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STANDARD COMMUTING DILATIONS AND LIFTINGS

BY

SANTANU DEY (Mumbai)

Abstract. We identify how the standard commuting dilation of the maximal com-
muting piece of any row contraction, especially on a finite-dimensional Hilbert space, is
associated to the minimal isometric dilation of the row contraction. Using the concept of
standard commuting dilation it is also shown that if liftings of row contractions are on
finite-dimensional Hilbert spaces, then there are strong restrictions on properties of the
liftings.

1. Introduction. We recall that a row contraction T = (T1, . . . , Td) is
a tuple of bounded operators on a common Hilbert space H, i.e., Ti ∈ B(H)
for i = 1, . . . , d, and

∑d
i=1 TiT

∗
i ≤ 1. A row contraction V = (V1, . . . , Vd),

with Vi ∈ B(Ĥ) for some Hilbert space Ĥ ⊃ H, is said to be a minimal
isometric dilation of T if

• V ∗i leaves H invariant and PHVi|H = Ti for i = 1, . . . , d,
• V ∗i Vj = δij1,
• Ĥ = span{Vα1 . . . Vαnh : h ∈ H, 1 ≤ αi ≤ d, n ∈ N}.

Every row contraction admits a minimal isometric dilation (mid for short)
(cf. [Po89]) and it is unique up to unitary equivalence. An extensive theory
of row contractions, given by Popescu (e.g. [Po89], [Po99]), extends part
of the harmonic analysis of contractions developed by Sz.-Nagy and Foiaş
(cf. [NF70]). There is another type of dilation called the standard commuting
dilation, whose study was initiated in the works of Drury [Dr78] and Arveson
[Ar98] (cf. [BBD04]), for commuting row contractions, i.e., row contractions
consisting of mutually commuting bounded operators. This dilation consists
of mutually commuting operators, and one nice property is that it splits into
a direct sum of a tuple of shift operators and a tuple of normal operators.
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In [BBD04] the question “how the mid is related to the standard com-
muting dilation” was addressed. In Sections 2 and 3 we carry out this in-
vestigation further. Let E = (E1, . . . , Ed) on a Hilbert space HE ⊃ HC be
a row contraction. If for all i = 1, . . . , d we have block matrices

(1.1) Ei =
(
Ci 0
Bi Ai

)
with respect to the decomposition HC ⊕HA of HE , where HA = H⊥C , then
we say that E is a lifting of C by A. The mid is an example of a contrac-
tive lifting. An important class of liftings is that of subisometric liftings. In
Section 3 we make use of the theory of subisometric liftings to work out
an example illustrating a result from the previous section. Some applica-
tions of the theory of standard commuting dilations also help us here in
understanding some properties of liftings.

We describe below two important tools for studying dilations of row con-
tractions: Beginning with a row contraction R = (R1, . . . , Rd) on a Hilbert
space L define

C(R) := {M :M is an invariant subspace for each R∗i ,

R∗iR
∗
jh = R∗jR

∗
i h, ∀h ∈M, ∀1 ≤ i, j ≤ d}.

Then C(R) is a complete lattice with respect to arbitrary intersections
and span closures of arbitrary unions. Its maximal element is called the
maximal commuting subspace and is denoted by L◦(R) or L◦. The tuple
R◦ = (R◦1, . . . , R

◦
d) obtained by compressing R to L◦ is called the maximal

commuting piece. The block form of R in terms of L = L◦ ⊕ (L◦)⊥ is

(1.2) Ri =
(
R◦i 0
R̃i RNi

)
where RN is the compression of R to the orthogonal complement of L◦.
Thus R is a lifting of R◦ by RN .

