VOL. 126

2012

NO. 1

FINITE GROUPS OF OTP PROJECTIVE REPRESENTATION TYPE

ΒY

LEONID F. BARANNYK (Słupsk)

Abstract. Let K be a field of characteristic p > 0, K^* the multiplicative group of K and $G = G_p \times B$ a finite group, where G_p is a p-group and B is a p'-group. Denote by $K^{\lambda}G$ a twisted group algebra of G over K with a 2-cocycle $\lambda \in Z^2(G, K^*)$. We give necessary and sufficient conditions for G to be of OTP projective K-representation type, in the sense that there exists a cocycle $\lambda \in Z^2(G, K^*)$ such that every indecomposable $K^{\lambda}G$ -module is isomorphic to the outer tensor product V # W of an indecomposable $K^{\lambda}G_p$ -module V and a simple $K^{\lambda}B$ -module W. We also exhibit finite groups $G = G_p \times B$ such that, for any $\lambda \in Z^2(G, K^*)$, every indecomposable $K^{\lambda}G$ -module satisfies this condition.

0. Introduction. Let K be a field of characteristic p > 0 and $G = G_p \times B$ a finite group, where G_p is a Sylow p-subgroup and $|G_p| > 1$, |B| > 1. Given $\mu \in Z^2(G_p, K^*)$ and $\nu \in Z^2(B, K^*)$, the map $\mu \times \nu \colon G \times G \to K^*$ defined by

$$(\mu \times \nu)_{x_1 b_1, x_2 b_2} = \mu_{x_1, x_2} \cdot \nu_{b_1, b_2},$$

for all $x_1, x_2 \in G_p$, $b_1, b_2 \in B$, belongs to $Z^2(G, K^*)$. Every cocycle $\lambda \in Z^2(G, K^*)$ is cohomologous to $\mu \times \nu$, where μ is the restriction of λ to $G_p \times G_p$ and ν is the restriction of λ to $B \times B$.

From now on, we suppose that each cocycle $\lambda \in Z^2(G, K^*)$ under consideration satisfies the condition $\lambda = \mu \times \nu$, and all $K^{\lambda}G$ -modules are assumed to be left and finite-dimensional (as vector spaces over K).

Let $\lambda = \mu \times \nu \in Z^2(G, K^*)$ and $\{u_g : g \in G\}$ be a canonical K-basis of $K^{\lambda}G$. Then $\{u_h : h \in G_p\}$ is a canonical K-basis of $K^{\mu}G_p$ and $\{u_b : b \in B\}$ is a canonical K-basis of $K^{\nu}B$. Moreover, if g = hb, where $g \in G$, $h \in G_p$, $b \in B$, then $u_q = u_h u_b = u_b u_h$. It follows that $K^{\lambda}G \cong K^{\mu}G_p \otimes_K K^{\nu}B$.

Given a $K^{\mu}G_{p}$ -module V and a $K^{\nu}B$ -module W, we denote by V # Wthe $K^{\lambda}G$ -module whose underlying vector space is $V \otimes_{K} W$ with the $K^{\lambda}G$ module structure given by

$$u_{hb}(v\otimes w)=u_hv\otimes u_bw,$$

for all $h \in G_p$, $b \in B$, $v \in V$, $w \in W$, and extended to $K^{\lambda}G$ and $V \otimes_K W$

²⁰¹⁰ Mathematics Subject Classification: Primary 16G60; Secondary 20C20, 20C25.

Key words and phrases: modular representation, outer tensor product, projective representation, representation type, twisted group algebra.

by K-linearity. The module V # W is called the *outer tensor product* of V and W (see [21, p. 122]).

We recall from [7, p. 10] the following definitions.

- (a) The algebra $K^{\lambda}G$ is defined to be of *OTP representation type* if every indecomposable $K^{\lambda}G$ -module is isomorphic to the outer tensor product V # W, where V is an indecomposable $K^{\mu}G_{p}$ -module and W is a simple $K^{\nu}B$ -module.
- (b) A group $G = G_p \times B$ is defined to be of *OTP projective K-representa*tion type if there exists a cocycle $\lambda \in Z^2(G, K^*)$ such that the algebra $K^{\lambda}G$ is of OTP representation type.
- (c) A group $G = G_p \times B$ is said to be of *purely OTP projective K*representation type if $K^{\lambda}G$ is of OTP representation type for any $\lambda \in Z^2(G, K^*)$.

In [13] Brauer and Feit proved that if K is algebraically closed, then the group algebra KG is of OTP representation type. Blau [10] and Gudyvok [17, 18] have independently shown that if K is an arbitrary field, then KG is of OTP representation type if and only if G_p is cyclic or K is a splitting field for B. Gudyvok [19, 20] also investigated a similar problem for group rings SG, where S is a complete discrete valuation ring. In [3, 6], the results of Blau and Gudyvok are generalized to the twisted group rings $S^{\lambda}G$, where $G = G_p \times B$, S = K or S is a complete discrete valuation ring of characteristic p > 0. Let S = K[[X]] be the ring of formal power series in the indeterminate X with coefficients in the field K. In [7], necessary and sufficient conditions on G and K are given for G to be of OTP projective S-representation type.

In the present work we determine finite groups $G = G_p \times B$ of OTP projective K-representation type and of purely OTP projective K-representation type.

Denote by l_B the product of all pairwise distinct prime divisors of |B|. Unless stated otherwise, we assume that if G_p is non-abelian, then $[K(\varepsilon): K]$ is not divisible by p, where ε is a primitive l_B th root of 1. This condition is satisfied if K contains a primitive qth root of 1 for every prime q dividing |B| such that the characteristic p divides q - 1. For simplicity of presentation, we set

$$i(K) = \begin{cases} t & \text{if } [K:K^p] = p^t, \\ \infty & \text{if } [K:K^p] = \infty. \end{cases}$$

Let s be the number of invariants of the abelian group G_p/G'_p , and D the subgroup of G_p such that $G'_p \subset D$ and $D/G'_p = \operatorname{soc}(G_p/G'_p)$. Suppose that if $p \neq 2$, s = i(K) + 1, G'_p is cyclic and D is a non-abelian group of exponent p, then $|D: Z(D)| = p^2$, where Z(D) is the center of D. We prove in Theorem 3.1 that the group $G = G_p \times B$ is of OTP projective K-representation type if and only if one of the following three conditions is satisfied:

- (i) $s \leq i(K)$ and G'_p is cyclic;
- (ii) s = i(K) + 1, G'_p is cyclic and there exists a cyclic subgroup T of G_p such that $G'_p \subset T$ and G_p/T has i(K) invariants;
- (iii) K is a splitting field for $K^{\nu}B$ for some $\nu \in Z^2(B, K^*)$.

We also prove in Proposition 3.6 that if $G = G_p \times B$ is abelian, then G is of OTP projective K-representation type if and only if one of the following conditions is satisfied:

- (i) $s \le i(K) + 1;$
- (ii) B has a subgroup H such that B/H is of symmetric type and K contains a primitive mth root of 1, where $m = \max\{\exp(B/H), \exp H\}$.

