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Abstract. We analyze some aspects of Mercer’s theory when the integral operators
act on L2(X,σ), where X is a first countable topological space and σ is a non-degenerate
measure. We obtain results akin to the well-known Mercer’s theorem and, under a positive
definiteness assumption on the generating kernel of the operator, we also deduce series
representations for the kernel, traceability of the operator and an integration formula
to compute the trace. In this way, we upgrade considerably similar results found in the
literature, in which X is always metrizable and compact and the measure σ is finite.

1. Introduction. It is well-known that if (X,M, σ) is a measure space
and K : X ×X → C is an element of L2(X ×X,σ × σ) then the formula

(1.1) K(f) :=
�

X

K(·, y)f(y) dσ(y), f ∈ L2(X,σ),

defines a continuous linear operator K : L2(X,σ) → L2(X,σ), the norm of
which is bounded as

(1.2) ‖K‖ ≤
( �

X

�

X

|K(x, y)|2 dσ(x)dσ(y)
)1/2

.

If either K is a Hilbert–Schmidt kernel or L2(X,σ) is separable, then K
is a typical example of a compact operator ([L, p. 247], [Y, p. 277]). If K is
hermitian (σ × σ)-a.e., Fubini’s Theorem implies that

(1.3)
�

X

K(f)(x)g(x) dσ(x) =
�

X

f(x)K(g)(x) dσ(x), f, g ∈ L2(X,σ),

that is, K is self-adjoint. Hence, the spectral theorem for self-adjoint compact
operators is applicable and K can be represented in the form

(1.4) K(f) =
∞∑
n=1

λn〈f, fn〉fn, f ∈ L2(X,σ),
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where {λn} is a sequence of real numbers decreasing to 0 (or finite) and
{fn} is an orthonormal sequence in L2(X,σ). The symbol 〈·, ·〉 stands for
the usual inner product of L2(X,σ).

In general, the positive definiteness of K is a convenient assumption
added to the setting in order to guarantee that K is hermitian (σ × σ)-a.e.
That forces the sequence {λn} above to consist of non-negative numbers.
A brief discussion of two notions of positive definiteness can be found in
[FM]. If X has a metric structure, a basic question becomes to establish the
right setting in order that K be a trace-class (nuclear) operator, that is,

(1.5)
∑
f∈B

〈K∗K(f), f〉1/2 <∞

for every orthonormal basis B of the space (L2(X,σ), 〈·, ·〉). Here, K∗ is
the adjoint of K. Depending on X, the continuity of K may be needed in
order to obtain additional desirable spectral properties for K. For instance,
a natural question that arises when K is trace-class is whether the sum of
all eigenvalues of K can be computed via an integration formula.

The results and questions listed above and results on series represen-
tations for K and K belong to the scope of what we call Mercer’s theory.
It encompasses Mercer’s Theorem and its extensions, generalizations and
direct consequences.

Mercer’s theory in the case where X is a compact interval and σ is the
Lebesgue measure is well-established in the literature. For compact intervals
we refer the reader to [GGK, GK, HT] and references therein. Extension to
unbounded intervals is analyzed in [DG-B, KLR, St] and, more recently, in
some papers authored by Buescu and Paixão (see [B] for example). Exten-
sions to other domains can be found in [N, NR]. In [Br1], Brislawn discusses
the case in which X is a subset of Rn, presenting equivalences for the trace-
class property in terms of the Hardy–Littlewood maximal function of the
kernel. In [Br2], he deals with the nuclearity of operators defined in count-
ably generated measure spaces replacing the Hardy–Littlewood theory with
martingales. A quite general Mercer’s theory is developed in [FMO, FM],
while Sato’s paper ([S]) characterizes traceability of the integral operators
assuming that (X,σ) possesses a separable metric structure. The use of re-
producing kernel Hilbert spaces in order to guarantee the validity of Mercer’s
Theorem for non-compact domains in both metric and non-metric cases can
be found in [CVT, Su].

The main goal of the present paper is to go one step further. Precisely,
we intend to establish results within Mercer’s theory in the case when the
separable metric structure of (X,σ) is replaced with a plain topological
one, as far as we know a case not considered yet. More specifically, we will
assume X is a first countable space and σ is a non-degenerate, Borel and
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locally finite measure. Further, we shall deduce some more refined results
for X locally compact.

