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THE SOLUTION OF THE TAME GENERATORS
CONJECTURE ACCORDING TO SHESTAKOV AND UMIRBAEV

BY

ARNO VAN DEN ESSEN (Nijmegen)

Abstract. The tame generators problem asked if every invertible polynomial map is
tame, i.e. a finite composition of so-called elementary maps. Recently in [8] it was shown
that the classical Nagata automorphism in dimension 3 is not tame. The proof is long and
very technical. The aim of this paper is to present the main ideas of that proof.

Introduction. One of the most fundamental questions in the study of
invertible polynomial maps is: how do they all look like?

For invertible linear maps over a field everyone knows from linear alge-
bra that every such map is a finite composition of elementary maps. For
invertible polynomial maps one also has a natural notion of an elementary
map (see the next section) and the crucial question was: is every invertible
polynomial map over a field a finite composition of such elementary maps?
This problem is most widely known as the Tame Generators Problem. It
remained open for more than 60 years and was recently solved by Shestakov
and Umirbaev. The answer is no in dimension 3!

Their proof is very technical and complicated and is given in a series of
two papers [7] and [8]. Together these papers are about 50 pages long and
still many details are left to the reader!

Our aim here is to present the main ideas of their proof, which may be
helpful in the reading of [8] (1).

1. Some history and preliminaries. Let k be any commutative ring.
By k[n] or k[x1, . . . , xn] we denote the polynomial ring in n variables over k. A
polynomial map F : kn → kn is just an n-tuple (F1, . . . , Fn) of polynomials
in k[n]. Such a map is called invertible over k or a polynomial automorphism
of kn if there exists a polynomial map G = (G1, . . . , Gn) such that F ◦G = I,
the identity map. Examples of invertible polynomial maps are the so-called
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elementary polynomial maps given by

Ei,c,a := (x1, . . . , xi−1, cxi + a, xi+1, . . . , xn),

where c is a unit in k and a a polynomial in k[n] not containing xi. The
inverse of Ei,c,a is the elementary map Ei,c−1,−c−1a. Of course taking finite
compositions of such elementary polynomial maps we get much more exam-
ples of invertible maps: the group we obtain in this way is called the tame
group and its elements are called tame. Now the crucial question is: are there
any other invertible polynomial maps over k?

If k contains non-zero nilpotent elements the answer is easily seen to
be yes: namely consider the case n = 1 and choose e ∈ k, non-zero, such
that e2 = 0. Since tame maps are finite compositions of the affine maps
cx + a, with c ∈ k∗ and a ∈ k, all tame maps are affine. However the map
F := x + ex2 is invertible over k, with inverse G := x− ex2, and clearly F
is not affine, hence not tame. On the other hand if we assume that k is a
domain (in fact it suffices if k is reduced) then one easily verifies that all
invertible maps are affine, hence tame.

If n = 2 the situation is more complicated. In case k is a field of char-
acteristic zero Jung [2] showed in 1942 that there are no other invertible
polynomial maps. In other words every invertible polynomial map over k
is tame. This result was extended by van der Kulk [3] in 1953 to the case
of positive characteristic. Furthermore he showed that the tame group is
a free amalgamated product of the groups Aff(k, 2) and J(k, 2) over their
intersection, where Aff(k, 2) is the affine group consisting of all invertible
affine maps and J(k, 2) is the group of de Jonquières, consisting of all in-
vertible polynomial maps of the form F = (a1x + f1(y), a2y + f2), where
a1, a2 ∈ k∗, f2 ∈ k and f1(y) ∈ k[y]. This last result also holds in case k is
a domain (see [1, 5.1.3]). However if k is a domain which is not a field, then
there do exist wild , i.e. non-tame invertible polynomial maps over k. Namely
in 1972, Nagata [5] made the following observation: choose 0 6= z ∈ k which
is not a unit in k and define σ := s−1

1 s2s1, where s1 := (x + z−1y2, y) and
s2 := (x, y + z2x) (z−1 belongs to the quotient field of k). Then the map σ
has all its coefficients in k, namely

