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ODD PERFECT NUMBERS OF A SPECIAL FORM

BY

TOMOHIRO YAMADA (Kyoto)

Abstract. We show that there is an effectively computable upper bound of odd
perfect numbers whose Euler factors are powers of fixed exponent.

1. Introduction. We denote by σ(N) the sum of divisors of N . We say
that N is perfect if σ(N) = 2N . Though it is not known whether or not an
odd perfect number exists, many conditions which must be satisfied by such
a number are known. Suppose N is an odd perfect number. Euler has shown
that N = pαq2β1

1 · · · q2βt

t for distinct odd primes p, q1, . . . , qt with p ≡ α ≡ 1
(mod4). Steuerwald [12] proved that we cannot have β1 = · · · = βt = 1.
McDaniel [8] proved that we cannot have β1 ≡ · · · ≡ βt ≡ 1 (mod3). If
β1 = · · · = βt = β, then it is known that β 6= 2 (Kanold [6]), β 6= 3
(Hagis and McDaniel [5]), β 6= 5, 12, 17, 24, 62 (McDaniel and Hagis [9]),
and β 6= 6, 8, 11, 14, 18 (Cohen and Williams [2]). In their paper [5], Hagis
and McDaniel conjecture that β1 = · · · = βt = β does not occur. We have
not been able to prove this conjecture. But we can prove that for any fixed β,
all of the odd perfect numbers N can be effectively determined. Our result
is as follows.

Theorem 1.1. Let β ≥ 1. If N = pαq2β
1 · · · q2β

t is an odd perfect number ,
then

(1) ω(N) ≤ 4β2 + 2β + 3

and

(2) N ≤ 244β2
+2β+3

.

2. Lemmas. Let us denote by vp(n) the solution e of pe ‖n. For distinct
primes p and q, we denote by oq(p) the exponent of p mod q and we define
aq(p) = vq(p

d − 1), where d = oq(p). Clearly oq(p) divides q − 1 and aq(p) is
a positive integer. Now we quote some elementary properties of vq(σ(px)).
Lemmas 2.1 and 2.2 are well known. Lemma 2.1 follows from Theorems 94
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and 95 in Nagell [10]. Lemma 2.2 has been proved by Zsigmondy [13] and
rediscovered by many authors such as Dickson [4] and Kanold [7].

Lemma 2.1. Let p, q be distinct primes with q 6= 2 and c be a positive

integer. If p ≡ 1 (mod q), then vq(σ(pc)) = vq(c + 1). Moreover , if p 6≡ 1
(mod q), then vq(σ(pc)) = aq(p)+vq(c+1) if oq(p) | (c+1) and vq(σ(pc)) = 0
otherwise.

Lemma 2.2. If a > b ≥ 1 are coprime integers, then an−bn has a prime

factor which does not divide am−bm for any m < n, unless (a, b, n) = (2, 1, 6)
or a − b = n = 1, or n = 2 and a + b is a power of 2.

By Lemma 2.2, we obtain the following lemmas.

Lemma 2.3. Suppose p is a prime and n is a positive integer. If d | (n+1),
d > 1 and (p, d) satisfies neither (p, d) = (2, 6) nor (p, d) = (2m − 1, 2) for

some integer m, then there exists a prime q with oq(p) = d and q |σ(pn).

Proof. We can apply Lemma 2.2 with (a, b) = (p, 1) and we see that
there exists a prime p such that op(q) = d. Furthermore, q does not divide
p − 1 since op(q) = d > 1. On the other hand, q divides pn+1 − 1 since
1 < d | (n + 1). Hence q |σ(pn).

Lemma 2.4. If p is a prime and n is a positive integer , then ω(σ(pn)) ≥
τ(n + 1)− 1 unless p = 2 and n ≡ 5 (mod6), or p is a Mersenne prime and

n is odd.

Proof. If d | (n + 1) and d 6= 1, then (p, n, d) satisfies the condition of
Lemma 2.3. Hence σ(pn) has a prime factor qd satisfying op(qd) = d. Thus
we have ω(σ(pn)) ≥ #{d : d | (n + 1), d > 1} = d(n + 1) − 1.

The following is Lemma 2 of Danpat, Hunsucker and Pomerance [3].

Lemma 2.5. If p, q are distinct primes with q 6= 2 satisfying σ(qx) = py

for some positive integers x, y, then p ≡ 1 (mod q) or aq(p) = 1.

From this lemma and Lemma 2.1, we immediately deduce the following
result.

Lemma 2.6. Let p, q be distinct primes satisfying the condition of Lem-

ma 2.5 and qf |σ(pe). Then qf−1oq(p) divides e + 1.

Proof. By Lemma 2.5, p ≡ 1 (mod q) or aq(p) = 1. If p ≡ 1 (mod q),
then qf |σ(pe) implies qf = qfoq(p) | (e + 1) by Lemma 2.1. If aq(p) = 1,
then oq(p) | (e+1) and vq(e+1) ≥ f −aq(p) = f − 1 by Lemma 2.1. In both
cases, qf−1oq(p) divides e + 1.

Moreover, we quote a result of Kanold [6].
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Lemma 2.7. Let N = pαq2β1

1 · · · q2βr
r be an odd perfect number and l be

a common divisor of 2β1 + 1, . . . , 2βr + 1. Then l4 |N . Moreover , if l is a

power of a prime q, then p 6= q.