Now suppose that K is an arbitrary field of characteristic p. We establish in Proposition 3.11 that if every prime divisor of |B'| is also a divisor of |B : B'|, then $G = G_p \times B$ is of purely OTP projective K-representation type if and only if either G_p is cyclic, or $K = K^q$ and K contains a primitive qth root of 1, for each prime q dividing |B|.

In the general case, a finite group $G = G_p \times B$ is of purely OTP projective *K*-representation type if and only if either G_p is cyclic, or there exists a finite central group extension $1 \to A \to \widehat{B} \to B \to 1$ such that any projective *K*representation of *B* lifts projectively to an ordinary *K*-representation of \widehat{B} and *K* is a splitting field for \widehat{B} (Theorem 3.12).

Let $t(K^*)$ denote the torsion subgroup of the multiplicative group K^* of K. Assume that either $t(K^*) = t(K^*)^q$ for every prime q dividing |B'|, or every prime divisor of |B'| is also a divisor of |B : B'|. Then G is of purely OTP projective K-representation type if and only if either G_p is cyclic, or there exists a covering group \widehat{B} of B over K such that K is a splitting field for \widehat{B} (Proposition 3.13).

1. Preliminaries. Throughout the paper, we use the standard group representation theory notation and terminology introduced in the monographs by Alperin [1], Benson [9], Curtis and Reiner [14], and Karpilovsky [21, 22]. The books by Karpilovsky give a systematic account of the projective representation theory. For classical problems and solutions of group representation theory, we refer to [1, 9, 14] and to the old and nice papers [11, 12]. A background of the representation theory of finite-dimensional algebras can be found in the monographs by Assem, Simson and Skowroński [2], Drozd and Kirichenko [16], Simson [23], and Simson and Skowroński [24], where among other things the representation types (finite, tame, wild) of finite groups and algebras are discussed.

In particular, we use the following notation: $p \ge 2$ is a prime; K is a field of characteristic $p, K^q = \{\alpha^q : \alpha \in K\}; K^*$ is the multiplicative group of K; $t(K^*)$ is the torsion subgroup of K^* ; $o(\xi)$ is the order of $\xi \in t(K^*)$; $G = G_p \times B$ is a finite group, where G_p is a p-group, B is a p'-group, $|G_p| > 1$ and |B| > 1; H' is the commutant of a group H, Z(H) is the center of H, e is the identity element of H, |h| is the order of $h \in H$ and $\exp H$ is the exponent of H; soc A is the socle of an abelian group A. Let l_B be the product of all pairwise distinct prime divisors of |B|. Unless stated otherwise, we assume that if G_p is non-abelian, then $[K(\varepsilon) : K]$ is not divisible by p, where ε is a primitive l_B th root of 1. It is not difficult to see that $[K(\varepsilon):K]$ is not divisible by p if and only if $[K(\xi) : K]$ is not divisible by p, where ξ is a primitive (exp B)th root of 1. Given $\lambda \in Z^2(H, K^*)$, $K^{\lambda}H$ denotes the twisted group algebra of a group H over K with a 2-cocycle λ , and rad $K^{\lambda}H$ the radical of $K^{\lambda}H$. A K-basis $\{u_h : h \in H\}$ of $K^{\lambda}H$ satisfying $u_a u_b = \lambda_{a,b} u_{ab}$ for all $a, b \in H$ is called *canonical* (corresponding to λ). If D is a subgroup of a group H, the restriction of $\lambda \in Z^2(H, K^*)$ to $D \times D$ is also denoted by λ . In this case, $K^{\lambda}D$ is a subalgebra of $K^{\lambda}H$.

Throughout this paper we assume that all cocycle groups are defined with respect to the trivial action of the underlying group on K^* . By Theorem 4.7 in [21, p. 40], the embedding $t(K^*) \to K^*$ induces an injective homomorphism

$$H^2(B, t(K^*)) \to H^2(B, K^*).$$

We shall identify $H^2(B, t(K^*))$ with the subgroup of $H^2(B, K^*)$ which consists of all cohomology classes containing cocycles of finite order.

Given $\mu \in Z^2(G_p, K^*)$, the kernel $\operatorname{Ker}(\mu)$ of μ is the union of all cyclic subgroups $\langle g \rangle$ of G_p such that the restriction of μ to $\langle g \rangle \times \langle g \rangle$ is a coboundary. We recall from [4, p. 196] that $G'_p \subset \operatorname{Ker}(\mu)$, $\operatorname{Ker}(\mu)$ is a normal subgroup of G_p and the restriction of μ to $\operatorname{Ker}(\mu) \times \operatorname{Ker}(\mu)$ is a coboundary.

Let M be a finite group, N a normal subgroup of M and T = M/N. Given $\mu \in Z^2(T, K^*)$, denote by $\inf(\mu)$ (see [21, p. 14]) the element of $Z^2(M, K^*)$ defined by

$$\inf(\mu)_{a,b} = \mu_{aN,bN}$$
 for all $a, b \in M$.

We have $\inf(\mu)_{x,y} = 1$ for all $x, y \in N$. Therefore

$$K^{\inf(\mu)}N = KN.$$

Let $\lambda = \inf(\mu)$, $\{v_{aN} : a \in M\}$ be a canonical K-basis of $K^{\mu}T$ corresponding to μ , and $\{u_a : a \in M\}$ a canonical K-basis of $K^{\lambda}M$ corresponding to λ . The formula

$$f\left(\sum_{a\in M}\alpha_a u_a\right) = \sum_{a\in M}\alpha_a v_{aN}$$

defines a K-algebra epimorphism $f: K^{\lambda}M \to K^{\mu}T$ with the kernel U:=

 $K^{\lambda}M \cdot I(N)$, where I(N) is the augmentation ideal of the group algebra KN (see [21, p. 88]). Hence $K^{\lambda}M/U \cong K^{\mu}T$. We recall that

$$I(N) = \bigoplus_{x \in N \setminus \{e\}} K(u_x - u_e).$$

Assume that N and M are groups. An *extension* of N by M is a short exact sequence of groups

$$E: 1 \xrightarrow{\varphi} N \to \widehat{M} \to M \to 1.$$

If $\varphi(N)$ is contained in the center of \widehat{M} , then E is called a *central extension*. If N and M are finite groups, then E is a *finite extension*.

Let V be a finite-dimensional vector space over K, GL(V) the group of all automorphisms of V, 1_V the identity automorphism of V, M a finite group, and let

$$1 \to N \to \widehat{M} \xrightarrow{\psi} M \to 1$$

be a finite central group extension. Denote by $\pi : \operatorname{GL}(V) \to \operatorname{GL}(V)/K^* 1_V$ the canonical group epimorphism. Assume that Γ is an ordinary K-representation of \widehat{M} in V with $\Gamma(x) \in K^* 1_V$ for any $x \in N$. There exists a projective K-representation Δ of M in V such that the diagram

is commutative. We say that Δ lifts projectively to the ordinary K-representation Γ of \widehat{M} . If $|N| = |H^2(M, K^*)|$ and any projective K-representation of M lifts projectively to an ordinary K-representation of \widehat{M} , then \widehat{M} is called a covering group of M over K [21, p. 138].

