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EQUIVALENCE RELATIONS INDUCED BY SOME LOCALLYCOMPACT GROUPS OF HOMEOMORPHISMS OF 2NBYB. MAJCHER-IWANOW (Wroªaw)Abstrat. Let T be a loally �nite rooted tree and B(T ) be the boundary spae of T .We study loally ompat subgroups of the group TH(B(T )) = 〈Iso(T ), V 〉 generated bythe group Iso(T ) of all isometries of B(T ) and the group V of Rihard Thompson. Wedesribe orbit equivalene relations arising from ations of these groups on B(T ).0. Preliminaries0.1. Introdution. Given two Borel equivalene relations E1, E2 on
X1, X2 respetively, we say E1, E2 are Borel isomorphi if there is a Borelbijetion f : X1 → X2 suh that xE1 y ⇔ f(x)E2 f(y), for all x, y ∈ X1.In [6℄ A. Kehris gives the following haraterization of orbit equivalenerelations indued by Borel ations of loally ompat groups on a stan-dard Borel spae (some onverse versions of this theorem have been foundin [7℄).Let G be a seond ountable loally ompat group ating in a Borelway on a standard Borel spae X. Then there is a unique deompo-sition X = C ∪ U into invariant Borel sets satisfying the followingonditions:(1) EG|C is ountable, i.e. eah EG|C-lass is ountable;(2) there is a Borel set Z ⊆ U , meeting eah EG|U -lass in a ount-able set , suh that EG|U is Borel isomorphi to the equivalenerelation de�ned on Z × R as follows: (z, r) ∼ (z′, r′) ⇔ (z, z′) ∈

EG|Z (in symbols ((z, r), (z′, r′)) ∈ (EG|Z) × IR).This theorem is the starting point of the paper. It is natural to on-jeture that in many partiular situations the theorem an be improved bydesription of Borel omplexity of U , Z and the isomorphism arising in theformulation. We study this for ations of some loally ompat groups ofhomeomorphisms of the boundary spae B(T ) (of all branhes) of a loally�nite rooted tree T . We onsider all loally ompat subgroups of the group2000 Mathematis Subjet Classi�ation: 03E15, 20E08.Key words and phrases: Borel ations, rooted trees, pro�nite groups.[287℄



288 B. MAJCHER-IWANOW
TH(B(T )) = 〈Iso(T ), V 〉 generated by the group Iso(T ) of all isometries of
B(T ) and the group V of Rihard Thompson (see [3℄; elements of TH(B(T ))will be alled Thompson's type homeomorphisms of B(T )). In partiular ourresults desribe the ase of all loally ompat groups of loal isometries of
B(T ), i.e. homeomorphisms g : B(T ) → B(T ) suh that any x ∈ B(T ) hasa neighbourhood U where g is an isometry U → g(U).It is worth noting that both Thompson's group and the group of (loal)isometries of a rooted tree have beome quite important in mathematis. Onthe one hand, they naturally arise in lassi�ation problems of group theory[11℄ (moreover any pro�nite group an be realized as a losed subgroup ofthe group Iso(T ) of all isometries of B(T ) [4℄). On the other hand, they havebeome a soure of important examples (Burnside groups [4℄) and applia-tions in disrete mathematis [1℄, [5℄ and geometry [3℄. From the viewpointof lassi�ation of Borel equivalene relations, ations of (loal) isometrygroups on the spae of tree branhes look very typial.Our main result provides a preise formulation of the theorem of Kehrisin the situation when T is a loally �nite tree and G is a loally ompatgroup ontinuously embedded into the group TH(B(T )) of all Thompson'stype homeomorphisms of B(T ). In partiular, we show that the Borel iso-morphism from part (2) an be realized by a homeomorphism.The paper ontains several examples whih show that some statementsof the paper annot be further improved. We believe that these examplesan be useful for some other questions.One ould think that the equivalene relations studied in this paper areasual and for example there are ations of pro�nite groups (not neessarilyisometri) whih indue muh more ompliated equivalene relations. Inthe �nal part of the paper we show that this is not the ase. We prove thatany pro�nite group G an be realized as a losed subgroup of the groupof all isometries of a loally �nite tree, so that the spae B(T ) with theorresponding G-ation is a universal Borel G-spae. In a sense this an beonsidered as an improvement of the fat of universality of Iso(T ) mentionedabove.The struture of the paper is as follows. In Setion 1 we �nd a version ofKehris' theorem for losed subgroups of the group Iso(T ) of all isometriesof T . The fat that these groups are ompat implies that there is a Boreltransversal for the equivalene relation indued by G on B(T ). This givesa standard method of obtaining versions of Kehris' theorem. In our asethe existene of a tree struture allows making the orresponding statementsmore preise and straightforward. This will be applied in Setion 2 to groupsof loal isometries and Thompson's type groups. In Setion 3 we disussuniversality properties of Iso(T ).