A few comments are in order. The assumptions on X and σ we will adopt
do not coincide with those considered elsewhere (see references mentioned
before) while the conclusions in several of our results are exactly the same
as found in other sources. So, the reader should be alert to the proofs where
the steps allowing one to go from metric to topological assumptions are
explained in detail. Nonetheless, some arguments in our proofs resemble
known arguments already used in the literature.

The setting we adopt was intended to include the important case in
which X is the unit sphere Sm in Rm+1 and σ is the usual surface measure
on Sm. For instance, in [FMO] where a similar development is done, the
spherical setting is not covered due to the fact that the surface measure
does not satisfy the basic assumptions adopted there. The interested reader
may proceed with a formal comparison.

An outline of the paper is as follows. Section 2 offers results along the
lines of the so-called Mercer’s Theorem: under some basic assumptions on
the integral operator, we derive a series representation of the generating ker-
nel and properties attached to them. In Section 3, we introduce a concept of
smoothness of the generating kernel. We then discuss a connection between
smoothness and L2(X,σ)-positive definiteness. In Section 4, we apply the
results of the previous sections to traceability of operators and some other
properties.

2. Series representation for the generating kernel. We begin with
some basic terminology. If X is a nonempty set, we write ∆X for the diagonal
of X ×X, that is,

(2.1) ∆X := {(x, x) : x ∈ X}.
The dual (X,σ) will denote a (Borel) measure space. A measure σ on a
topological space (X,F) will be termed non-degenerate when all open subsets
of X are σ-measurable and the following condition holds:

(2.2) σ(A) > 0, A ∈ F \ {∅}.
We will deal with positive definiteness in the L2-sense. Precisely, we

will say that a kernel K : X × X → C is L2(X,σ)-positive definite when
K ∈ L2(X×X,σ×σ) and the corresponding integral operator K, as defined
in (1.1), is positive:

(2.3) 〈K(f), f〉 ≥ 0, f ∈ L2(X,σ).

Standard arguments show that an integral operator K generated by an
L2(X,σ)-positive definite kernel K is self-adjoint (when the space L2(X,σ)
is real, the self-adjointness of K needs to be added).
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The following lemma is known ([FMO]).

Lemma 2.1. If K ∈ L2(X × X,σ × σ) is hermitian and f ∈ L2(X,σ)
then

�

X

�

X

K(x, y)f(x)f(y) dσ(x)dσ(y)

=
�

X

�

X

Re
(
K(x, y)f(x)f(y)

)
dσ(x) dσ(y).

Below, χA denotes the characteristic function of a subset A of X.

Lemma 2.2. Let X be a first countable topological space endowed with a
non-degenerate measure σ. Assume that K is L2(X,σ)-positive definite and
continuous at any point of ∆X . Then K is non-negative on ∆X .

Proof. As K is L2(X,σ)-positive definite, it is hermitian (σ × σ)-a.e.,
and consequently K(x, x) ∈ R a.e. Since K is also continuous on ∆X , in
fact, K(x, x) ∈ R for all x ∈ X. To show that K is nonnegative on ∆X , fix
x0 ∈ X. Given ε > 0, we can use the first countability axiom to select a
collection {V1, V2, . . .} of neighborhoods of x0 and a positive integer n0 so
that |K(x, y) −K(x0, x0)| < ε whenever x ∈ Vn, y ∈ Vm and m,n ≥ n0. It
follows that ReK(x, y) < ε + K(x0, x0). If K(x0, x0) < 0, we could select
ε ∈ (0,−K(x0, x0)) and conclude that

(2.4) ReK(x, y) < 0, x, y ∈ Vn,
for n arbitrarily large. Recalling the non-degeneracy of σ, an application of
Lemma 2.1 would lead to

(2.5) 〈K(χVn), χVn〉 =
�

Vn

�

Vn

ReK(x, y) dσ(x) dσ(y) < 0,

for n arbitrarily large, a contradiction to the L2(X,σ)-positive definiteness
of K.

Theorem 2.3 (proved in [FMO]) describes the basic properties of opera-
tors defined by summable expansions with non-negative coefficients.