We recall that, for any cocycle $\lambda \in Z^2(G_p, K^*)$, the quotient algebra $K^{\lambda}G_p/\operatorname{rad} K^{\lambda}G_p$ is K-isomorphic to a field that is a finite purely inseparable field extension of K [21, p. 74]. We call $K^{\lambda}G_p$ uniserial if the left regular and the right regular $K^{\lambda}G_p$ -modules have a unique composition series. It should be noted that some authors use the terminology "uniserial algebra" to mean principal ideal algebras [16, p. 171] and serial algebras (see [15, p. 505] and [16, p. 175]) that are Nakayama algebras [2, p. 168]. By the Morita theorem in [15, p. 507], the algebra $K^{\lambda}G_p$ is uniserial if and only if rad $K^{\lambda}G_p = K^{\lambda}G_p \cdot v = v \cdot K^{\lambda}G_p$ for some $v \in K^{\lambda}G_p$. By [16, p. 170], the algebra $K^{\lambda}G_p$ is uniserial if and only if rad $K^{\lambda}G_p$.

We say that an algebra $K^{\lambda}G_p$ satisfies the *Q*-condition if there exists a K-algebra epimorphism $K^{\lambda}G_p \to K^{\mu}T$, where T is a p-group and T contains an abelian subgroup A such that $K^{\mu}A$ is not a uniserial algebra.

The following four facts are proved in [6].

LEMMA 1.1. Let K be an arbitrary field of characteristic $p, G = G_p \times B$, $\mu \in Z^2(G_p, K^*), \nu \in Z^2(B, K^*)$ and $\lambda = \mu \times \nu$. If $K^{\mu}G_p$ is a uniserial algebra or K is a splitting field for $K^{\nu}B$, then $K^{\lambda}G$ is of OTP representation type.

LEMMA 1.2. Let $G = G_p \times B$, $\mu \in Z^2(G_p, K^*)$, $\nu \in Z^2(B, K^*)$, $\lambda = \mu \times \nu$ and assume that $K^{\mu}G_p$ satisfies the Q-condition. The algebra $K^{\lambda}G$ is of OTP representation type if and only if K is a splitting field for $K^{\nu}B$.

THEOREM 1.3. Let $G = G_p \times B$, $\mu \in Z^2(G_p, K^*)$, $\nu \in Z^2(B, K^*)$, $\lambda = \mu \times \nu$ and $d = \dim_K(K^{\mu}G_p/\operatorname{rad} K^{\mu}G_p)$. Denote by D the subgroup of G_p such that $G'_p \subset D$ and $D/G'_p = \operatorname{soc}(G_p/G'_p)$. Assume that if $K^{\mu}G_p$ is not uniserial, $pd = |G_p : G'_p|$ and $|G'_p| = p$, then $\operatorname{Ker}(\mu) \neq G'_p$ or $|D : Z(D)| \in \{1, p^2\}$. The K-algebra $K^{\lambda}G$ is of OTP representation type if and only if either $K^{\mu}G_p$ is uniserial, or K is a splitting field for $K^{\nu}B$.

PROPOSITION 1.4. Let K be an arbitrary field of characteristic $p, G = G_p \times B, \nu \in Z^2(B, K^*)$ and $K^{\lambda}G = KG_p \otimes_K K^{\nu}B$. The K-algebra $K^{\lambda}G$ is of OTP representation type if and only if either G_p is cyclic, or K is a splitting field for $K^{\nu}B$.

2. On splitting fields for twisted group algebras. We say that an abelian group is of *symmetric type* if it can be decomposed into a direct product of two isomorphic subgroups.

Let G be an abelian group, F an arbitrary field, $\lambda \in Z^2(G, F^*)$, $\{u_g : g \in G\}$ a canonical F-basis of $F^{\lambda}G$ corresponding to λ , Z the center of $F^{\lambda}G$ and $H = \{h \in G : u_h \in Z\}$. Then H is a subgroup of G and $Z = F^{\lambda}H$. Obviously

$$H = \{ h \in G : \lambda_{h,q} = \lambda_{q,h} \text{ for any } g \in G \}.$$

We call H the λ -center of G.

PROPOSITION 2.1. Let G be abelian, $\lambda \in Z^2(G, F^*)$, H the λ -center of G, $\overline{G} = G/H$ and $\overline{x} = xH$ for any $x \in G$. Assume that $G \neq H$.

(i) The algebra $F^{\lambda}G$ may be viewed as a twisted group ring $Z^{\overline{\lambda}}\overline{G}$ of \overline{G} over the ring $Z = F^{\lambda}H$. Moreover

$$\bar{\lambda}_{\bar{x},\bar{y}} \cdot \bar{\lambda}_{\bar{y},\bar{x}}^{-1} \in t(F^*) \quad \text{for all } x, y \in G.$$

(ii) There exists a direct product decomposition $\overline{G} = \overline{C}_1 \times \cdots \times \overline{C}_s$ such that $\overline{C}_i = \langle \overline{a}_i \rangle \times \langle \overline{b}_i \rangle$ is a q_i -group of type $(q_i^{n_i}, q_i^{n_i})$,

$$Z^{\overline{\lambda}}\overline{G} \cong Z^{\overline{\lambda}}\overline{C}_1 \otimes_Z \dots \otimes_Z Z^{\overline{\lambda}}\overline{C}_s$$

and

(2.1)
$$Z^{\overline{\lambda}}\overline{C}_{i} = \bigoplus_{j,k=0}^{q_{i}^{n_{i}}-1} Zv_{\overline{a}_{i}}^{j}v_{\overline{b}_{i}}^{k}$$

with

$$v_{\bar{a}_i}^{q_i^{n_i}} = \alpha_i v_{\bar{e}}, \quad v_{\bar{b}_i}^{q_i^{n_i}} = \beta_i v_{\bar{e}}, \quad v_{\bar{a}_i} v_{\bar{b}_i} = \varepsilon_i v_{\bar{b}_i} v_{\bar{a}_i}$$

where $\alpha_i, \beta_i \in Z, \varepsilon_i \in t(F^*)$ and $o(\varepsilon_i) = q_i^{n_i}$ for every $i \in \{1, \ldots, s\}$. (iii) \overline{G} is a group of symmetric type and F contains a primitive mth root of 1, where $m = \exp \overline{G}$.

Proof. Let $\{g_1, \ldots, g_r\}$ be a cross section of H in G and $g_1 = e$. Then $F^{\lambda}G = Zu_{q_1} \oplus \cdots \oplus Zu_{q_r}.$

Put $v_{\bar{g}_i} = u_{g_i}$ for every $i \in \{1, \ldots, r\}$. The algebra $F^{\lambda}G$ may be viewed as a twisted group ring $Z^{\bar{\lambda}}\overline{G}$ of the group \overline{G} over the ring Z with a canonical Z-basis $v_{\bar{g}_1}, \ldots, v_{\bar{g}_r}$. For any $x, y \in G$ we have $v_{\bar{x}}v_{\bar{y}} = \xi v_{\bar{y}}v_{\bar{x}}$, where $\xi \in t(F^*)$. The ring Z is the center of $Z^{\bar{\lambda}}\overline{G}$. We also have

$$Z^{\overline{\lambda}}\overline{G}\cong Z^{\overline{\lambda}}\overline{G}_{q_1}\otimes_Z\cdots\otimes_Z Z^{\overline{\lambda}}\overline{G}_{q_k},$$

where \overline{G}_{q_i} is the Sylow q_i -subgroup of \overline{G} for each $i \in \{1, \ldots, k\}$.