EQUIVALENCE RELATIONS 2890.2. Loally �nite rooted trees. In this subsetion we present neessaryinformation onerning trees. We also prove a tehnial result (Lemma 3)whih will be applied below.A tree T is loally �nite if any vertex has �nite valeny (= the numberof adjaent edges). Distinguishing a point we obtain a rooted tree. A vertex
v of a rooted tree is identi�ed with the path from the root to v. If this pathonsists of n edges, then we say that v belongs to level n. Thus the root ∅forms level 0. We will write s ⊆ s′ if the path s′ extends s. We say that
s, s′ ∈ T are inomparable if neither s ⊆ s′ nor s′ ⊆ s.The elements of a loally �nite tree will be represented by (initial) �nitesequenes of natural numbers in the following way. The root orresponds tothe empty sequene ∅. For s ∈ T let lh(s) = n be the distane from the root.If the valeny of s is k+1, then we �x an enumeration by {0, 1, . . . , k−1} ofall edges inident with s exluding one whih is between s and the root. Nowfor any s ∈ T , the path from the root to s uniquely de�nes a lh(s)-sequeneof natural numbers onsisting of the numbers enumerating the edges of thepath. Below we shall frequently identify elements of the tree T with theorresponding sequenes. For given sequenes s, u, we denote by s⌢u theonatenation of s and u. Let Tn be the set of all elements of T representedby sequenes of length ≤ n.The boundary of a loally �nite rooted tree T is the set of all branhes of
T (denoted by B(T )). For given s ∈ T , put (s) = {α ∈ B(T ) : s ⊆ α}. Thefamily of all suh (s), where s ∈ T , forms a (ountable) base of a topology on
B(T ). Then B(T ) beomes a ompat spae where the base above onsistsof lopen sets. We onsider this spae under the standard metri de�ned by
d(γ, δ) = 2−n, where n is the minimal number m satisfying γ|m 6= δ|m.The group H(B(T )) of all homeomorphisms of B(T ) is equipped withthe (standard) metri d(f, g) = 2−n, where for f 6= g, n = min{l ∈ ω :
(∃α ∈ B(T ))(f(α)|l 6= g(α)|l)}. Then H(B(T )) is a separable metri group.For a bijetion f : B(T ) → B(T ) and natural number n, let f |n denote therelation on the set Tn de�ned by
(s, t) ∈ f |n ⇔ (s, t ∈ Tn) ∧ (∃α, β ∈ B(T ))((s is an initial segment of α)

∧ (t is an initial segment of β) ∧ f(α) = β).Now for any n ∈ ω and any relation R ⊆ Tn × Tn with dom(R) = rng(R) =
Tn, de�ne (R) as the set of all homeomorphisms f : B(T ) → B(T ) suhthat f |n = R. The family of all sets of this kind forms a ountable base ofthe topology given by the metri above. We will all this topology the treetopology.Definition 1. Let f : B(T ) → B(T ) be a homeomorphism. We say that
f is a Thompson's type homeomorphism if there is a natural number l > 0and two sequenes (si)i<l, (ti)i<l of verties of the tree T suh that:



290 B. MAJCHER-IWANOW(i) ⋃
i<l(si) =

⋃
i<l(ti) = B(T );(ii) si, sj are inomparable for any distint i, j < l;(iii) ti, tj are inomparable for any distint i, j < l;(iv) α ∈ (si) ⇔ f(α) ∈ (ti), for every i < l;(v) 2lh(si)d(α, β) = 2lh(ti)d(f(α), f(β)), for any i < l and α, β ∈ (si).The last ondition says that to every i < l we an assign an isometry

fi from the subtree de�ned by (si) to the subtree de�ned by (ti) so that
f(si

⌢α) = ti
⌢fi(α). (It is lear that the de�nition implies that these sub-trees are isomorphi, in partiular si and ti have the same valeny.) It isroutine to hek that the set of all Thompson's type homeomorphisms is agroup; we denote it by TH(B(T )).Rihard Thompson's original group V onsists of all Thompson's typehomeomorphisms whih satisfy a version of ondition (v) where we ad-ditionally demand that all appropriate isometries fi are identities of theorresponding {0, 1}-labelled subtrees. It is easy to see that TH(B(T )) =

〈Iso(T ), V 〉.A loally �nite tree T will be onsidered with the lexiogrphial ordering
≺ de�ned as follows. For two sequenes s, s′ ∈ T ,
s ≺ s′ i�
((s ⊆ s′) ∨ (∃n ≤ min{lh(s), lh(s′)})((∀i < n)(s(i) = s′(i)) ∧ s(n) < s′(n))).We shall write s � s′ whenever s ≺ s′ ∨ s = s′. It is lear that the order �extends ⊆.The ordering � indues a natural linear ordering �B on B(T ) in thefollowing way. For α, β ∈ B(T ), α �B β i� (∀n ∈ N) (α|n � β|n). Below weshall use the same symbols ≺ and � for both the orderings on T and B(T ).It is easily seen that ≺ and � are open and losed subsets of T × T and
B(T ) ×B(T ) respetively.We say that T is spherially homogeneous if any two points of the samedistane from the root have the same valeny. In the ase of spheriallyhomogeneous trees B(T ) an be represented by ∏

i∈N
{0, 1, . . . , ki − 1} (here

ki + 1 is the valeny of verties of level i) and the topology beomes theusual produt topology. Sine the boundary of the binary tree 2<N is justthe Cantor spae, we will use 2N instead of B(2<N).We now de�ne a proedure whih odes any spherially homogeneousloally �nite tree in the binary one. This will be one of the basi tools inSetion 1.Lemma 2. For every natural number k ≥ 1, there exists a sequene
uk(0) ≺ uk(1) ≺ · · · ≺ uk(k − 1) of pairwise inompatible elements from
2<N suh that ⋃

i<k(uk(i)) = 2N.