The second tool is the full Fock space on Cd which is defined as

Γ (Cd) := C⊕ Cd ⊕ (Cd)⊗2 ⊕ · · · ⊕ (Cd)⊗n ⊕ · · ·

and e0 = 1⊕ 0⊕ · · · is called the vacuum vector. The (left) shift operator is
given by

Lix := ei ⊗ x for x ∈ Γ (Cd), i = 1, . . . , d,

where e1, . . . , ed is the standard basis of Cd. The maximal commuting sub-
space of the full Fock space Γ (Cd) with respect to L = (L1, . . . , Ld) is
denoted by Γs(Cd) and is called the symmetric Fock space. The maximal
commuting piece of L is denoted by S = (S1, . . . , Sd).
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The following multi-index notation is used. Let Λ̃ denote the set of all
finite tuples formed using 1, . . . , d (where repetitions are allowed). For α =
(α1, . . . , αm) ∈ Λ̃ of length |α| = m, eα will denote the vector eα1⊗· · ·⊗eαm .
For a row contraction T the notation Tα stands for Tα1 . . . Tαm .

2. Standard commuting dilations. In this section we assume d <∞
because the results of [BBD04] used here have this assumption. Lemma 2.2
is the only exception where this assumption is not needed. It is immediate
(cf. [Ar98]) that the unital C∗-algebra C∗(S) generated by Si ∈ B(Γs(Cd)),
i = 1, . . . , d, satisfies

C∗(S) = span{SαS∗β : α, β ∈ Λ̃}.

If T is commuting, then there exists a unique unital completely positive map
φ : C∗(S)→ B(H) with

φ(SαS∗β) = TαT
∗
β , α, β ∈ Λ̃

(cf. [Ar98]). Hence we have a minimal Stinespring dilation π1 : C∗(S) →
B(H1) of φ such that

(2.1) φ(X) = PHπ1(X)|H ∀X ∈ C∗(S)

and span{π1(X)h : X ∈ C∗(S), h ∈ H} = H1. The tuple S̃ = (S̃1, . . . , S̃d),
where S̃i = π1(Si), is the standard commuting dilation of T , which is unique
up to unitary equivalence (cf. [Ar98], [BBD04]).

We recall a result from [BBD04]:

Theorem 2.1. Let T be a commuting row contraction on H and V is
the mid of T . Then V ◦ is the standard commuting dilation of T .

We remark that Popescu’s presentation (equation (2.1) of [Po89]) for
the mid was employed in [BBD04] to prove the above result. From the easy
observation that the maximal commuting subspace of a row contraction T
is a V -coinvariant subspace we conclude that V is an isometric lifting of T ◦.
Therefore Theorem 21 implies that there exists a V ◦-coinvariant subspace
of Ĥ◦ such that the compression of V to that subspace is a commuting
lifting of T ◦. It is natural to ask if V ◦ is the standard commuting dilation
of T ◦. A necessary and sufficient condition for this appears for ∗-stable
row contractions in Theorem 9 of [BBD04] and for a more general setup
of subproduct systems in Proposition 6.13 of [SS09]. Versions of the above
question for the coisometric case have been addressed here in Theorem 2.3
(for finite-dimensional Hilbert spaces) and Proposition 3.3.

Let G be the (non-selfadjoint unital) weak-operator-topology-closed al-
gebra generated by the Vi ∈ B(Ĥ) of the mid V of T . We recall that a row
contraction T is said to be coisometric if

∑d
i=1 TiT

∗
i = 1.
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Lemma 2.2. Suppose a tuple T , on a given finite-dimensional Hilbert
space H, is coisometric. LetM be a subspace of (the dilation space) Ĥ which
is invariant for both G and G∗ (i.e., reducing). Denote M∩H by HM. Then
M = G[HM].

Proof. Note that HM is invariant with respect to T ∗i for i = 1, . . . , d
because H andM are V ∗i -invariant and V ∗i |H = T ∗i . Lemma 3.4 of [DKS01]
states that G[L] reduces G if L is a T ∗i -invariant subspace. So G[HM] re-
duces G. BecauseHM ⊂M andM is G-invariant we also have G[HM] ⊂M.

Assume that H′ = M	 G[HM] is non-zero. Corollary 4.2 of [DKS01]
shows that any non-zero G∗-invariant subspace intersects H non-trivially.
Hence H′ has a non-trivial intersection with H. This is a contradiction as
(M	G[HM]) ∩ H = HM ∩ G[HM]⊥ = {0}. Therefore M = G[HM].