σ = (x− 2y(zx+ y2)− z(zx+ y2)2, y + z(zx+ y2))

and one easily verifies that σ is invertible over k. Furthermore it follows from
the free amalgamated product structure that σ is not tame over k ! Apply-
ing this construction to the univariate polynomial ring k := C[z] Nagata
conjectured that the corresponding map of 3-space given by

σ(x, y, z) = (x− 2y(zx+ y2)− z(zx+ y2)2, y + z(zx+ y2), z)

is not tame over C. Several papers appeared to give evidence to the conjec-
tured wildness of σ, but Nagata’s conjecture remained open until the recent
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work [8] of Shestakov and Umirbaev. On the other hand it was shown by
M. Smith [9] in 1989 that σ is 1-tame, i.e., the extended map σ̃ : C4 → C4

given by σ̃(x, y, z, t) = (σ(x, y, z), t) is tame.
To conclude this section we introduce some notation and give some re-

sults which will be used in what follows.
From now on, k will denote a field. If f ∈ k[n] the homogeneous part of

the highest degree of f will be denoted by f . Now let F := (f1, . . . , fn) be
a polynomial map. If F is invertible over k, then it is well known that its
Jacobian determinant is a unit in k, i.e. detJ(f1, . . . , fn) ∈ k∗. It follows
(see [1, 1.2.9]) that

(1.1) f1, . . . , fn are algebraically independent over k.

On the other hand if F is non-linear it follows that detJ(f 1, . . . , fn) = 0,
which implies that

(1.2) f1, . . . , fn are algebraically dependent over k.

Furthermore we define degF := deg f1 + · · ·+ deg fn.
Now let F and G be polynomial maps over k. If there exists an ele-

mentary map E such that G = E ◦ F we write F →E G or F → G. If
furthermore degG < degF we say that F admits an elementary reduction
to G and write F →red G. More precisely we say that fi is elementarily
reducible if there exists a polynomial a ∈ k[n] not containing xi such that
deg(fi − a(f1, . . . , fi−1, fi+1, . . . , fn)) < deg fi.

Finally, if f1, . . . , fs are some elements of k[n] then the k-subalgebra of
k[n] generated by the fi’s is denoted by 〈f1, . . . , fs〉.

2. The two-dimensional case: Jung’s theorem. Throughout this
and the next sections k denotes a field of characteristic zero. To understand
the work of Shestakov and Umirbaev we first consider the two-dimensional
case, i.e. we prove

Theorem 2.1 (Jung, 1942). Every automorphism F = (f, g) of k2 is
tame.

Proof. The theorem follows by induction on degF if we can show that

(2.2) F admits an elementary reduction if degF > 2.

First we prove (2.2) for the special case that f ∈ 〈g〉: namely then f = cg r for
some c ∈ k∗ and r ≥ 1. Consequently, deg(f−cgr) < deg f . So if we put E :=
(x− cyr, y), then degE ◦F < degF , i.e. F admits an elementary reduction.
Similarly (2.2) holds if g ∈ 〈f〉. So taking into account (1.1) and (1.2) we
need to study pairs (f, g) which have the following properties: 1) f and g
are algebraically independent over k, 2) f and g are algebraically dependent
over k, and 3) f 6∈ 〈g〉 and g 6∈ 〈f〉. Such pairs are called ∗-reduced. They
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were studied by Shestakov and Umirbaev in [7]. As a consequence of their
main result (on these pairs), it follows that f, g cannot form a ∗-reduced
pair (see 3.4). In other words, by (1.1) and (1.2) again, condition 3) is not
satisfied. So either f ∈ 〈g〉 or g ∈ 〈f〉. Hence we are done by the observations
made above.

3. Poisson algebras and ∗-reduced pairs

Definition 3.1. Let A := k[x1, . . . , xn] and f, g ∈ A. Then f, g is called
∗-reduced if

1) f, g are algebraically independent over k.
2) f, g are algebraically dependent over k.
3) f 6∈ 〈g〉 and g 6∈ 〈f〉.

The crucial idea of [7] to study these pairs is to embed the polynomial
ring k[x1, . . . , xn] in the so-called free Poisson algebra in x1, . . . , xn over k.