EQUIVALENCE RELATIONS 291Proof. Put u1(0) = ∅ and, for k > 1,
uk(i) = 11 . . . 1︸ ︷︷ ︸

i times

0 for i < k − 1, uk(k − 1) = 11 . . . 1︸ ︷︷ ︸
k−1 times

.

Lemma 3. For every spherially homogeneous tree T , there is a ≺-pre-serving homeomorphism ψT : B(T ) → 2N.Proof. Let ki+1 be the valeny of T at level i, i ≥ 0. De�ne ψT : B(T ) →
2N as follows (under the notation of Lemma 2):

ψk(α) = lim
n→∞

uk1(α(1))⌢uk2(α(2))⌢ . . .⌢ ukn
(α(n)) for α ∈ B(Tk).Note that when ki = 1, uki

(0) beomes ∅ and does not appear in the se-quenes. From the de�nition of the sequenes (uk(j))0≤j<k we onlude that
ψT is a ontinuous, ≺-preserving bijetion. Then the inverse funtion ψ−1

T isalso ontinuous.1. Ations of losed isometry groups on a rooted tree. Let T bea loally �nite rooted tree. The group Iso(T ) of all isometries of T (withrespet to the natural length funtion) is a pro�nite group with respet tothe anonial homomorphisms πn : Iso(T ) → Iso(Tn). Thus Iso(T ) and allits losed subgroups are ompat. We will see later that any loally ompatgroup G of Thompson's type homeomorphisms is somehow determined bythe subgroup of all isometries from G. This suggests that we should startwith the ase of losed subgroups of Iso(T ). In this ase we an apply somestandard methods together with the existene of a tree struture.Let G be a losed subgroup of Iso(T ). Consider the ation of G on thespae B(T ). The ation is obviously ontinuous. Let EG denote the orre-sponding equivalene relation on B(T ). For α ∈ B(T ) let [α] denote the
EG-orbit of α. In the following lemma we ollet some folklore fats onern-ing ompat groups (1).Lemma 4. Let G be a losed subgroup of Iso(T ) and EG the orrespondingequivalene relation on B(T ).(a) Eah orbit of G is a losed subset of B(T ).(b) EG is a losed subset of B(T ) ×B(T ).() The funtion piking up the leftmost branh in eah orbit , that is,the funtion S : B(T ) → B(T ) de�ned by

S(α) = β i� ((α, β) ∈ EG ∧ (∀γ ∈ B(T ))((α, γ) ∈ EG ⇒ β � γ)),is a ontinuous seletor for EG and the image of S is a losed trans-versal of this relation.
(1) Our lemma also resembles Theorem 5.4.3 of [8℄.



292 B. MAJCHER-IWANOWProof. To prove (a) and (b) notie that eah orbit is a ontinuous imageof a ompat spae G. Hene it is a ompat subset of the ompat spae
B(T ) and thus it is losed.On the other hand, EG is the ontinuous image of the ompat spae
B(T ) ×G under the funtion B(T ) ×G → B(T ) × B(T ) given by (δ, g) 7→
(δ, g(δ)).() Suppose that (αn) is a sequene of elements of B(T ) onvergent tosome α ∈ T . We shall prove that S(αn) → S(α). Sine B(T ) is a om-pat spae, it su�es to show that the limit of eah onvergent subse-quene of (S(αn)) is exatly S(α). Passing to a subsequene if neessary,we may assume that the sequene (S(αn)) is already onvergent and let
limn→∞ S(αn) = β. For every n ∈ N, we have (αn, S(αn)) ∈ EG and then
(α, β) ∈ EG, sine EG is losed. Hene S(α) � β and there is some g ∈ G suhthat g(β) = S(α). Sine g is ontinuous we have limn→∞ g(S(αn)) = g(β).Sine S(αn) � g(S(αn)) for every n ∈ N, we have β � S(α). Thus β = S(α),whih ompletes the proof of the �rst part.To prove the seond part, notie that the image of S is the image of aompat spae under a ontinuous funtion.Given n ∈ N and α ∈ B(T ), we say that n is a branhing point of
α ∈ B(T ) if there is some δ ∈ [α] suh that α|n = δ|n but α(n) 6= δ(n).Obviously, αEGβ implies that n ∈ N is a branhing point of α if and only ifit is a branhing point of β. So we will say that n ∈ N is a branhing pointof an orbit if it is a branhing point of some (any) of its elements.The EG-orbit of α ∈ B(T ) has ardinality < 2ℵ0 if and only if the set ofits branhing points is �nite. Now the following formula desribes the unionof all EG-lasses of ardinality < 2ℵ0 :