3. Proof of Theorem 1.1. Let N = pαq2β
1 · · · q2β

r be an odd perfect
number.

First assume that 2β + 1 = lγ , where l is a prime and γ is a positive
integer. Various results recalled in the Introduction allow us to assume that
β ≥ 8 without loss of generality.

By Lemma 2.7, p 6= l and l4γ divides N . Hence l = qi0 for some i0 and
vl(N) = 2β. We divide q1, . . . , qr into four disjoint sets. Let

S = {i : qi ≡ 1 (mod l)},

T = {i : qi 6≡ 1 (mod l), i 6= i0, qj |σ(q2β
i ) for some 1 ≤ j ≤ r},

U = {i : qi 6≡ 1 (mod l), i 6= i0, qj ∤ σ(q2β
i ) for any 1 ≤ j ≤ r}.

Then i ∈ S ∪ T ∪ U ∪ {i0} and thus we have

(3) r ≤ #S + #T + #U + 1.

Lemma 3.1.
#S ≤ 2β.

Proof. For i ∈ S, we have l | σ(q2β
i ) by Lemma 2.1. Hence

#S ≤ vl

(

∏

i∈S

σ(q2β
i )

)

≤ vl(2N) = vl(N) = 2β.

Lemma 3.2.
#T ≤ (2β)2.

Proof. If i ∈ T , then qj | σ(q2β
i ) for some j ∈ S. Hence

∑

j∈S vqj
(σ(q2β

i ))
≥ 1 for i ∈ T . By Lemma 3.1 we have

#T ≤
∑

i∈T

∑

j∈S

vqj
(σ(q2β

i )) =
∑

j∈S

vqj

(

∏

i∈T

σ(q2β
i )

)

≤
∑

j∈S

vqj
(2N) =

∑

j∈S

vqj
(N) ≤ (2β)2.

Lemma 3.3.
#U ≤ 1.

Proof. If i ∈ U and q is a prime dividing σ(q2β
i ), then q = p since q | 2N ,

σ(q2β
i ) is odd, and q 6= qj for any j. Thus σ(q2β

i ) = pζi for some positive
integer ζi.

We shall show q2β
i |σ(pα). If qi divides σ(q2β

j ) for some j, then qi divides
2β + 1 = lγ or 1 < oqi

(qj) | (2β + 1) = lγ by Lemma 2.1. The former case
cannot occur since qi 6= qi0 = l. If 1 < oqi

(qj) | (2β +1) = lγ , then oqi
(p) = lt
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for some integer t > 0 and therefore qi ≡ 1 (mod l), which is inconsistent with

the assumption qi ∈ U . Since q2β
i |N |σ(N), we conclude that q2β

i |σ(pα).
We can apply Lemma 2.6 with (q, f, e) = (qi, 2β, α) and deduce that

q2β−1
i divides (α + 1)/2 since qi is odd and α ≡ 1 (mod4). Hence (α + 1)/2

must be divisible by
∏

i∈U q2β−1
i and therefore d(α + 1) ≥ 2(2β)#U . By

Lemma 2.4, we have ω(σ(pα)) ≥ 2(2β)#U − 1.
On the other hand, we have ω(σ(pα)) ≤ ω(N)+1 since σ(pα) | 2N . Thus,

from Lemmas 3.1 and 3.2 we obtain

2(2β)#U − 1 ≤ ω(N) + 1 ≤ #S + #T + #U + 3 ≤ #U + (2β)2 + 2β + 3.

Since #U ≤ (2β)#U−1 ≤ (2β)#U/16 by the assumption that β ≥ 8, we have

(4)
31

16
(2β)#U ≤ 2(2β)#U − #U ≤ (2β)2 + 2β + 4 ≤

21

16
(2β)2,

and therefore #U ≤ 1.

By Lemmas 3.1–3.3 and by (3), we have ω(N) ≤ r + 1 ≤ 4β2 + 2β + 3,
which is the desired result.

Next we assume that 2β + 1 = lγ1

1 lγ2

2 · · · lγs
s with s ≥ 2, where l1, . . . , ls

are distinct primes. By Lemma 2.7, l4γi

i divides N for each i. This clearly
implies that there are at least s − 1 primes among the li’s each of which is
equal to qj for some j. Hence we may assume that li = qi for i = 1, . . . , s−1.

Let S = {i : qi ≡ 1 (mod l1)}. As in the prime-power case, we derive that

#S ≤ 2β. By Lemma 2.4, each σ(q2β
j ) has at least one prime factor q with

oq(qj) = d for any d > 1 dividing 2β + 1. If we denote by w the number of
divisors of 2β+1 divisible by l1, then w = γ1(γ2+1) · · · (γs+1) ≥ 2s−1. Thus

each σ(q2β
j ) has at least 2s−1 − 1 prime factors ≡ 1 (mod l1) and different

from p, namely, belonging to S.
Hence we conclude that r ≤ 2β#S/(2s−1 − 1) ≤ (2β)2 and therefore

ω(N) ≤ 4β2 + 1, which is more than we desired. This completes the proof
of the first part of Theorem 1.1.

To obtain the second part of our theorem it remains to apply the result
of Nielsen [11], who has shown that M ≤ (d + 1)4

l
for any positive integer

n, d, M, l satisfying σ(M)/M = n/d and ω(M) = l.
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