Theorem 2.3. Let (X,σ) be a measure space and {fn} an orthonormal
sequence in L2(X,σ). If {an} is a bounded sequence of non-negative real
numbers then the formula

(2.6) T (f) =
∞∑
n=1

an〈f, fn〉fn, f ∈ L2(X,σ),

defines a bounded linear operator on L2(X,σ) with the following properties:

(i) If an > 0 then fn is an eigenvector of T with eigenvalue an.
(ii) 〈T (f), f〉 ≥ 0 for all f ∈ L2(X,σ).
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(iii) If T = K for some kernel K ∈ L2(X×X,σ×σ), then K is L2(X,σ)-
positive definite.

If we refine the assumptions on X and σ, then with a little extra effort,
we obtain the following improvement of Theorem 2.3 in the case when K is
an integral operator.

Theorem 2.4. Let X be a first countable topological space endowed with
a non-degenerate measure σ. Let {fn} be an orthonormal sequence of contin-
uous functions from L2(X,σ), {an} a bounded sequence of non-negative real
numbers and consider the operator T defined in (2.6). Assume that T = K
for some K ∈ L2(X ×X,σ × σ) which is continuous on ∆X . Then

(2.7)
∞∑
n=1

an|fn(x)|2 ≤ K(x, x), x ∈ X.

Proof. Let p be a fixed positive integer. Due to our assumption on {an}
and Bessel’s inequality we have, for f ∈ L2(X,σ),

�

X

∞∑
n=p+1

an〈f, fn〉fn(x)f(x) dσ(x) =
∞∑

n=p+1

an〈f, fn〉
�

X

fn(x)f(x) dσ(x),

that is,

(2.8)
�

X

∞∑
n=p+1

an〈f, fn〉fn(x)f(x) dσ(x) =
∞∑

n=p+1

an|〈f, fn〉|2.

Clearly, the kernel Kp given by

(2.9) Kp(x, y) := K(x, y)−
p∑

n=1

anfn(x)fn(y), x, y ∈ X,

is an element of L2(X × X,σ × σ), and is continuous on ∆X since K is.
Using (2.8), we can see that

〈Kp(f), f〉 =
�

X

[
K(f)(x)−

p∑
n=1

an〈f, fn〉fn(x)
]
f(x) dσ(x)

=
∞∑

n=p+1

an|〈f, fn〉|2.

In particular, Kp is L2(X,σ)-positive definite. Thus, Lemma 2.2 yields
Kp(x, x) ≥ 0, x ∈ X. Since p was arbitrary, the inequality in the state-
ment follows.

We now take up the topic of paramount interest in Mercer’s theory,
namely, a series representation for K. Theorem 2.5 below is the first step in
this direction.
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Theorem 2.5. Under the assumptions Theorem 2.4, the series∑∞
n=1 anfn(x)fn(y) is absolutely and uniformly convergent on compact sub-

sets of X with respect to each variable, when the other is fixed.

Proof. Let x ∈ X be fixed and Y a compact subset of X. The Cauchy–
Schwarz inequality implies that

(2.10)
∣∣∣ q∑
n=p

anfn(x)fn(y)
∣∣∣2 ≤ sup

ζ∈Y
K(ζ, ζ)

q∑
n=p

an|fn(x)|2, y ∈ Y,

whenever q ≥ p ≥ 1. An application of the Cauchy criterion for uniform
convergence, along with inequality (2.7), implies that

∑∞
n=1 anfn(x)fn(y) is

absolutely and uniformly convergent in Y . Similarly, if y is fixed, the same
series is absolutely and uniformly convergent for x ∈ Y .

If X has finite measure, the integral operator K generated by a bounded
and continuous kernel K has the additional property that its range con-
tains continuous functions only. In our context the corresponding result is
as follows.

Theorem 2.6. Under the assumptions of Theorem 2.4, the range of T
contains continuous functions only.