(∃n ∈ N)(∀g, g′ ∈ G)(g(α) 6= g′(α) ⇒ (∃m ≤ n)(g(α(m)) 6= g′(α(m))).As a result we have the following lemma.Lemma 5. (a) Any lass of EG of ardinality < 2ℵ0 is �nite.(b) The union of all EG-lasses of ardinality < 2ℵ0 is an invariant Fσ-set.() Let α ∈ B(T ). The orbit of α is in�nite if and only if the set ofits branhing points is in�nite. The union of all in�nite orbits is aninvariant Gδ-set.Following Kehris [6℄, we all the set from part (b) of the lemma theountable part of EG and the set from part () the ontinuous part of EG.The following example shows that we annot laim that the ountablepart is a Gδ-set.
Example. Consider 2<N. Let g ∈ Iso(2<N) be de�ned as follows. At level2 let g at as an adding mahine: g(ab) = 10 + ab (from left to right), a, b ∈
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{0, 1}. At level 3 let g de�ne two yles orresponding to the rule g(abc) =
(10 + ab)c. Moreover one of them extends to a g-yle on 2N onsisting offour elements: g(ab000 . . .) = (10 + ab)000 . . . .For any sequene n1, . . . , nk of numbers from N the g-image of the element

ba00 . . . 01a10 . . . 01a20 . . . 01 . . . 01ak,where ni is the number of zeros in the blok of zeros following ai−1, is de�nedas follows. Let b′a′0a′1 . . . a′k be the 2-adi sum (from left to right) of 100 . . . 0and ba0a1 . . . ak (restrited to sequenes of length k + 2). Then let
b′a′00 . . . 01a′10 . . . 01a′20 . . . 01 . . . 01a′kbe the g-image of
ba00 . . . 01a10 . . . 01a20 . . . 01 . . . 01ak.We assume that g naturally extends to the yle of length 2k+2 on 2N by

g(ba00 . . . 01a10 . . . 01a20 . . . 01 . . . 01ak000 . . .)

= b′a′00 . . . 01a′10 . . . 01a′20 . . . 01 . . . 01a′k000 . . .By this proedure we obtain an ation of 〈g〉 on 2N suh that the union ofall �nite orbits oinides with Z = {̺ ∈ 2N : ∃n∀i(̺(n+ i) = 0)}. It is learthat the set Z is the union of all �nite orbits of the pro�nite ompletion 〈g〉∗.On the other hand, Z as well as its omplement 2N \ Z are dense subsets of
2N; thus by the Baire Category Theorem, Z is not Gδ.Theorem 6. Let T be a loally �nite rooted tree. Let G be a losed sub-group of Iso(T ), EG be the orresponding orbit equivalene relation on B(T )and U ⊆ B(T ) be the ontinuous part of that relation. Let Z be the inter-setion of U with the losed transversal S(B(T )) of EG where S is de�nedas in Lemma 4. Then Z is a Gδ transversal of EG|U suh that there is ahomeomorphism φG : Z × 2N → U satisfying

(φG((z, δ)), φG((z′, δ′))) ∈ EG|U ⇔ z = z′.Proof. We use the strategy of [6℄, although our proof does not use anyinvolved material.It follows from Lemma 5 that the ontinuous part U of EG is a Gδ-set.For given z ∈ Z, let Tz be the tree onsisting of all α|n with α ∈ [z] and
n ∈ N. Observe that the elements of Tz of level n form the G-orbit of α|n+1.Then it is lear that Tz is spherially homogeneous. Let ψTz : B(Tz) → 2Nbe the orresponding oding funtion de�ned in Lemma 3. We now de�nethe required funtion φG : Z × 2N → U by φG(z, δ) := ψ−1

Tz
(δ).By Lemmas 2 and 3, ψTz an be onsidered as a 1-1 funtion on Tzsatisfying the following onditions:

(1) (∀s,s′ ∈Tz)((s⊆ s′⇔ψTz (s)⊆ψTz (s
′))∧ (s≺ s′ ⇔ψTz(s)≺ψTz (s

′)));

(2) (∀n)(∀δ∈ 2N)(∃s∈Tz)(ψTz(s)|n = δ|n).



294 B. MAJCHER-IWANOWThen φG an be equivalently de�ned (for an appropriate sequene (ni)) by
φG(z, δ) = lim

ni→∞
ψ−1

Tz
(δ|ni

).Notie that for every z ∈ Z we have φG(z, 0̄) = z, where 0̄ is the sequene ofzeros. It easily follows from properties (1)�(2) that the funtion is a bijetion.The inverse funtion φ−1
G : U → Z × 2N is a pair of funtions (S, F ) suhthat S is the restrition of the seletor de�ned in Lemma 4 to U . Note that,by Lemma 4, S is ontinuous (and by (1), φG is ontinuous in the seondoordinate). We shall prove that φ−1

G is ontinuous.Suppose that {βn} is a sequene of elements of U onvergent to some
β ∈ U . By Lemma 4, limn→∞ S(βn) = S(β). Let l be a natural number. Forevery i there is a natural number mi suh that for every n > mi, βn agreeswith β at level i. Sine Tβ(i) is the G-orbit of β|i+1, Tβn

(i) oinides with
Tβ(i). Then hoosing i large enough and n > mi we have, for γ = βn,

F (β)|l = ψTβ
(β|i)|l = ψTγ (γ|i)|l = F (γ)|l.Hene limn→∞ F (βn) = F (β). Sine a ontinuous bijetion between ompatspaes is a homeomorphism, we onlude that φG is a homeomorphism.2. Loally ompat groups of homeomorphisms of the spae