Let q be a prime and $\overline{G}_q = \langle \overline{x}_1 \rangle \times \cdots \times \langle \overline{x}_t \rangle$ be a Sylow q-subgroup of \overline{G} . Assume that $|\overline{x}_j| = q^{m_j}$ and $m_1 \geq \cdots \geq m_t$. The set

$$\{v_{\bar{x}_1}^{k_1} \dots v_{\bar{x}_t}^{k_t} : k_i = 0, 1, \dots, q^{m_i} - 1 \text{ for every } i \in \{1, \dots, t\}\}$$

is a Z-basis of the algebra $Z^{\overline{\lambda}}\overline{G}_q$. We have

$$v_{\bar{x}_1}v_{\bar{x}_j} = \xi_j v_{\bar{x}_j} v_{\bar{x}_1}$$

for any $j \in \{2, \ldots, t\}$, where $\xi_j \in F^*$ and $o(\xi_j) \leq q^{m_j}$. If $m_1 > m_2$, then $v_{\bar{x}_1}^{q^{m_2}} \neq v_{\bar{e}}$ and $v_{\bar{x}_1}^{q^{m_2}}$ belongs to the center of $Z^{\bar{\lambda}}\overline{G}$. Hence there exists an \bar{x}_{j_0} such that $|\bar{x}_{j_0}| = q^{m_1}$ and $o(\xi_{j_0}) = q^{m_1}$. Let $j_0 = 2$ and $\xi = \xi_2$. We have

$$v_{\bar{x}_1}v_{\bar{x}_2} = \xi v_{\bar{x}_2}v_{\bar{x}_1}, \quad v_{\bar{x}_i}v_{\bar{x}_j} = \xi^{\gamma_{ij}}v_{\bar{x}_j}v_{\bar{x}_j}$$

for all i, j, where $0 \leq \gamma_{ij} < q^{m_1}$ and $o(\xi^{\gamma_{ij}}) \leq \max\{|\bar{x}_i|, |\bar{x}_j|\}$ for all $i, j \in \{1, \ldots, t\}$.

Let
$$\bar{y}_1 = \bar{x}_1, \, \bar{y}_2 = \bar{x}_2, \, \bar{y}_3 = \bar{x}_1^{\alpha_{31}} \bar{x}_2^{\alpha_{32}} \bar{x}_3, \dots, \, \bar{y}_t = \bar{x}_1^{\alpha_{t1}} \bar{x}_2^{\alpha_{t2}} \bar{x}_t \text{ and}$$

 $w_{\bar{y}_1} = v_{\bar{x}_1}, \quad w_{\bar{y}_2} = v_{\bar{x}_2}, \quad w_{\bar{y}_3} = v_{\bar{x}_1}^{\alpha_{31}} v_{\bar{x}_2}^{\alpha_{32}} v_{\bar{x}_3}, \quad \dots, \quad w_{\bar{y}_t} = v_{\bar{x}_1}^{\alpha_{t1}} v_{\bar{x}_2}^{\alpha_{t2}} v_{\bar{x}_t},$ where

 $\alpha_{j1} = \gamma_{2j}, \quad \alpha_{j2} = q^{m_1} - \gamma_{1j}$

for every $j \in \{3, \ldots, t\}$. Then

 $w_{\bar{y}_1}w_{\bar{y}_j} = w_{\bar{y}_j}w_{\bar{y}_1}, \quad w_{\bar{y}_2}w_{\bar{y}_j} = w_{\bar{y}_j}w_{\bar{y}_2}$

for every $j \in \{3, \ldots, t\}$, and $\overline{G}_q = \langle \overline{y}_1 \rangle \times \cdots \times \langle \overline{y}_t \rangle$. Therefore $Z^{\overline{\lambda}}\overline{G}_q \cong Z^{\overline{\lambda}}\overline{G}_q^{(1)} \otimes_Z Z^{\overline{\lambda}}\overline{G}_q^{(2)}$, where $\overline{G}_q^{(1)} = \langle \overline{y}_1 \rangle \times \langle \overline{y}_2 \rangle$, $\overline{G}_q^{(2)} = \langle \overline{y}_3 \rangle \times \cdots \times \langle \overline{y}_t \rangle$ and $Z^{\overline{\lambda}} \overline{G}_q^{(2)}$ is Z-central. By induction on t, we conclude that

$$Z^{\bar{\lambda}}\overline{G}_q \cong Z^{\bar{\lambda}}\overline{D}_1 \otimes_Z \cdots \otimes_Z Z^{\bar{\lambda}}\overline{D}_{s_q},$$

where \overline{D}_j is a q-group of type (q^{k_j}, q^{k_j}) and $Z^{\overline{\lambda}}\overline{D}_j$ is a central Z-algebra of the form (2.1), for any $j \in \{1, \ldots, s_q\}$.

The group \overline{G}_q is of symmetric type. Hence \overline{G} is a group of symmetric type. The field F contains a primitive m_q th root of 1, where $m_q = \exp \overline{G}_q$. It follows that F contains a primitive mth root of 1, where $m = \exp \overline{G}$.

We note that Proposition 2.1 is a generalization of Theorem 2.12 in [22, p. 375]. From Proposition 2.1 one can also deduce Corollary 1.12 in [22, p. 368].

PROPOSITION 2.2. Let B be an abelian p'-group, $\lambda \in Z^2(B, K^*)$, H the λ -center of B and $\overline{B} = B/H$. Assume that K is a splitting field for $K^{\lambda}B$.

- (i) The field K contains a primitive (exp H)th root of 1, and there exists μ ∈ Z²(B, K*) such that λ is cohomologous to inf(μ).
- (ii) The algebra $K^{\lambda}B$ is K-algebra isomorphic to $K^{\mu_1}\overline{B} \times \cdots \times K^{\mu_l}\overline{B}$, where l = |H|, $\mu_1 = \mu$ and $K^{\mu_i}\overline{B}$ is K-algebra isomorphic to $\mathbb{M}_n(K)$, $n^2 = |\overline{B}|$, for every $i \in \{1, \ldots, l\}$.

Proof. (i) K is a splitting field for $Z = K^{\lambda}H$. It follows that the restriction of λ to $H \times H$ is a coboundary and K contains a primitive $(\exp H)$ th root of 1. The algebra $K^{\lambda}H$ is isomorphic to KH. We may assume that $K^{\lambda}H = KH$. Denote by I(H) the augmentation ideal of KH. By Lemma 5.5 in [21, p. 91], $K^{\lambda}B/K^{\lambda}B \cdot I(H) \cong K^{\mu}\overline{B}$ for some $\mu \in Z^2(\overline{B}, K^*)$ such that λ is cohomologous to $\inf(\mu)$.