Proof. Fix f ∈ L2(X,σ) and x ∈ X. Consider a sequence {xn} ⊂ X
converging to x and write Y = {x} ∪ {xn : n = 1, 2, . . .}. The Cauchy–
Schwarz inequality and Theorem 2.4 lead to∣∣∣ q∑

n=p

an〈f, fn〉fn(y)
∣∣∣2 ≤ q∑

n=p

an|〈f, fn〉|2
q∑

n=p

an|fn(y)|2

≤ K(y, y)
q∑

n=p

an|〈f, fn〉|2, y ∈ Y.

whenever q ≥ p ≥ 1. As K is continuous on ∆X , the compactness of Y
implies that∣∣∣ q∑
n=p

an〈f, fn〉fn(y)
∣∣∣2 ≤ sup

ζ∈Y
K(ζ, ζ)

q∑
n=p

an|〈f, fn〉|2

≤ ‖T‖ sup
ζ∈Y

K(ζ, ζ)
q∑

n=p

|〈f, fn〉|2, y ∈ X, q ≥ p ≥ 1.

The series
∑∞

n=1 |〈f, fn〉|2 is convergent by Bessel’s inequality. Hence, the
Cauchy criterion for uniform convergence shows that

∑∞
n=1 an〈f, fn〉fn(y) is

uniformly convergent for all y ∈ Y . Hence, it defines a continuous function
on Y , and in particular, T (f)(xn) converges to T (f)(x). Since X is first
countable, this implies continuity at x.
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Another related result is the L2(X,σ)-convergence of the series in (2.6).
To achieve this, we assume local compactness of X and integrability of
x ∈ X 7→ K(x, x).

Theorem 2.7. Under the assumptions of Theorem 2.4, suppose more-
over that X is locally compact and x ∈ X 7→ K(x, x) is integrable. Then∑∞

n=1 an|fn(x)|2 is L2(X,σ)-convergent to K(x, x).

Proof. Recalling (2.7), we see that

(2.11)
∞∑
n=1

|anfn(x)|2 ≤ ‖T‖
∞∑
n=1

an|fn(x)|2 ≤ ‖T‖K(x, x), x ∈ X.

By the Riesz–Fisher Theorem ([R, p. 330]), for every x ∈ X, the sum∑∞
n=1 anfn(x)fn is L2(X,σ)-convergent to a function Kx ∈ L2(X,σ). As

a consequence,
�

X

Kx(y)f(y) dσ(y) =
∞∑
n=1

an〈f, fn〉fn(x) = T (f)(x)

= K(f)(x) =
�

X

K(x, y)f(y) dσ(y), x ∈ X,

whenever f ∈ L2(X,σ). In particular, Kx = K(x, ·) a.e. By Theorem 2.5,
for every y ∈ X there is a compact subset Uy of X in which the convergence
of
∑∞

n=1 anfn(x)fn to Kx is uniform. Hence, Kx is continuous in Uy, y ∈ X.
In particular, Kx = K(x, ·) everywhere. It is now clear that

(2.12) K(x, x) = Kx(x) =
∞∑
n=1

an|fn(x)|2, a.e. x ∈ X.

Since

(2.13)
N∑
n=1

an|fn(x)|2 ≤ K(x, x), a.e. x ∈ X,

the continuity of the functions involved implies that the inequality holds in
fact everywhere. As x 7→ K(x, x) is integrable, we thus get a uniform bound
in L1(X,σ) for the sequence of partial sums appearing above. That suffices
for the convergence of the series to K(x, x) in L2(X,σ).

The last result of the section deals with the convergence of the series∑∞
n=1 anfn(x)fn(y). The integrability of K(x, x) is no longer needed.

Theorem 2.8. Under the assumptions of Theorem 2.4, suppose more-
over that X is locally compact. Then the series

∑∞
n=1 anfn(x)fn(y) converges

absolutely and uniformly on compact subsets of X ×X.

Proof. Formula (2.13) and Dini’s theorem for compact topological spaces
imply that the convergence of

∑∞
n=1 an|fn(x)|2 to K(x, x) is uniform on
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compact subsets of X. Since the Cauchy–Schwarz inequality implies that

(2.14)
∣∣∣ q∑
n=p

anfn(x)fn(y)
∣∣∣2 ≤ q∑

n=p

an|fn(x)|2
q∑

n=p

an|fn(y)|2, x, y ∈ X,

whenever q ≥ p ≥ 1, an automatic consequence is the uniform and absolute
convergence of

∑∞
n=1 anfn(x)fn(y) on compact subsets of X ×X.