B(T ). In this setion we prove our main results. We shall onsider two typesof subgroups of the group of all homeomorphisms of the boundary spae B(T )of the tree T and their natural ations on B(T ).2.1. Thompson's type groups. Let T be a loally �nite rooted tree. Wewill study orbit equivalene relations indued on B(T ) by loally ompatgroups of Thompson's type permutations.We start with an example of a non-ompat losed subgroup of TH(2N)whih is loally ompat with respet to the standard tree topology (seePreliminaries). It is worth noting that this group annot be a subgroup of
Iso(2N), beause all losed isometry subgroups are ompat.
Example. Consider 2<N. Let r : 2<N → 2<N be the right shift fun-tion w 7→ 1⌢w, w ∈ 2<N. For every n ≥ 1 we de�ne by indution a set

Cn ⊂ 2<N onsisting of 2n−1 elements. The de�nition depends on an appro-priate funtion q : 2<N → 2<N. Let C1 = {q(∅)}, C2 = {q(0), q(1)}, where
q(∅) = 10, q(0) = 1100, q(1) = 1101. At Step n + 1 let q(a1 . . . an−1b) =
r(q(a1 . . . an−1))b, where ai ∈ {0, 1} and b ∈ {0, 1}, and let Cn+1 onsist ofall q(a1 . . . an), ai ∈ {0, 1}.Let c be the 1-letter word 0. We now de�ne by indution permutations
gn on {c} ∪ C1 ∪ · · · ∪Cn ∪ · · · , whih are yli on {c} ∪ C1 ∪ · · · ∪ Cn andpreserve eah Cm with m > n. We demand that g1(c) = q(∅), g1(q(∅)) = cand gn−1 = g2

n. For eah l ≥ 1 the permutation gn on Cn+l is de�ned bythe following rule. Let a′1 . . . a′l−1a
′
la

′
l+1 . . . a

′
n+l−1 be the 2-adi sum (from



EQUIVALENCE RELATIONS 295left to right) of 0 . . . 010 . . . 0 and a1 . . . al−1alal+1 . . . an+l−1 (restrited tosequenes of length n+ l−1). Then let gn(q(a1 . . . al−1alal+1 . . . an+l−1)
⌢w)be q(a′1 . . . a′l−1a

′
la

′
l+1 . . . a

′
n+l−1)

⌢w, where w ∈ 2<N.For elements v ∈ {c} ∪ C1 ∪ · · · ∪ Cn we de�ne gn as follows. Let gn(c)be the q-image of the (n− 1)-tuple 00 . . . 0. The rest of the de�nition of gnon {c} ∪ C1 ∪ · · · ∪ Cn follows from the assumption that g2
n = gn−1 and thede�nition of gn−1 on Cn and {c} ∪C1 ∪ · · · ∪Cn−1. For elements of the form

v⌢w with v ∈ {c}∪C1∪· · ·∪Cn and w ∈ 2<N we de�ne gn(v⌢w) = gn(v)⌢w.If an element u ∈ 2<N annot be represented as a subword of a word ofthe form v⌢w with v ∈ {c} ∪ C1 ∪ · · · ∪ Ck ∪ · · · and w ∈ 2<N we de�ne
gn(u) = u (this is the ase of 111 . . .).As a result we obtain an ation of the Prüfer group C2∞ on 2<N and thuson 2N. We onsider C2∞ as a topologial group under the topology induedfrom its ation, thus under the standard tree topology. The group C2∞ isdisrete under this topology. Indeed for any n the element gn is determineduniquely by its ation on the set {c} ∪ C1 ∪ · · · ∪ Cn−1.Lemma 7. Let G < TH(B(T )). For every n ∈ ω de�ne Gn = {f ∈ G :
f is de�ned by some sequenes (si)i<l and (ti)i<l as in De�nition 1 with
max{lh(si), lh(ti) : i < l} ≤ n}. Then (Gn)n∈ω is an inreasing sequeneof losed subgroups of G suh that G =

⋃
nGn and the equivalene relationindued by G on B(T ) is the union of the equivalene relations indued by Gnon B(T ). If G is loally ompat with respet to the standard tree topology ,then all Gn are open in G. In this ase G0 has a subgroup H of ountableindex whih is a losed subgroup of Iso(T ).Proof. The �rst part of the lemma is obvious. Now assume that G isloally ompat. Then G is a Baire spae. Therefore there is a natural number

k suh that for every n ≥ k, Gn is not meager. Then, by Pettis' Theorem,
Gn is open for every n ≥ k.Let n < k and f ∈ Gn. Sine f ∈ Gk, there is m ≥ k suh that thebasi open set (f |m) is ontained in Gk. Thus there are sequenes (si) and
(ti) of the same length suh that maxi,j(si, tj) ≤ k and any g ∈ (f |m) isde�ned (as in De�nition 1) by the map si 7→ ti and appropriate isometries ofthe orresponding subtrees. Sine f ∈ Gn, there are sequenes (sf

i ) and (tfi )suh that maxi,j(s
f
i , t

f
j ) ≤ n and f is determined by the map sf

i 7→ sf
i andappropriate isometries of the orresponding subtrees. In partiular the map

si 7→ ti an be realized by sf
i 7→ tfi and appropriate isometries. This impliesthat (f |m) ⊆ Gn. We see that Gn is open.Sine G is loally ompat, there is a ompat subgroup H < G0 ofountable index. Thus H is losed in Iso(T ).