(ii) Let l = |H|, e_1, \ldots, e_l be a complete system of primitive pairwise orthogonal idempotents of Z and $u_h e_1 = e_1$ for any $h \in H$. Then Ze_i is K-algebra isomorphic to K and, by Proposition 2.1,

$$K^{\lambda}Be_i \cong (Ze_i)^{\sigma_i}\overline{B} \cong K^{\mu_i}\overline{B}$$

for every $i \in \{1, \ldots, l\}$. Moreover, $K^{\mu_1}\overline{B} \cong K^{\mu}\overline{B}$, $K^{\mu_i}\overline{B}$ is a central Kalgebra and K is a splitting field for $K^{\mu_i}\overline{B}$ for each *i*. Hence $K^{\mu_i}\overline{B}$ is Kalgebra isomorphic to $\mathbb{M}_n(K)$, $n^2 = |\overline{B}|$, for every $i \in \{1, \ldots, l\}$.

LEMMA 2.3. Let B be an abelian p'-group of symmetric type. Assume that the field K contains a primitive $(\exp B)$ th root of 1. Then there exists a cocycle $\mu \in Z^2(B, t(K^*))$ such that $K^{\mu}B \cong \mathbb{M}_n(K)$, where $n^2 = |B|$.

Proof. We may suppose that B is an abelian q-group of type (q^r, q^r) , where $q \neq p$. Let ξ be a primitive q^r th root of 1, F a finite subfield of K

which contains ξ , $B = \langle x \rangle \times \langle y \rangle$ and

$$F^{\mu}B = \bigoplus_{i,j=0}^{q^{r}-1} Fu_{x}^{i}u_{y}^{j}, \quad u_{x}^{q^{r}} = u_{e}, \quad u_{y}^{q^{r}} = u_{e}, \quad u_{x}u_{y} = \xi u_{y}u_{x}.$$

The *F*-algebra $F^{\mu}B$ is central. Since a finite division algebra is a field, $F^{\mu}B$ is *F*-algebra isomorphic to $\mathbb{M}_n(F)$, where $n = q^r$. It follows that the *K*-algebra $K^{\mu}B := K \otimes_F F^{\mu}B$ is *K*-isomorphic to $\mathbb{M}_n(K)$.

PROPOSITION 2.4. Assume that B is an abelian p'-group and H is a subgroup of B such that $\overline{B} := B/H$ is of symmetric type and K contains a primitive mth root of 1, where $m = \max\{\exp \overline{B}, \exp H\}$. Let $\mu \in Z^2(\overline{B}, K^*)$ and $\lambda = \inf(\mu)$.

- (i) If K^μB is a central K-algebra then K^λB can be decomposed into a direct product of central twisted group algebras of B over K.
- (ii) If $\mu \in Z^2(\overline{B}, t(K^*))$ and $K^{\mu}\overline{B}$ is a central K-algebra, then K is a splitting field for the algebra $K^{\lambda}B$.
- (iii) Let K contain a primitive (exp B)th root of 1. If K^μB̄ is K-algebra isomorphic to M_n(K), where n² = |B̄|, then K^λB is K-algebra isomorphic to the direct product of l copies of M_n(K), where l = |H|.

Proof. (i) Denote by $\{v_{bH} : b \in B\}$ a canonical K-basis of $K^{\mu}\overline{B}$ corresponding to μ and by $\{u_b : b \in B\}$ a canonical K-basis of $K^{\lambda}B$ corresponding to λ .

We have $K^{\lambda}H = KH$. If $b \in B$ and $h \in H$ then $\lambda_{b,h} = \mu_{bH,H} = 1$ and $\lambda_{h,b} = 1$. It follows that $u_b u_h = u_h u_b$. Therefore $KH \subset Z(K^{\lambda}B)$. Assume that $u_g \in Z(K^{\lambda}B)$ for certain $g \in B$. Then $u_g u_b = u_b u_g$ for each $b \in B$. Hence $v_{gH}v_{bH} = v_{bH}v_{gH}$ for any $b \in B$. Since $K^{\mu}\overline{B}$ is a central *K*-algebra, gH = H and consequently $Z(K^{\lambda}B) = KH$. This means that *H* is the λ -center of *B*. The field *K* is a splitting field for *KH*. It follows, by Proposition 2.1, that $K^{\lambda}B$ can be decomposed into a direct product of central twisted group algebras of \overline{B} over *K*.

(ii) Denote by F a finite subfield of K which contains a primitive mth root of 1 and all values of the cocycle μ . The algebra $F^{\mu}\overline{B}$ is a central F-algebra. By (i), F is a splitting field for $F^{\lambda}B$, since each finite division algebra is a field. It follows that K is a splitting field for the algebra $K^{\lambda}B \cong K \otimes_F F^{\lambda}B$.

(iii) By Theorem 6.1 in [25, p. 179], $K^{\lambda}B$ can be decomposed into a direct product of mutually isomorphic simple algebras over K. Since $K^{\mu}\overline{B}$ is a simple component of $K^{\lambda}B$, the algebra $K^{\lambda}B$ is K-algebra isomorphic to $K^{\mu}\overline{B} \times \cdots \times K^{\mu}\overline{B}$.

PROPOSITION 2.5 ([7, p. 20]). Let B be an abelian p'-group. The field K is a splitting field for some K-algebra $K^{\lambda}B$ if and only if B has a subgroup

H such that B/H is of symmetric type and K contains a primitive mth root of 1, where $m = \max\{\exp(B/H), \exp H\}$.

Proof. Apply Propositions 2.1, 2.2, 2.4 and Lemma 2.3.

PROPOSITION 2.6. Let K be a finite field of characteristic p, B an abelian p'-group, $\lambda \in Z^2(B, K^*)$ and H the λ -center of B. The field K is a splitting field for $K^{\lambda}B$ if and only if the restriction of λ to $H \times H$ is a coboundary and K contains a primitive (exp H)th root of 1.

Proof. Apply Propositions 2.1 and 2.2.

PROPOSITION 2.7. Let B be a nilpotent p'-group. If K is a splitting field for some twisted group algebra of B over K, then K contains a primitive qth root of 1 for each prime q that divides |B|.

Proof. Assume that K is a splitting field for an algebra $K^{\lambda}B$ and K does not contain a primitive qth root of 1 for a certain prime q dividing |B|. Denote by B_q the Sylow q-subgroup of B. The center of B_q contains an element b of order q. Let $\{u_g : g \in B\}$ be a canonical K-basis of $K^{\lambda}B$ corresponding to λ . Then u_b lies in the center Z of $K^{\lambda}B$. Let $\{f_1, \ldots, f_s\}$ be a complete system of pairwise orthogonal primitive idempotents of Z. We have $u_b = \beta_1 f_1 + \ldots + \beta_s f_s$, where $\beta_j \in K$ for every $j \in \{1, \ldots, s\}$. If $u_b^q = \gamma u_e, \gamma \in K^*$, then $\gamma = \beta_j^q$ for each j. It follows that $\beta_1 = \cdots = \beta_s$ and $u_b = \beta_1 u_e$. This contradiction proves that K contains a primitive qth root of 1 for each prime q that divides |B|.