3. Smoothness of the generating kernel. In this section we present
kernels that fit into the results described in Section 2. They are smooth
in the sense implied by Lemma 3.1 below. The final result of the section
describes a context under which the kernel is automatically smooth.

As previously observed, if (X,σ) is a measure space and K is L2(X,σ)-
positive definite then the corresponding integral operator K is compact and
self-adjoint and the spectral theorem for such operators can be applied. In
particular, there exist an orthonormal sequence {fn} in L2(X,σ) and a non-
increasing sequence {an} ⊂ [0,∞) such that if f ∈ L2(X,σ) then the series∑∞

n=1 an〈f, fn〉fn is L2(X,σ)-convergent to K(f). If L2(X,σ) is separable,
then the sequence can be chosen to be a complete set. Lemma 3.1 below
complements the information provided by that theorem when a continuity
assumption is added.

Lemma 3.1. Let X be a topological space endowed with a measure σ
and K an L2(X,σ)-positive definite kernel. If K(x, ·) belongs to L2(X,σ)
for every x ∈ X and the function x ∈ X 7→ K(x, ·) ∈ L2(X,σ) is continuous
then the functions fn above are continuous when an > 0.

Proof. Since K(fn) = anfn, n = 1, 2, . . ., it suffices to show that the
range of K contains continuous functions only. But that follows from the
inequality

|K(f)(x)−K(f)(y)| ≤ ‖K(x, ·)−K(y, ·)‖2‖f‖2, f ∈ L2(X,σ), x, y ∈ X,

and the assumptions of the lemma.

The definition of smoothness we intend to explore can now be introduced.
A kernel K : X×X → C is smooth when the following three conditions hold:

(i) K is continuous on ∆X .
(ii) For every x ∈ X, the function K(x, ·) belongs to L2(X,σ).

(iii) The function x ∈ X 7→ K(x, ·) ∈ L2(X,σ) is continuous.

The reader should compare the definition above with that in [FMO]
where (i) is replaced with continuity in X ×X. Theorems 2.5 and 2.8 can
be restated as follows, when smoothness is added to the setting.
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Theorem 3.2. Let X be a first countable topological space endowed with
a non-degenerate measure σ, and K a smooth L2(X,σ)-positive definite ker-
nel. Then the conclusions in Lemma 3.1 hold and, in addition, the series∑∞

n=1 anfn(x)fn(y) converges absolutely and uniformly on compact subsets
of X with respect to one variable, when the other is fixed.

Theorem 3.3. Let X be a first countable locally compact topological
space endowed with a non-degenerate measure σ and K a smooth L2(X,σ)-
positive definite kernel. Then the conclusions in Lemma 3.1 hold and, in
addition, the series

∑∞
n=1 anfn(x)fn(y) converges absolutely and uniformly

on compact subsets of X ×X.

Next, we intend to go from positive definiteness to smoothness, still
keeping the non-metric setting we have adopted. One set of assumptions
that allows one to prove such an implication is described in Theorem 3.4
below.

Theorem 3.4. Let X be a first countable topological space endowed with
a non-degenerate and locally finite measure σ, and let K be a continuous
L2(X,σ)-positive definite kernel. Then

(3.1) |K(x, y)|2 ≤ K(x, x)K(y, y), x, y ∈ X.

Proof. The assertion holds trivially when K(x, y) = 0. So, let x, y ∈ X
with K(x, y) 6= 0 and fix ε ∈ (0, |K(x, y)|). We can select open sets U and
V in X so that 0 < σ(U) <∞, 0 < σ(V ) <∞,

|K(x′, x′′)−K(x, x)| < ε, x′, x′′ ∈ U,
|K(x′, y′)−K(x, y)| < ε, x′ ∈ U, y′ ∈ V,
|K(y′, y′′)−K(y, y)| < ε, y′, y′′ ∈ V.

Since ReK is L2(X,σ)-positive definite, we have

(3.2) I :=
�

X×X
ReK(x′, y′)fλ(x′)fλ(y′) dσ(x′) dσ(y′) ≥ 0,

where

fλ :=
1

σ(U)
χU +

λ

σ(V )
χV , λ ∈ C.