296 B. MAJCHER-IWANOWLemma 8. Let G be a loally ompat group of Thompson's type homeo-morphisms and EG be the equivalene relation on B(T ) indued by the natu-ral ation of G on that spae. Let GB := H be the losed subgroup of Iso(T )de�ned in Lemma 7.(a) Let C ⊆ B(T ) be the losed transversal of the GB-orbit equivalenerelation de�ned by an appliation of Lemma 4 to GB. Then any lassof EG has a non-empty ountable intersetion with C.(b) Any lass of EG of ardinality < 2ω is the union of a ountablefamily of �nite EGB
-lasses. Any unountable EG-lass is the unionof a ountable family of unountable EGB

-lasses. In partiular theontinuous part of EG oinides with the ontinuous part of EGB
, theyare G-invariant Gδ-sets and the union of all EG-lasses of ountableardinality is a G-invariant Fσ-set.Proof. (a) Observe that C is a setion of the equivalene relation induedby G. We laim that C is a ountable setion. By Lemma 7, G0 is a lopensubgroup of G, thus it is of ountable index in G, so GB is of ountable indexin G. Suppose that there is some α ∈ C suh that [α]G ∩ C is unountable.Then there are two distint elements fα, hα ∈ C suh that f, h are in thesame oset of GB . Hene fh−1 ∈ GB and fα = fh−1(hα). Thus C ontainstwo distint elements fα, hα from the same GB-orbit, whih ontradits thefat that C is a transversal.(b) Let α ∈ B(T ), [α]GB

be the lass of α with respet to the GB-ationand A be a ountable set of representatives of all right osets of GB in G.We have [α]G =
⋃

g∈A g([α]GB
). Then we are done by Lemma 5.Theorem 9. Let G < TH(B(T )) be a loally ompat group, EG bethe orresponding orbit equivalene relation on B(T ) and U ⊆ B(T ) be theontinuous part of the relation. Then there is a Gδ set Z whih is a ountablesetion of EG|U and a homeomorphism φG : Z × 2N → U suh that

(φG((z, δ)), φG((z′, δ′))) ∈ EG|U ⇔ zEGz
′.Proof. It follows from Lemma 8 that the ontinuous part U of EG is a

Gδ-set and oinides with the ontinuous part of EGB
. Let C be the ountablesetion of EG de�ned in the proof of this lemma. Then Z = C∩U is a Gδ-setwhih is a ountable setion of EG|U .Now let φGB

: Z × 2N → U be the homeomorphism de�ned in the proofof Theorem 6 applied to GB . Sine (φGB
((z, δ)), z) ∈ EG for every z and

δ ∈ B(T ), it satis�es the assertion of the theorem.2.2. Loal isometriesDefinition 10. Let f : B(T ) → B(T ) be a homeomorphism, α ∈ B(T )and n ∈ ω.



EQUIVALENCE RELATIONS 297(a) We say that n stabilizes f on α if for every β and γ from the basiopen set (α|n) we have
d(β, γ) = d(f(β), f(γ)).(b) We say that n destabilizes f on α if there are β, γ ∈ (α|n) suh that

d(β, γ) = 2−(n+1) whereas d(f(α), f(β)) 6= 2−(n+1).It is obvious that for given α, f and n as above, n stabilizes f on α exatlywhen no k ≥ n destabilizes f on any β ∈ (α|n).Definition 11. We say that a homeomorphism f : B(T ) → B(T ) is aloal isometry if for every α ∈ B(T ) there is n ∈ ω stabilizing f on α.It is lear that this de�nition just says that for every δ ∈ B(T ) there existsa neighbourhood U suh that d(x1, x2) = d(f(x1), f(x2)) for all x1, x2 ∈ U .We denote the group of all loal isometries of B(T ) by LI(B(T )). At the on-ferene �Groups and Group Rings 10� (Ustro«, 2003), Yaroslav Lavrenyuk(Kiev) has announed that the entre of this group is trivial and any auto-morphism of LI(B(T )) is indued by a onjugation.The following observation shows that a loal isometry is a Thompson'stype homeomorphism of B(T ).Lemma 12. Let f : B(T ) → B(T ) be a loal isometry. There is a naturalnumber n whih stabilizes f on every α ∈ B(T ). Thus f is a Thompson'stype homeomorphism where the sequene (si) oinides with the sequene (ti)and onsists of all elements of T of length n.Proof. We have to show that the set of natural numbers k suh that kdestabilizes f on some α ∈ B(T ) is �nite. Otherwise by König's Lemma,there would be α ∈ B(T ) suh that the set of natural numbers k whihdestabilize f on α is in�nite. The latter ontradits the assumption that fis stabilized on α by some natural n.It is easy to verify that LI(B(T )) is a losed subgroup of TH(B(T )). FromLemma 12 we see that Theorem 9 holds for all loally ompat subgroups of
LI(B(T )).We �nish this setion with an example of a loally ompat (with respetto the tree topology) group of loal isometries whih is not ompat. In thisexample the subgroup H arising in Lemma 7 is unountable.
Example. We de�ne the sequene (gn) of loal isometries of the bound-ary spae 2N of the binary tree as follows:
g0 = id,

gn(0011 . . . 110︸ ︷︷ ︸
length n+1

⌢α) = 1100 . . . 001︸ ︷︷ ︸
length n+1

⌢α,
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gn(1100 . . . 001︸ ︷︷ ︸

length n+1

⌢α) = 0011 . . . 110︸ ︷︷ ︸
length n+1

⌢α,

gn(s⌢α) = s⌢α for any s ∈ 2n+1 \ {1100 . . . 001︸ ︷︷ ︸
length n+1

, 0011 . . . 110︸ ︷︷ ︸
length n+1

}.