PROPOSITION 2.8. Let B be a p'-group.

- (i) If the field K is a splitting field for all twisted group algebras of B over K, then $K = K^q$ and K contains a primitive qth root of 1 for each prime q that divides |B:B'|.
- (ii) If $K = K^q$ and K contains a primitive qth root of 1 for any prime q that divides |B|, then K is a splitting field for every twisted group algebra of B over K.
- (iii) Assume that every prime divisor of |B'| is also a divisor of |B : B'|. Then K is a splitting field for any twisted group algebra of B over K if and only if $K = K^q$ and K contains a primitive qth root of 1 for each prime q that divides |B|.

Proof. (i) Let $B \neq B'$ and q be a prime divisor of |B : B'|. Denote by D a normal subgroup of B such that |B/D| = q. Let $\tilde{B} := B/D = \langle xD \rangle$, $\alpha \in K^*$ and

$$K^{\mu}\widetilde{B} = \bigoplus_{i=0}^{q-1} K v_{xD}^{i}, \quad v_{xD}^{q} = \alpha v_{D}.$$

Denote $\lambda = \inf(\mu)$. There exists a K-algebra homomorphism of $K^{\lambda}B$ onto $K^{\mu}\widetilde{B}$. It follows that K is a splitting field for $K^{\mu}\widetilde{B}$. Hence $\alpha = \beta^{q}$ for some $\beta \in K^{*}$ and K contains a primitive qth root of 1.

(ii) Denote by *n* the order of a cohomology class $[\lambda] \in H^2(B, K^*)$. It is well known that *n* divides |B|. Arguing as in the proof of Theorem 53.3 in [14, p. 359], we show that $[\lambda]$ contains a cocycle α whose order is equal to *n*. By Theorem 1.3 in [21, p. 137], there exists a central group extension $1 \to A \to \hat{B} \to B \to 1$ such that *A* is a cyclic group of order *n* and

$$K\widehat{B} \cong \prod_{i=0}^{n-1} K^{\alpha^i} B.$$

Since any prime divisor of $|\hat{B}|$ is also a divisor of B, the field K contains a primitive *m*th root of 1, where $m = \exp \hat{B}$. By the Brauer theorem, K is a splitting field for $K\hat{B}$. Hence K is a splitting field for $K^{\alpha}B$.

(iii) Apply (i) and (ii). \blacksquare

PROPOSITION 2.9. Let B be a p'-group. The field K is a splitting field for all twisted group algebras of B over K if and only if there exists a finite central group extension $1 \to A \to \widehat{B} \to B \to 1$ such that any projective K-representation of B lifts projectively to an ordinary K-representation of \widehat{B} and K is a splitting field for \widehat{B} .

Proof. Assume that K is a splitting field for all twisted group algebras of B over K. By Proposition 2.8, $K^* = (K^*)^m$, where m is the exponent of B/B'. In view of Corollary 2.5 in [21, p. 142], $H^2(B, K^*) = H^2(B, t(K^*))$. Arguing as in the proof of Theorem 2.3 in [21, p. 141], we conclude that there exists a finite central group extension $1 \to A \to \hat{B} \to B \to 1$ such that the following conditions hold:

- (i) If r is the exponent of A, then K^* contains a primitive rth root of 1.
- (ii) Every projective K-representation of B lifts projectively to an ordinary K-representation of \widehat{B} .

By Theorem 4.2 in [21, p. 80], $K\widehat{B} \cong \prod_i K^{\lambda_i}B$. It follows that K is a splitting field for $K\widehat{B}$. This completes the proof of the necessity.

Let us prove the sufficiency. The group algebra KA lies in the center of $K\hat{B}$, hence K contains a primitive mth root of 1, where m is the exponent of A. It follows, by Theorem 4.2 in [21, p. 80] and Lemma 2.1 in [21, p. 139], that $K\hat{B}$ is K-algebra isomorphic to $K^{\sigma_1}B \times \cdots \times K^{\sigma_r}B$ and every algebra $K^{\lambda}B$ is isomorphic to some $K^{\sigma_i}B$. Hence K is a splitting field for every twisted group algebra of B over K.

PROPOSITION 2.10. Let B be a p'-group. Assume that either $t(K^*) = t(K^*)^q$ for every prime q that divides |B'|, or every prime divisor of |B'| is

also a divisor of |B : B'|. Then K is a splitting field for any twisted group algebra of B over K if and only if there exists a covering group \widehat{B} of B over K such that K is a splitting field for \widehat{B} .

Proof. Assume that K is a splitting field for any twisted group algebra of B over K. In view of Proposition 2.8, $K = K^q$ for each prime q dividing |B:B'|. It follows that $t(K^*) = t(K^*)^q$ for every prime q that divides B. Arguing as in the proof of Theorem 53.3 in [14, p. 359], we show that each cohomology class $[\lambda] \in H^2(B, t(K^*))$ contains a cocycle whose order is equal to the order of $[\lambda]$. In view of Theorem 2.3 in [21, p. 140], there exists a finite central group extension $1 \to A \to \widehat{B} \to B \to 1$ such that $A \cong H^2(B, t(K^*))$ and any projective K-representation of B lifts projectively to an ordinary K-representation of \widehat{B} . By Corollary 2.5 in [21, p. 142], we have

$$H^{2}(B, K^{*}) \cong H^{2}(B, t(K^{*})).$$

Hence \widehat{B} is a covering group of B over K. Theorem 4.2 in [21, p. 80] yields

$$K\widehat{B} \cong \prod_i K^{\sigma_i} B$$

since K^* contains a primitive $(\exp A)$ th root of 1. It follows that K is a splitting field for \widehat{B} . This proves the necessity.

The sufficiency follows from Proposition 2.9. \blacksquare

We note that in [25] Yamazaki proved Theorem 4.2 from [21, p. 80] while Theorem 2.3 from [21, p. 140] and Corollary 2.5 from [21, p. 142] are proved in [26].

3. Groups of OTP projective representation type. We recall that K is a field of characteristic p and $G = G_p \times B$ is a finite group, where G_p is a p-group, B is a p'-group and $|G_p| \neq 1$, $|B| \neq 1$. We assume that if G_p is non-abelian then $[K(\xi) : K]$ is not divisible by p, where ξ is a primitive $(\exp B)$ th root of 1.

THEOREM 3.1. Let $G = G_p \times B$, s be the number of invariants of the group G_p/G'_p and D the subgroup of G_p such that $G'_p \subset D$ and $D/G'_p = \operatorname{soc}(G_p/G'_p)$. Assume that if $p \neq 2$, s = i(K) + 1, $|G'_p| = p$ and D is a non-abelian group of exponent p, then $|D : Z(D)| = p^2$. The group G is of OTP projective K-representation type if and only if one of the following conditions is satisfied:

- (i) $s \leq i(K)$ and G'_p is cyclic;
- (ii) s = i(K) + 1, G'_p is cyclic and there exists a cyclic subgroup T of G_p such that G'_p ⊂ T and G_p/T has i(K) invariants;
- (iii) K is a splitting field for some $K^{\nu}B$.