We split I as I = I1 + I2 + I3 + I4 in accordance with the four summands in

fλ(x′)fλ(y′) =
1

σ(U)2
χU (x′)χU (y′) +

|λ|2

σ(V )2
χV (x′)χV (y′)

+
λ

σ(U)σ(V )
χU (x′)χV (y′) +

λ

σ(V )σ(U)
χV (x′)χU (y′).
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The first two can be estimated as follows:

I1 ≤
�

X×X
|K(x′, y′)| 1

σ(U)2
χU (x′)χU (y′) dσ(x′) dσ(y′) ≤ ε+K(x, x),

I2 ≤
�

X×X
|K(x′, y′)| λλ

σ(V )2
χV (x′)χV (y′) dσ(x′) dσ(y′) ≤ |λ|2(ε+K(y, y)).

On the other hand,

I3 + I4 = (λ+ λ) ReK(x, y)

+ (λ+ λ)
�

X×X
Re(K(x′, y′)−K(x, y))

χU (x′)χV (y′)
σ(U)σ(V )

dσ(x′) dσ(y′).

Hence, we conclude that

I3 + I4 ≤ 2|λ|ε+ (λ+ λ) ReK(x, y), λ ∈ C.
Thus, (3.2) implies that

ε+K(x, x) + |λ|2(ε+K(y, y)) + 2|λ|ε+ (λ+ λ) ReK(x, y) ≥ 0, λ ∈ C,
and consequently

(ε+K(y, y))|λ|2 − |K(x, y)|(λ+ λ) + 2ε|λ|+ ε+K(x, x) ≥ 0, λ ∈ C.
Clearly, this yields

(ε+K(y, y))λ2 + 2(ε− |K(x, y)|)λ+ ε+K(x, x) ≥ 0, λ ≥ 0,

while our choice for ε leads to

(ε+K(y, y))λ2 + 2(ε− |K(x, y)|)λ+ ε+K(x, x) ≥ 0, λ ∈ R.
In particular,

4(ε+ |K(x, y)|)2 − 4(ε+K(x, x))(ε+K(y, y)) ≤ 0,

and that reduces to the inequality in the statement when we let ε→ 0+.

A bonus from Theorem 3.4 is a setting in which smoothness follows from
L2(X,σ)-positive definiteness.

Theorem 3.5. Let X be a first countable topological space endowed with
a non-degenerate and locally finite measure σ. Assume that K is a contin-
uous L2(X,σ)-positive definite kernel and x ∈ X 7→ K(x, x) is integrable.
Then K is smooth.

Proof. The previous theorem implies that

(3.4)
�

X

|K(x, y)|2 dσ(y) <∞, x ∈ X.

This is condition (ii) in the definition of smoothness. To show the continuity
of x ∈ X 7→ K(x, ·) ∈ L2(X,σ) at x0 ∈ X, let {xn} be a sequence in X
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converging to x0. Since K is continuous, the sequence {K(xn, y)} converges
to K(x0, y), for every y ∈ X fixed. From Theorem 3.4, we deduce that

|K(xn, y)−K(x0, y)|2 ≤ 2 |K(xn, y)|2 + 2 |K(x0, y)|2

≤ 2K(y, y)2 [K(xn, xn)2 +K(x0, x0)2], y ∈ X.
It is now clear that

(3.5) |K(xn, y)−K(x0, y)| ≤ 2K(y, y) sup
m
K(xm, xm), y ∈ X.

Since |K(xn, ·)−K(x, ·)|2 ∈ L1(X,σ), n = 1, 2, . . . , and limn→∞ |K(xn, y)−
K(x, y)|2 = 0, the Dominated Convergence Theorem implies the continuity
in condition (iii).

The following consequence deserves no explanation.

Corollary 3.6. Let X be a first countable topological space endowed
with a non-degenerate and finite measure σ. If K is a continuous L2(X,σ)-
positive definite kernel then K is smooth.

4. Traceability and other results. Before embarking on the results
of the section, we recall some elementary facts about trace-class operators
and introduce notation.