Now, let G < LI(2N) be the group generated by the group GL = 〈gn :
n ∈ ω〉 and the group GI of all isometries �xing all δ ∈ 2N of the form 00⌢δ′and 11⌢δ′. Sine no �nite union of basi lopen sets of the form (g|n+1)overs {gn : n ∈ ω}, we see that G is not ompat with respet to the treetopology. We are going to show that G is loally ompat. Observe that GIis ompat, G = GL ⊕ GI and GL is an abelian group of exponent 2. Takeany g ∈ GL. Let n0 < n1 < · · · < nk be an inreasing sequene of naturalnumbers suh that g = gnk

gnk−1
. . . gn0 . We laim that (g|nk+1) is a om-pat neighbourhood of g. To prove this suppose that h ∈ (g|nk+1) ∩ G. Wehave

h(0011 . . . 11︸ ︷︷ ︸
length nk+1

⌢α) = 0011 . . . 11︸ ︷︷ ︸
length nk+1

⌢α for any α ∈ 2ω.

Hene if h ∈ gml
gmk−1

. . . gm0 +GI then ml ≤ nk. Indeed, otherwise we havethe following ontradition with the equality above:
h(0011 . . . 11︸ ︷︷ ︸

lengthnk+1

⌢ 11 . . . 10︸ ︷︷ ︸
length ml−nk

⌢α)

= gml
(0011 . . . 11︸ ︷︷ ︸

length nk+1

⌢ 11 . . . 10︸ ︷︷ ︸
length ml−nk

⌢α)

= 1100 . . . 00︸ ︷︷ ︸
length nk+1

⌢ 00 . . . 01︸ ︷︷ ︸
length ml−nk

⌢α for any α ∈ 2ω.

We now see that (g|nk+1) is ontained in the subgroup 〈gn : n ≤ nk〉 ⊕ GIand thus is ompat. The group GI an be taken as GB in Lemma 8.3. Universal properties of B(T ). We lose the paper with two remarksonerning the universal harater of the spae B(T ) viewed as a G-spaefor various G < Iso(T ). Let us reall some terminology.Let G be a Polish group. Any Borel spae U with a Borel measurableation a : G × U → U is alled a Borel G-spae. For two Borel G-spaes
U1, U2, we say that U1 is Borel embeddable into U2 if there is a Borel measur-able, one-to-one map π : U1 → U2 suh that π(g(x)) = g(π(x)) for every
g ∈ G and x ∈ U1. A Borel G-spae U is universal if any Borel G-spae Uan be Borel embedded into U .The following example of a universal Borel G-spae is given by H. Bekerand A. Kehris in [2℄. By F(G) we denote the standard Borel spae of losedsubsets of G with the E�ros Borel struture. It is proved in [2℄ that
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(F(G))N with the left ations of G by g(Fn)n∈ω = (gFn)n∈ω is auniversal Borel G-spae.Our observation onerns ations of pro�nite groups.Proposition 13. For any ountably based pro�nite group G, there is aloally �nite tree T and an isometri ation of G on T suh that the G-spae
B(T ) is a universal Borel G-spae.Proof. Let G be a ountably based pro�nite group. We want to showthat there is a loally �nite tree T and an isometri ation of G on T suhthat the universal Borel G-spae UG = (F(G))N with the left ation of Gan be Borel embedded into B(T ) with this ation.By Proposition 4.1.3 of [10℄, there is a hain of open normal subgroups
G = M0 ≥ M1 ≥ · · · suh that the set of all their osets forms a base of G.For every i ∈ N let ni = |G : Mi| and {Aij : j < 2ni} be any enumerationof the set of all unions of subfamilies of the family of osets of Mi. Let Tbe the spherially homogeneous tree suh that for every i > 1, any point atlevel i−1 has valeny 2ni +1 (the root has valeny 2n1). De�ne an isometriation of G on T as follows. Let g ∈ G. For s, s′ ∈ T (n) put g(s) = s′ i�
(∀i ≤ n)(gAis(i) = Ais′(i)).We now want to de�ne a G-embedding of (F(G))N into B(T ). First, toevery F ∈ F(G) and i ∈ N, we assign a natural number jiF < 2ni suh that
F ⊆ AijiF

and (∀j < 2ni)(F ⊆ Aij ⇒ AijiF
⊆ Aij). Also �x some f : N → Nsuh that for every natural i, we have i + 1 > f(i + 1) and the preimage

f−1[i] is in�nite.We de�ne an embedding π : (F(G))N → B(T ) as follows. For every
(Fi)i∈ω ∈ (F(G))N, we put
π((F0, F1, . . . , Fi, . . .)) = α i� α ∈ B(T ) and (∀i ∈ N)(α(i) = jiFf(i)