Proof. Suppose (ii). Let $\widetilde{G}_p = G_p/T$. There is a cocycle $\sigma \in Z^2(\widetilde{G}_p, K^*)$ such that $K^{\sigma}\widetilde{G}_p$ is a field. Let $\mu = \inf(\sigma)$. If $V := K^{\mu}G_p \cdot I(T)$ then V is the radical of $K^{\mu}G_p$ and $K^{\mu}G_p/V$ is K-algebra isomorphic to $K^{\sigma}\widetilde{G}_p$. Therefore $K^{\mu}G_p$ is a uniserial algebra. Let $\nu \in Z^2(B, K^*)$ and $\lambda = \mu \times \nu$. In view of Theorem 1.3, $K^{\lambda}G$ is of OTP representation type.

Arguing as in the case (ii) we prove that if (i) holds, then there exists a cocycle $\lambda \in Z^2(G, K^*)$ such that $K^{\lambda}G$ is of OTP representation type.

Assume that K is a splitting field for some $K^{\nu}B$. Let $K^{\lambda}G = KG_p \otimes_K K^{\nu}B$. By Theorem 1.3, $K^{\lambda}G$ is of OTP representation type.

If $s \ge i(K) + 2$ or G'_p is non-cyclic then $K^{\mu}G_p$ is not a uniserial algebra for any $\mu \in Z^2(G_p, K^*)$. Moreover, in the case $s \ge i(K) + 2$, we have $|G_p:G'_p| \ge p^2 d$, where

$$d = \dim_K (K^{\mu} G_p / \operatorname{rad} K^{\mu} G_p).$$

Let $\nu \in Z^2(B, K^*)$ and $\lambda = \mu \times \nu$. By Theorem 1.3, an algebra $K^{\lambda}G$ is of OTP representation type if and only if K is a splitting field for $K^{\nu}B$.

Assume now that s = i(K) + 1, $G'_p = \langle c \rangle$ and G_p does not contain a cyclic subgroup T such that $G'_p \subset T$ and G_p/T has i(K) invariants. Let $H = \langle c^p \rangle$ and $G_p/G'_p = \langle a_1G'_p \rangle \times \cdots \times \langle a_sG'_p \rangle$, where $|a_jG'_p| = p^{n_j}$ for every $j \in \{1, \ldots, s\}$. We have

$$a_j^{p^{n_j}} \in H$$
 for each $j \in \{1, \dots, s\}$.

First, we examine the case p = 2. Let $N_{r,t}$ be the subgroup of G_2 generated by the elements a_r, a_t and c, where $r, t \in \{1, \ldots, s\}$ and $r \neq t$. If $|N_{r,t} : G'_2| = 4$ and $N'_{r,t} = G'_2$, then $N_{r,t}$ is metacyclic. There exists a cyclic subgroup Tof $N_{r,t}$ such that $G'_2 \subset T$ and G_2/T has i(K) invariants, a contradiction. Hence, if $|N_{r,t} : G'_2| = 4$, we have $[a_r, a_t] \in H$ and

$$D/H = \langle cH \rangle \times \langle b_1H \rangle \times \cdots \times \langle b_sH \rangle,$$

where $b_j = a_j^{2^{n_j-1}}$ for every $j \in \{1, \ldots, s\}$. Each twisted group algebra of the group D/H over the field K is non-uniserial. Consequently, every $K^{\mu}G_2$ satisfies the Q-condition. By Lemma 1.2, the group $G = G_2 \times B$ is of OTP projective K-representation type if and only if condition (iii) holds.

Now we consider the case $p \neq 2$. By [5, p. 288], $|D'| \leq p$. If $|G'_p| \geq p^2$ then $D/H = \langle cH \rangle \times \langle b_1H \rangle \times \cdots \times \langle b_sH \rangle$, where

$$b_j = a_j^{p^{n_j-1}}$$
 for each $j \in \{1, \dots, s\}$.

Arguing as in the case p = 2, we conclude that G is of OTP projective K-representation type if and only if condition (iii) holds. Let $|G'_p| = p$. Then $\exp D = p$. If D is abelian then, for any $\mu \in Z^2(G_p, K^*)$, the algebra $K^{\mu}D$ is not uniserial. Hence in this case every $K^{\mu}G_p$ satisfies the Q-condition, and Lemma 1.2 applies. Suppose that D is non-abelian. Then $|D : Z(D)| = p^2$

and, for every $\mu \in Z^2(G_p, K^*)$, the algebra $K^{\mu}G_p/K^{\mu}G_p \cdot \operatorname{rad} KG'_p$ is not a field. In view of Lemma 1.7 in [8, p. 177], $K^{\mu}G_p$ is not a uniserial algebra. By Theorem 1.3, G is of OTP projective K-representation type if and only if condition (iii) holds.

COROLLARY 3.2. Let $G = G_p \times B$ and K be an arbitrary perfect field of characteristic p. The group G is of OTP projective K-representation type if and only if G_p is cyclic or K is a splitting field for some $K^{\nu}B$.

COROLLARY 3.3. Let $G = G_p \times B$ and $[K : K^p] = p$. Then G is of OTP projective K-representation type if and only if either G_p is metacyclic or K is a splitting field for some $K^{\nu}B$.

COROLLARY 3.4. Let $G = G_p \times B$, s be the number of invariants of G_p/G'_p and $[K:K^p] = p^2$. The group G is of OTP projective K-representation type if and only if one of the following conditions is satisfied:

- (i) $s \leq 2$ and G'_p is cyclic;
- (ii) s = 3 and there exists a cyclic subgroup T of G_p such that $G'_p \subset T$ and G_p/T has two invariants;
- (iii) K is a splitting field for some $K^{\nu}B$.

Proof. Keep the notation of Theorem 3.1. Assume that $p \neq 2$, s = 3, $|G'_p| = p$ and D is a non-abelian group of exponent p. Moreover, let $D/G'_p = \langle b_1G'_p \rangle \times \langle b_2G'_p \rangle \times \langle b_3G'_p \rangle$, $G'_p = \langle c \rangle$ and $[b_1, b_2] = c$, $[b_1, b_3] = c^r$, $[b_2, b_3] = c^t$, where $0 \leq r, t < p$. Set $h = b_1^t b_2^{-r} b_3$. Then $b_1h = hb_1$, $b_2h = hb_2$. It follows that Z(D) is generated by h, c. Hence $|D : Z(D)| = p^2$. Applying Theorem 3.1, we conclude that G is of OTP projective K-representation type if and only if one of the present conditions (i)–(iii) is satisfied.

COROLLARY 3.5. Let $G = G_p \times B$ and $[K : K^p] = \infty$. The group G is of OTP projective K-representation type if and only if either G'_p is cyclic, or K is a splitting field for some $K^{\nu}B$.

PROPOSITION 3.6. Let $G = G_p \times B$ be an abelian group and s the number of invariants of G_p . The group G is of OTP projective K-representation type if and only if one of the following conditions is satisfied:

- (i) $s \le i(K) + 1;$
- (ii) B has a subgroup H such that B/H is of symmetric type and K contains a primitive mth root of 1, where m = max{exp(B/H), exp H}.