Definition 3.2. A Poisson algebra B is a k-vector space endowed with
two bilinear operations: (x, y) 7→ xy (multiplication) and (x, y) 7→ [x, y]
(Poisson bracket) such that

(i) B is commutative and associative with respect to “.”.
(ii) B is a Lie algebra with repect to [·].

(iii) [a, bc] = b[a, c] + [a, b]c for all a, b, c ∈ B (Leibniz’ rule).

Example 1. One easily verifies that the polynomial ring k[x, y] together
with the usual multiplication and Poisson bracket given by

[f, g] := fxgy − fygx
is a Poisson algebra. Observe that the (two-dimensional) Jacobian Conjec-
ture in terms of this bracket gets the following form: if [f, g] = [x, y], then
k[f, g] = k[x, y].

Example 2. (i) An important class of Poisson algebras is given by the
following construction. Let L be a Lie algebra with linear basis e1, e2, . . . .
Denote by P (L) the ring of polynomials in the variables e1, e2, . . . . The
operation [x, y] of the algebra L can be uniquely extended to a Poisson
bracket [x, y] on the algebra P (L) by Leibniz’ rule, and P (L) becomes a
Poisson algebra [6].

(ii) Now let L be the free Lie algebra with free generators x1, . . . , xn.
Then P (L) is the free Poisson algebra with free generators x1, . . . , xn
(see [6]). We will denote this algebra by PL〈x1, . . . , xn〉. It becomes a graded
ring by putting deg xi = 1, deg [xi, xj ] = 2 if i 6= j, etc.
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In what follows we always use the free Poisson algebra. From the Leibniz
rule one easily deduces the formula

[f, g] =
∑

1≤i<j≤n
(fxigxj − fxjgxi)[xi, xj ] for all f, g ∈ k[n].

This formula implies the following two facts:

deg [f, g] ≤ deg f + deg g,

[f, g] = 0 iff f, g are algebraically dependent over k.

In particular,

if f, g are algebraically independent over k, then deg [f, g] ≥ 2.

Now let f, g be a ∗-reduced pair. Then f and g are algebraically depen-
dent over k. So by Gordan’s lemma there exists a polynomial h such that
f, g ∈ 〈h〉. Since f and g are homogeneous it follows that h is homogeneous,
f = c1h

p and g = c2h
s for some natural numbers p, s and c1, c2 ∈ k∗. We

can choose h in such a way that (p, s) = 1. We may furthermore assume
that n := deg f ≤ m := deg g. (The reader is warned that this n is not the
same as the one used before to indicate the number of variables. However
since this notation is used in [8] and will not cause any confusion, as we will
be concerned with the 3 variable case only, we decided to keep the notation
of [8].) Observe that 3) of 3.1 implies that n < m. So m ≥ 2. Furthermore
n = p · (n,m), i.e. p = n/(n,m), and m = s · (n,m), i.e. s = m/(n,m). In-
stead of saying that f, g is a ∗-reduced pair we sometimes call it a p-reduced
pair . Also p ≥ 2, namely if p = 1 then g ∈ 〈f〉, contradicting 3) of 3.1.
Consequently, if we put

N(f, g) := pm−m− n+ deg [f, g]

then

(1) N(f, g) > deg [f, g].

Now we can formulate the main theorem of [7].

Theorem 3.3. Let G(x, y) ∈ k[x, y] with degy G = pq + r, where 0 ≤
r < p. Then

degG(f, g) ≥ qN(f, g) +mr.

Furthermore, if degxG(x, y) = q1s+ r1 with 0 ≤ r1 < s, then

degG(f, g) ≥ q1N(f, g) + nr1.

It is this theorem which plays a crucial role in the understanding of tame
maps in dimension 3. To demonstrate the power of this theorem we show
how it implies the result used in the proof of Jung’s theorem which asserts
that there do not exist non-linear invertible polynomial maps of k2 whose
components form a ∗-reduced pair. More precisely:
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Corollary 3.4. If F = (f, g) is invertible over k with degF > 2, then
either f ∈ 〈g〉 or g ∈ 〈f〉.