).It is lear that π is injetive. By a straightforward argument we see that forevery (Fi)i∈ω ∈ (F(G))N and g ∈ G,
π(g(F0, . . . , Fi, . . .)) = g(π(F0, . . . , Fi, . . .)).To prove π is a Borel map onsider preimages of basi open sets of theform (j1j2 . . . ji), where j1j2 . . . ji ∈ ∏

l≤i{0, 1, . . . , 2
nl − 1} for some naturalnumber i. We have

π−1[(j1j2 . . . ji)] = {(Fi)i∈ω ∈ (F(G))N :

(∀l ≤ i)((Ff(l) ⊆ Aljl
) ∧ (∀k < 2nl)(∅ 6= Alk ⊆ Aljl

⇒ Ff(l) ∩Alk 6= ∅))},whih is a Borel subset of (F(G))N.Our �nal observation does not onern losed subgroups of Iso(B). Itreveals a variety of di�erent ations of ountable subgroups of Iso(T ) on thespae B(T ). We transfer the example of S. Thomas of two inomparable



300 B. MAJCHER-IWANOWations of the same ountable group to our ontext. We need some moreterminology.Given two Borel equivalene relations E1, E2 on X1 and X2 respetively,we say that E1 is Borel reduible to E2 if there is a Borel measurable funtion
f : X1 → X2 suh that xE1 y ⇔ f(x)E2 f(y), for all x, y ∈ X1. We saythat E1 and E2 are inomparable if neither E1 is reduible to E2, nor E2 isreduible to E1.Let n ≥ 3 be some �xed odd integer, J ⊆ P be a non-empty subsetof primes and let {p1, p2, . . . , pi, . . .} be the inreasing enumeration of J .Put

K(J) =
∏

i∈N

SLn(Zpi
),where Zp is the ring of p-adi integers. The group SLn(Z) an be regardedas a subgroup of K(J) via the diagonal embedding. Then it naturally atson K(J) via left translations. Let EJ denote the orbit equivalene relationarising from that ation. In [9℄ S. Thomas has proved the following theo-rem.Let J1 6= J2 be two distint non-empty subsets of primes. Then EJ1and EJ2 are inomparable Borel equivalene relations.Observe that SLn(Zp) is a pro�nite group with respet to the anonialmaps πr : SLn(Zp) → SLn(Zp/p

r
Zp), r > 0, determined by applying thequotient maps Zp → Zp/p

r
Zp to eah matrix entry (see [10℄ for details). Thepro�nite topology on SLn(Zp) is given by the family of osets of open normalsubgroups

Kp
r = Ker(πr) = {g ∈ SLn(Zp) : g − 1 ∈ prSLn(Zp)}, r > 0.Then also K(J) is a pro�nite group endowed with a sequene K(J) = M0 >

M1 > · · · > Mi > · · · of open normal subgroups of the form
Mi = Kp1

i × · · · ×Kpi

i × SLn(Zpi+1) × SLn(Zpi+2) × · · · , i ∈ N,whose osets form a base of the topology on K(J).For every i > 0, let ni = |Mi−1 : Mi| and {gij : j < ni} be an enumer-ation of some transversal of the family of all osets of Mi in Mi−1. Thenwe have Mi−1 =
⋃

j<ni
gijMi and K(J) =

⋃
{g1j1g2j2 . . . giji

Mi : j1 < n1,
. . . , ji < ni}.Let T be a loally �nite spherially homogeneous rooted tree suh that forevery i>1 any vertex of level i−1 has valeny ni+1 (the root is of valeny n1).For every x ∈ K(J), every i ∈ N and l < i, there is exatly one jl(x) < nlsuh that x ∈ g1j1(x) . . . giji(x)Mi. Hene x = limi→∞ g1j1(x) . . . giji(x). Wede�ne π : K(J) → B(T ) by πJ(x) = limi→∞ j1(x) . . . ji(x).It is easily seen that π is a homeomorphism. Moreover, for every g ∈
SLn(Z) < K(J) there is exatly one ĝ ∈ Iso(T ) suh that πJ(g(x)) =
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ĝ(πJ(x)) for every x ∈ K(J). So, the funtion σJ : g → ĝ is an isomorphiembedding of SLn(Z) into Iso(T ). Denote by GJ the image of σJ . Then theequivalene relation arising from the ation of SLn(Z) on K(J) is isomorphito the equivalene relation arising from the ation of GJ on B(T ).Let J1 6= J2 be any non-empty subsets of primes. Then GJ1 and GJ2are isomorphi subgroups of Iso(T1) and Iso(T2) respetively. Aording toS. Thomas, the orresponding equivalene relations on B(T1) and B(T2) areinomparable.Thus, we have obtained the following variant of Thomas' theorem.Proposition 14. There are loally �nite rooted trees T1 and T2 and twoisomorphi �nitely generated subgroups G1 < Iso(T1), G2 < Iso(T2) suh thatthe orbit equivalene relations E1 and E2 arising from the isometry ationsof these groups on B(Ti) are inomparable with respet to Borel reduibility.
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