetilde{K}=$ $(T \times T)^{s_{n}} I_{1} \times \tilde{I}_{2} \cap J_{1} \times \widetilde{J}_{2}$. As $\mu\left(T^{s_{n}} I_{1} \cap J_{1}\right) \geq \frac{1}{2} \mu\left(\widetilde{J}_{1}\right)$ and $\mu\left(T^{s_{n}} \tilde{I}_{2} \cap \widetilde{J}_{2}\right) \geq$ $((1-\varepsilon) / 2) \mu\left(\widetilde{J}_{2}\right)$, we have $\mu \times \mu(\widetilde{K}) \geq \mu \times \mu\left(\widetilde{J}_{1} \times \widetilde{J}_{2}\right)(1-\varepsilon) / 4$. Since A and
B do not intersect in a nonnull set, $\operatorname{Full}\left((T \times T)^{s_{n}} A \widetilde{K}\right)+\operatorname{Full}(B, \widetilde{K}) \leq 1$. This implies

$$
\begin{aligned}
\operatorname{Full}\left(A, I_{1} \times \tilde{I}_{2}\right) & +\operatorname{Full}\left(B, J_{1} \times \widetilde{J}_{2}\right) \\
& \leq \frac{1-\varepsilon}{4}+\left(1-\frac{1-\varepsilon}{4}\right)+\left(1-\frac{1-\varepsilon}{4}\right)=2-\frac{1-\varepsilon}{4} .
\end{aligned}
$$

Since the union over all \tilde{I}_{2} is I_{2}^{\prime} and the union over all \widetilde{J}_{2} is J_{2}^{\prime} (and since the \tilde{I}_{2} are disjoint as are the $\left.\widetilde{J}_{2}\right)$, this implies that $\operatorname{Full}\left(A, I_{1} \times I_{2}^{\prime}\right)+$ $\operatorname{Full}\left(B, J_{1} \times J_{2}^{\prime}\right) \leq 2-(1-\varepsilon) / 4$. By (5), this implies that
$\operatorname{Full}\left(A, I_{1} \times I_{2}\right)+\operatorname{Full}\left(B, J_{1} \times J_{2}\right)$

$$
\leq 2-\frac{1-\varepsilon}{4}+\delta<2-\frac{1-(1-12 \delta)}{4}+\delta=2-2 \delta .
$$

Since $\operatorname{Full}\left(A, I_{1} \times I_{2}\right)+\operatorname{Full}\left(B, J_{1} \times J_{2}\right)=2-2 \delta$, we have a contradiction, so there exists n such that $\mu \times \mu\left((T \times T)^{s_{n}} A \cap B\right)>0$.

We conclude this section with a construction of measure-preserving rankone \mathbb{R}^{d}-actions that can be shown to be doubly ergodic. Our initial construction is finite measure-preserving, but we show how it can be easily modified to obtain infinite measure-preserving examples. We omit the proof that these actions are doubly ergodic as our interest is to show how the previous constructions can be generalized to the case of \mathbb{R}^{d}-actions. It is clear that these constructions have some partial rigidity and therefore are not mixing.

Let e_{1}, \ldots, e_{d+1} be the standard basis of \mathbb{R}^{d+1}. We define recursively a sequence of $(d+1)$-dimensional rectangular prisms G_{n} for $n \geq 0$. Let $G_{0}=[0,1) \times \cdots \times[0,1)$. Let

$$
\begin{gathered}
\alpha_{0}=\frac{1}{2}, \\
\alpha_{1}=\frac{1}{2}, \alpha_{2}=\frac{1}{2}, \alpha_{3}=\frac{1}{4}, \alpha_{4}=\frac{1}{4}, \\
\alpha_{5}=\frac{1}{2}, \alpha_{6}=\frac{1}{2}, \alpha_{7}=\frac{1}{2}, \alpha_{8}=\frac{1}{4}, \alpha_{9}=\frac{1}{4}, \alpha_{10}=\frac{1}{4}, \alpha_{11}=\frac{1}{8}, \alpha_{12}=\frac{1}{8}, \alpha_{13}=\frac{1}{8},
\end{gathered}
$$

and $l_{0}=1$. Note that $\alpha_{n}=2^{-s}$ for some integer s and that for a given k and s there are infinitely many n such that $\alpha_{n}=\alpha_{n+1}=\cdots=\alpha_{n+k}=2^{-s}$. Assume $l_{n} \in \mathbb{R}_{>0}$ and $G_{n} \subset \mathbb{R}^{d+1}$ have been defined and

$$
G_{n}=\left[0, l_{n}\right) \times \cdots \times\left[0, l_{n}\right) \times\left[0,\left(2^{d}\right)^{-n}\right) .
$$

We think of the $(d+1)$ st dimension as the height (sometimes we may write a vector in \mathbb{R}^{d+1} as (v, x) where v is in \mathbb{R}^{d} and $\left.x \in \mathbb{R}\right)$. Then to define G_{n+1}, cut G_{n} along the $(d+1)$ st dimension with $2^{d}-1$ cuts, into 2^{d} pieces. Use the pieces to tile the section of the e_{1}, \ldots, e_{d} plane that is a d-dimensional cube of side length $2 l_{n}$. Now we have a rectangular prism twice as long in
the e_{1}, \ldots, e_{d} dimensions and 2^{-d} as long in the e_{d+1} dimension．Then add a spacer of length α_{n} around the outside of the generalized＂quadrant＂in which G_{n} is sitting，to create a $\left(2 l_{n}+\alpha_{n}\right) \times \cdots \times\left(2 l_{n}+\alpha_{n}\right) \times\left(2^{d}\right)^{-n-1}$ rectangular prism．This is shown for $d=2$ and $n=1$ in Figure 6．Note $l_{n+1}=2 l_{n}+\alpha_{n}$ and G_{n+1} has height of $\left(2^{d}\right)^{-n} / 2^{d}=\left(2^{d}\right)^{-n-1}$ ．