Suppose π is a representation on a Hilbert space L of the Cuntz algebra
Od with generators g1, . . . , gd. The representation π is said to be spherical
if span{π(gα)h : h ∈ L◦(π(g1), . . . , π(gd)), α ∈ Λ̃} = L.

Now assume that H is finite-dimensional. Theorem 19 of [BBD04] states
that the mid V on Ĥ of T on H can be decomposed as V 1⊕V 2 with respect
to the decomposition of Ĥ as Ĥ1 ⊕ Ĥ2 into reducing subspaces where V 1 is
associated to a spherical representation of Od and V 2 has trivial maximal
commuting piece. Further it is shown in Theorem 18 of [BBD04] that any
spherical representation of Od is a direct integral of GNS representations
of some Cuntz states. Because H is finite-dimensional, this direct integral
decomposition ([BBD04, Theorem 18]) now tells us that Ĥ1 can be further
decomposed into irreducible subspaces as Ĥ1

1⊕· · ·⊕Ĥ1
k for some k ∈ N. Let

Hj := H ∩ Ĥ1
j . We observe that Hj , j = 1, . . . , k, are non-zero T ∗i -invariant

subspaces with trivial intersection for i = 1, . . . , d and G[Hj ] = Ĥ1
j for

j = 1, . . . , k from Lemma 2.2. It also follows that the compressions of T to
the Hj ’s are coisometric. But as the restriction of V to Ĥ1

j is associated to
an irreducible and spherical representation, the related maximal commuting
subspace is one-dimensional (cf. [BBD04, Theorem 18 and 19]) and hence is
a minimal G∗-invariant subspace for each j. By Lemma 5.8 of [DKS01] such a
minimal G∗-invariant subspace is unique, and since theHj ’s are G∗-invariant,
the maximal commuting subspace of V on Ĥ1

j is contained in Hj .
Consider the case when the maximal commuting subspace of the mid V of

a row contraction T on the Hilbert space H is contained in H. Proposition 7
of [BBD04] yields Ĥ◦∩H = H◦. So the maximal commuting piece of T is also
the maximal commuting piece of V and therefore the standard commuting
dilation of itself.

Theorem 2.3. Suppose the dimension of H is finite and T is a co-
isometric row contraction on it. Then the maximal commuting subspace of
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V is contained in H and coincides with the maximal commuting subspace
of T .

Proof. Let V on Ĥ be decomposed as above. From the arguments above,
the maximal commuting subspaces of the compressions of V on Ĥ1

j are
contained in Hj . The linear span of all these subspaces is in fact Ĥ◦(V ) and
hence is also contained in H. The argument for the second assertion has
already been given above.

3. Subisometric liftings

Definition 3.1. Let C = (C1, . . . , Cd) be a row contraction on a Hilbert
space HC . A lifting E on a Hilbert space HE = HC ⊕ HA of C is called
subisometric if the mids V E of E and V C of C are unitarily equivalent and
the corresponding unitary, which intertwines V E

i and V C
i for all i = 1, . . . , d,

acts as identity on HC .
A row contraction R on a Hilbert space HR is said to be ∗-stable if

limn→∞
∑
|α|=n ‖R∗αh‖2 = 0 for h ∈ HR.

Example. Here we illustrate Theorem 2.3. Consider the coisometric
noncommuting tuple T = (T1, T2) with

T1 =

 1/
√

2 0 0
1/(2
√

2) 1/2 1/(2
√

2)
0 0 1/

√
2

 and T2 =

 1/
√

2 0 0
−1/(2

√
2) 1/2 −1/(2

√
2)

0 0 1/
√

2

.
Then the compression of T to the subspace {(x1, x2, x3) : x2 = 0} is the
commuting tuple Q with

Q1 =
(

1/
√

2 0
0 1/

√
2

)
and Q2 =

(
1/
√

2 0
0 1/

√
2

)
.