Proof. Apply Proposition 2.5 and Theorem 3.1.

PROPOSITION 3.7. Let G_p be an abelian p-group, s the number of invariants of G_p , B a nilpotent p'-group and $G = G_p \times B$. Assume that K does not contain a primitive qth root of 1 for some prime q dividing |B|. The group G is of OTP projective K-representation type if and only if $s \leq i(K) + 1$. *Proof.* Apply Proposition 2.7 and Theorem 3.1. \blacksquare

From now on, K denotes an arbitrary field of characteristic p.

PROPOSITION 3.8. A group $G = G_p \times B$ is of purely OTP projective K-representation type if and only if either G_p is cyclic, or K is a splitting field for every twisted group algebra of B over K.

Proof. Let $\nu \in Z^2(B, K^*)$ be an arbitrary cocycle and $K^{\lambda}G = KG_p \otimes_K K^{\nu}B$. By Proposition 1.4, $K^{\lambda}G$ is of OTP representation type if and only if either G_p is cyclic, or K is a splitting field for $K^{\nu}B$. Assume now that G_p is cyclic, $\mu \in Z^2(G_p, K^*)$ is an arbitrary cocycle and $\lambda = \mu \times \nu$. Since the algebra $K^{\mu}G_p$ is uniserial, by Lemma 1.1, $K^{\lambda}G$ is of OTP representation type.

PROPOSITION 3.9. Let $G = G_p \times B$. Assume that $K = K^q$ and K contains a primitive qth root of 1 for each prime q that divides |B|. Then G is of purely OTP projective K-representation type.

Proof. Apply Propositions 2.8 and 3.8.

COROLLARY 3.10. If K is a separably closed field then every group $G = G_p \times B$ is of purely OTP projective K-representation type.

PROPOSITION 3.11. Let $G = G_p \times B$. Assume that every prime divisor of |B'| is also a divisor of |B:B'|. The group G is of purely OTP projective K-representation type if and only if either G_p is cyclic, or $K = K^q$ and K contains a primitive qth root of 1 for each prime q that divides |B|.

Proof. Again apply Propositions 2.8 and 3.8.

THEOREM 3.12. A group $G = G_p \times B$ is of purely OTP projective Krepresentation type if and only if either G_p is cyclic, or there exists a finite central group extension $1 \to A \to \widehat{B} \to B \to 1$ such that any projective Krepresentation of B lifts projectively to an ordinary K-representation of \widehat{B} and K is a splitting field for \widehat{B} .

Proof. Apply Propositions 2.9 and 3.8.

PROPOSITION 3.13. Let $G = G_p \times B$. Assume that either $t(K^*) = t(K^*)^q$ for any prime q dividing |B'|, or every prime divisor of |B'| is also divisor of |B : B'|. Then G is of purely OTP projective K-representation type if and only if either G_p is cyclic, or there exists a covering group \widehat{B} of B over K such that K is a splitting field for \widehat{B} .

Proof. Apply Propositions 2.10 and 3.8.

REFERENCES

[1] J. L. Alperin, Local Representation Theory, Cambridge Univ. Press, 1993.

- [2] I. Assem, D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras. Vol. 1: Techniques of Representation Theory, London Math. Soc. Student Texts 65, Cambridge Univ. Press, 2006.
- [3] L. F. Barannyk, Modular projective representations of direct products of finite groups, Publ. Math. Debrecen 63 (2003), 537–554.
- [4] —, On faithful irreducible projective representations of finite groups over a field of characteristic p, J. Algebra 321 (2009), 194–204.
- [5] —, Finite-dimensional twisted group algebras of semi-wild representation type, Colloq. Math. 120 (2010), 277–298.
- [6] —, Indecomposable projective representations of direct products of finite groups over a field of characteristic p, Comm. Algebra, in press.
- [7] L. F. Barannyk and D. Klein, Indecomposable projective representations of direct products of finite groups over a ring of formal power series, Prace Nauk. Akad. Jana Długosza Częstochowa Mat. 15 (2010), 9–24.
- [8] L. F. Barannyk and K. Sobolewska, On indecomposable projective representations of finite groups over fields of characteristic p > 0, Colloq. Math. 98 (2003), 171–187.
- [9] D. J. Benson, *Representations and Cohomology I*, Cambridge Univ. Press, 1998.
- [10] H. I. Blau, Indecomposable modules for direct products of finite groups, Pacific J. Math. 54 (1974), 39–44.
- V. M. Bondarenko, Representations of dihedral groups over a field of characteristic 2, Mat. Sb. 96 (1975), 63–74 (in Russian); English transl.: Math. USSR-Sb. 25 (1975), 58–68.
- [12] V. M. Bondarenko and Yu. A. Drozd, *The representation type of finite groups*, in: Modules and Representations, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 71 (1977), 24–41 (in Russian).
- [13] R. Brauer and W. Feit, An analogue of Jordan's theorem in characteristic p, Ann. of Math. 84 (1966), 119–131.
- [14] C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Wiley, 1962.
- [15] —, —, Methods of Representation Theory with Applications to Finite Groups and Orders, Vol. 2, Wiley, 1987.
- [16] Yu. A. Drozd and V. V. Kirichenko, Finite Dimensional Algebras, Springer, 1994.
- [17] P. M. Gudyvok, On modular and integral representations of finite groups, Dokl. Akad. Nauk SSSR 214 (1974), 993–996 (in Russian); English transl.: Soviet Math. Dokl. 15 (1974), 264–269.
- [18] —, On modular and integral P-adic representations of a direct product of groups, Ukrain. Mat. Zh. 29 (1977), 580–588 (in Russian); English transl.: Ukrain. Math. J. 29 (1977), 443–450.
- [19] —, On representations of a direct product of groups over complete discretely normed rings, Dokl. Akad. Nauk SSSR 237 (1977), 25–27 (in Russian); English transl.: Soviet Mat. Dokl. 18 (1977), 1388–1391.
- [20] —, On representations of a direct product of finite groups over complete discrete valuation rings, Ukrain. Mat. Visn. 2 (2005), 65–73 (in Russian); English transl.: Ukrain. Math. Bull. 2 (2005), 67–75.
- [21] G. Karpilovsky, Group Representations, Vol. 2, North-Holland Math. Stud. 177, North-Holland, 1993.
- [22] —, Group Representations, Vol. 3, North-Holland Math. Stud. 180, North-Holland, 1994.
- [23] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl. 4, Gordon and Breach, 1992.

- [24] D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras, Vol. 3: Representation-Infinite Tilted Algebras, London Math. Soc. Student Texts 72, Cambridge Univ. Press, 2007.
- [25] K. Yamazaki, On projective representations and ring extensions of finite groups, J. Fac. Sci. Univ. Tokyo Sect. I 10 (1964), 147–195.
- [26] —, A note on projective representations of finite groups, Sci. Papers College Gen. Ed. Univ. Tokyo 14 (1964), 27–36.

Leonid F. Barannyk Institute of Mathematics Pomeranian University of Słupsk Arciszewskiego 22b 76-200 Słupsk, Poland E-mail: barannyk@apsl.edu.pl

Received 16 November 2011

(5586)