Fig．6．Construction of G_{1} out of G_{0}
Each G_{n} defines a partial flow $T_{G_{n}}^{g}$ for $g \in \mathbb{R}^{d}$ by the translation that maps $\left(x_{1}, \ldots, x_{d}, x_{d+1}\right) \in G_{n}$ to $\left(\left(x_{1}, \ldots, x_{d}\right)+g, x_{d+1}\right)$ if the latter is in G_{n} ．Otherwise $T_{G_{n}}^{g}$ remains undefined in G_{n} ．Define $X=\bigcup_{n \geq 0} G_{n}$ and the action as

$$
T_{d}^{g}=\lim _{n \rightarrow \infty} T_{G_{n}}^{g} .
$$

It can be shown that one can vary the sequence α_{n} and still obtain double ergodicity provided α_{n} has the property that for any positive integers s and k there are infinitely many n such that $\alpha_{n}=\alpha_{n+1}=\cdots=\alpha_{n+k}=2^{-s}$ ．In particular，if we insert a spacer of length l_{n} every time $\alpha_{n} \neq \alpha_{n+1}$ ，we obtain an infinite measure space with a doubly ergodic \mathbb{R}^{d}－action．

REFERENCES

［1］J．Aaronson，M．Lin，and B．Weiss，Mixing properties of Markov operators and ergodic transformations，and ergodicity of Cartesian products，Israel J．Math． 33 （1979），198－224．
［2］T．Adams，N．Friedman，and C．E．Silva，Rank－one weak mixing for nonsingular transformations，ibid． 102 （1997），269－281．
［3］—，一，一，Rank－one power weakly mixing non－singular transformations，Ergodic Theory Dynam．Systems 21 （2001），1321－1332．
［4］V．Bergelson and J．Rosenblatt，Mixing actions of groups，Illinois J．Math． 325 （1988），65－80．
［5］—，一，Joint ergodicity for group actions，Ergodic Theory Dynam．Systems 8 （1988）， 351－364．
［6］A．Bowles，L．Fidkowski，A．Marinello，and C．E．Silva，Double ergodicity of non－ singular transformations and infinite measure－preserving staircase transformations， Illinois J．Math． 45 （2001），999－1019．
［7］A．Danilenko，Funny rank－one weak mixing for nonsingular abelian actions，Israel J．Math． 121 （2001），29－54．
［8］A．Danilenko and C．E．Silva，Multiple and polynomial recurrence for Abelian actions in infinite measure，J．London Math．Soc． 69 （2004），183－200．
[9] S. Day, B. Grivna, E. McCartney, and C. E. Silva, Power weakly mixing infinite transformations, New York J. Math. 5 (1999), 17-24.
[10] H. Dye, On the mixing ergodic theorem, Trans. Amer. Math. Soc. 118 (1965), 123130.
[11] B. Fayad, Rank-one and mixing differentiable flows, preprint.
[12] N. A. Friedman, Introduction to Ergodic Theory, Van Nostrand Reinhold, New York, 1970.
[13] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton Univ. Press, Princeton, NJ, 1981.
[14] K. Gruher, F. Hines, D. Patel, C. Silva, and R. Waelder, Power weak mixing does not imply multiple recurrence in infinite measure and other counterexamples, New York J. Math. 9 (2003), 1-22.
[15] E. Hopf, Complete transitivity and the ergodic principle, Proc. Nat. Acad. Sci. U.S.A. 18 (1932), 204-209.
[16] A. del Junco and K. Park, An example of a measure-preserving flow with minimal self-joinings, J. Anal. Math. 42 (1982/83), 199-209.
[17] S. Kakutani and W. Parry, Infinite measure-preserving transformations with "mixing", Bull. Amer. Math. Soc. 69 (1963), 752-756.
[18] E. Kin, A simple geometric construction of weakly mixing flows which are not strongly mixing, Proc. Japan Acad. 47 (1971), 50-53.
[19] D. Lind, A counterexample to a conjecture of Hopf, Duke Math. J. 42 (1975), 755757.
[20] K. Schmidt, Asymptotic properties of unitary representations and mixing, Proc. London Math. Soc. 48 (1984), 445-460.
[21] R. J. Zimmer, Ergodic Theory and Semisimple Groups, Birkhäuser, Basel, 1984.

Williams College
Williamstown, MA 01267, U.S.A.
E-mail: siams@wso.williams.edu csilva@williams.edu
Current address of S. Iams:
Emmanuel College
Cambridge, CB2 3AP, UK
Current address of B. Katz:
Department of Mathematics
University of Texas
Austin, TX 78712, U.S.A.
E-mail: bkatz@math.utexas.edu

University of Virginia
Charlottesville, VA 22903, U.S.A.
Current address of B. Street: Department of Mathematics

Princeton University
Princeton, NJ 08544, U.S.A.
E-mail: bstreet@math.princeton.edu
Harvard University
Cambridge, MA 02138, U.S.A.
Current address of K. Wickelgren:
Department of Mathematics
Stanford University
Palo Alto, CA 94305, U.S.A.
E-mail: kirsten@math.stanford.edu

[^0]: 2000 Mathematics Subject Classification: Primary 37A40.
 Key words and phrases: weakly mixing, doubly ergodic, measure-preserving transformation, action of Polish groups.