So in the notation from (1.2) the maximal commuting piece T ◦ is equal to
(Q1, Q2) and TN = (1/2, 1/2). Alternatively this can be obtained using the
formula of Proposition 4 of [BBD04]. Because T ◦ is coisometric, commuting
and consists of normal operators, the corresponding map φ : C∗(S)→ B(C2)
of (2.1) satisfies

φ
(
Sα

(
1−

2∑
i=1

SiS
∗
i

)
S∗β

)
= T ◦α

(
1−

2∑
i=1

T ◦i (T ◦i )∗
)

(T ◦β )∗.

We deduce that φ(X) = 0 for any compact operator X in C∗(S). Note
that the commutators [S∗i , Sj ] are all compact and so φ is a unital ∗-homo-
morphism. Therefore T ◦ is the standard commuting dilation of itself. Since
TN = (1/2, 1/2) is ∗-stable, T is a subisometric lifting of T ◦ by Proposi-
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tion 2.3 of [DG11]. Hence by Theorem 2.1 the maximal commuting piece of
mid V of T is also T ◦.

For a lifting E on a Hilbert space HE = HC ⊕ HA of C by A, if E is
a commuting row contraction, then the tuple C is also commuting because
HC is invariant without respect to E∗i s and hence

(CiCj − CjCi)∗ = (EiEj − EjEi)∗|HC
= 0 for 1 ≤ i, j ≤ d.

Similarly if E is commuting, then so is A.
In case E is a subisometric lifting of a row contraction C, clearly unitary

equivalence of the mids V C and V E implies unitary equivalence of the max-
imal commuting pieces of V C and V E . In addition when E is commuting,
by Theorem 2.1 we obtain unitary equivalence of the standard commuting
dilations of C and E. We first observe how the maximal commuting piece
of any row contraction is related to that of its liftings.

Corollary 3.2. Let E, on a finite-dimensional Hilbert space, be a co-
isometric lifting of C by a ∗-stable row contraction A. Then the maximal
commuting pieces of E and C coincide.

Proof. Here E is a subisometric lifting of C. So the maximal commuting
pieces of V C and V E are unitarily equivalent. By Theorem 2.3 this means
that the maximal commuting pieces of E and C coincide.

Proposition 3.3. Suppose a row contraction T is coisometric and TN

(see (1.2)) is ∗-stable. Then the standard commuting dilation of T ◦ is the
maximal commuting piece of the mid of T .

Proof. Since TN is ∗-stable, by using Proposition 2.3 of [DG11] we see
that T is a subisometric lifting of T ◦. Therefore the maximal commuting
pieces of mids of T and T ◦ are unitarily equivalent. Moreover the maximal
commuting piece of the mid of T ◦ is the standard commuting dilation of T ◦

by Theorem 2.1.

The next proposition along with Corollary 3.2 shows that if liftings of row
contractions are on finite-dimensional Hilbert spaces, then there are strong
restrictions on properties of the liftings. For any commuting coisometric
row contraction T on a Hilbert space H, each T ∗i is subnormal because the
standard commuting dilation of T consists of normal operators (cf. [At90]).
Consequently, if H is finite-dimensional, this T consists of normal operators
(cf. [Ha82]).

Proposition 3.4. A commuting coisometric row contraction on a finite-
dimensional Hilbert space cannot be a lifting of another commuting row con-
traction by a non-zero ∗-stable tuple.
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Proof. Assume that E is a commuting coisometric lifting of a com-
muting row contraction C on a finite-dimensional Hilbert space by A ∗-
stable. Then again by Proposition 2.3 of [DG11], E is a subisometric lift-
ing of C. Consequently, the standard commuting dilations of E and C are
unitarily equivalent. For normal commuting coisometric row contractions
it follows that their standard commuting dilations coincide with the row
contractions, using the argument in the example at the beginning of this
section. By the comment preceding this proposition, C consists of normal
operators and therefore its standard commuting dilation is equal to itself.
In other words C is the standard commuting dilation of E. Since E is a
compression of the standard commuting dilation of E to HE , this yields
C = E.

The following is a related observation for the case d = 1, which is an
immediate exercise:

Remark 3.5. Let C be a (single) coisometry on a finite-dimensional
Hilbert space. Let E be a coisometric lifting of C by A. Then A is coisomet-
ric.
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