Let B(H) denote the space of all bounded linear operators on a separable
Hilbert space H. If T ∈ B(H) is compact, the operator |T | := (T ∗T )1/2

is positive and compact. Therefore, denoting by {sn(T )} the sequence of
eigenvalues of |T | (the singular numbers of T ) arranged in non-increasing
order and taking into account multiplicities, the nuclearity of T reduces
to the single condition

∑∞
n=1 sn(T ) < ∞. We refer the reader to [C, GK]

for more details and examples regarding this concept. We will write B1(H)
for the subspace of B(H) formed by the trace-class elements of B(H). The
formula

(4.1) ‖T‖1 :=
∞∑
n=1

sn(T ), T ∈ B1(H),

defines a norm in B1(H). If {fn} is an orthonormal basis of H, the formula

(4.2) tr(T ) :=
∞∑
n=1

〈T (fn), fn〉H, T ∈ B1(H),

defines a linear functional T ∈ B1(H)→ tr(T ) of norm 1, the trace of T . The
trace generalizes the concept of trace for matrices in the following sense: if
T ∈ B1(H) is normal and {an} is the sequence of eigenvalues of T , repeated
according to their multiplicities, then tr(T ) =

∑∞
n=1 an.

If we assume that X is a Hausdorff and first countable space and σ is a
non-degenerate, Borel and locally finite measure on X, there is no guaran-
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tee that L2(X,σ) will be separable. Since we will deal with the trace-class
concept, we will assume from now on that additional assumptions have been
made on M and σ in order to make L2(X,σ) separable. For example, to
achieve this one can assume that M is countably generated (up to σ-null
sets) and X is σ-finite ([D, p. 92]).

Theorem 4.1. Let X be a first countable and locally compact topolog-
ical space endowed with a non-degenerate locally finite measure σ. Let K
be a continuous L2(X,σ)-positive definite kernel with x ∈ X 7→ K(x, x)
integrable. Then K is trace-class and

(4.3) tr(K) =
�

X

K(x, x) dσ(x).

Proof. Theorem 3.5 implies that K is smooth. The paragraph preceding
Lemma 3.1 and the lemma itself imply the existence of an orthonormal
complete sequence {fn} ⊂ L2(X,σ) and a non-increasing sequence {an} ⊂
[0,∞) such that

∑∞
n=1 an〈f, fn〉fn is L2(X,σ)-convergent to K(f) whenever

f ∈ L2(X,σ). K being self-adjoint, after arranging the singular values of K
in decreasing order and counting multiplicities, say, s1(K) ≥ s2(K) ≥ · · · ,
we can deduce that an = sn(K) ([Yo, p. 204]). Theorem 2.7 yields

∞∑
n=1

sn(K) =
∞∑
n=1

an‖fn‖22 =
�

X

K(x, x) dσ(x),

which ends the proof.

Theorem 4.2. Under the assumptions of Theorem 4.1,
�

X

�

X

|K(x, y)|2 dσ(x) dσ(y) =
∞∑
n=1

a2
n.

Proof. Theorem 3.5 implies that K is smooth. In particular, K(x, ·) ∈
L2(X,σ), x ∈ X. Applying Parseval’s identity, we deduce that

�

X

|K(x, y)|2 dσ(y) =
∞∑
n=1

|K(fn)(x)|2 =
∞∑
n=1

|anfn(x)|2, x ∈ X.

Integration and an application of the Monotone Convergence Theorem leads
to �

X

�

X

|K(x, y)|2 dσ(y) dσ(x) =
∞∑
n=1

a2
n

�

X

|fn(x)|2 dσ(x) =
∞∑
n=1

a2
n.

This completes the proof.

Corollary 4.3. Under the assumptions of Theorem 4.1,
∞∑
n=1

anfn(x)fn(y) = K(x, y)

in L2(X ×X,σ × σ).
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Proof. Direct computation yields

(4.4)
�

X

�

X

K(x, y)fn(x)fn(y) dσ(y) dσ(x) = an, n = 1, 2, . . . .

Another calculation plus the use of (4.4) implies that

�

X

�

X

|K(x, y)−
m∑
n=1

anfn(x)fn(y)|2 dσ(x) dσ(y)

=
�

X

�

X

|K(x, y)|2 dσ(x) dσ(y)−
m∑
n=1

a2
n

whenever m ≥ 1. Theorem 4.2 completes the proof.

The reader can find versions of the previous two theorems in the case
X = [0, 1] endowed with the usual Lebesgue measure in Chapter 4 of [PS].
The establishment of versions of the previous theorems in the case in which
the measure σ is finite can be obtained in a similar manner. The details are
left to the reader.
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