Proof. If the conclusion is not true then (f, g) is a ∗-reduced pair (by
(1.1) and (1.2)). Let (G1, G2) be the inverse of (f, g). Then x = G1(f, g).
Let degy G1 = qp+ r with 0 ≤ r ≤ p− 1. Then by 3.3 we get

(2) 1 = deg x = degG1(f, g) ≥ qN(f, g) +mr.

Since, as observed above, deg[f, g] ≥ 2, it follows from (1) that N(f, g) > 2.
Since also m ≥ 2 it follows from (2) that q = r = 0. So degy G1 = 0, i.e.
G1 = G1(x). Hence x = G1(f), which implies that f = f(x) and deg f = 1.
So f = cx for some c ∈ k∗. But f and g are algebraically dependent over k
(by 2) of 3.1). So g only depends on x. Hence g ∈ 〈x〉 = 〈f〉, contradicting 3)
of 3.1.

To conclude this section we give some useful results concerning ∗-reduced
pairs which will be used in Section 6. With the notation introduced above
we have

Lemma 3.5. Let f, g be a ∗-reduced pair. Then the elements f igj with
j < p all have different degrees.

Proof. If deg f i1gj1 = deg f i2gj2 with j1 ≤ j2 < p, then i1n + j1m =
i2n+ j2m, whence (i1 − i2)n = (j2 − j1)m. Since (p, s) = 1 it follows that p
divides j2 − j1. However 0 ≤ j2 − j1 < p, so j2 − j1 = 0. Hence i1 − i2 = 0,
i.e. i1 = i2 and j1 = j2.

Corollary 3.6. Under the assumption of Lemma 3.5, if h = G(f, g)
with degy G < p, then h ∈ 〈f, g〉.

4. Automorphisms admitting a reduction of type I–IV and the
main results. In the previous section we saw that Jung’s theorem is a
consequence of (2.2), i.e. the assertion that every automorphism of k2 admits
an elementary reduction. This immediately leads to the following question:

Question. Does every non-linear tame automorphism of k3 admit an
elementary reduction?

For several years the authors of [8] believed that the answer to this ques-
tion was affirmative. However in 2001 they discovered the following “exotic”
tame automorphism of k3, i.e. one which does not admit an elementary re-
duction. It was this discovery which formed the real starting point for their
solution of the tame generators problem. Here is their example.

Example. Let h1 = x1, h2 = x2+x2
1, h3 = x3+2x1x2+x3

1, g1 = 4h2+h2
3,

g2 = 6h1+6h3h2+h3
3, g3 = h3. Then h := (h1, h2, h3) and g := (g1, g2, g3) are

tame. Let f = g2
2 − g3

1. Finally, put f1 = g1, f2 = g2 + (g3 + f), f3 = g3 + f
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and F = (f1, f2, f3). Then F is tame, but does not admit an elementary
reduction.

Namely one easily verifies that f 1 = x6
1, f2 = x9

1 and f3 = 12x7
1x3

− 12x6
1x

2
2. If f1 is elementarily reducible then f 1 ∈ 〈f2, f3〉, which, since f2

and f3 are algebraically independent over k, implies that f 1 ∈ 〈f2, f3〉, but
this is clearly not the case. Similarly f 2 6∈ 〈f1, f3〉, i.e. f2 is not elementarily
reducible. It remains to see that f3 is not elementarily reducible. So suppose
it is. Then there exists G(f1, f2) such that f3 = G(f1, f2). Observe that
f1, f2 is a 2-reduced pair. So by 3.3 we get

8 = deg f3 = degG(f1, f2) ≥ q(2.9− 9− 6 + deg [f1, f2]) + 9r.

Since deg [f1, f2] = 14 we get 8 ≥ q · 17 + 9r, so q = r = 0, i.e. degy G = 0.
So f3 = G(f1) ∈ 〈f1〉, a contradiction.

In fact this example is a special case of the following class of “exotic”
automorphisms of k3 introduced in [8], which all do not admit an elementary
reduction.

Definition 4.1. Let F = (f1, f2, f3) ∈ Autk k3. We say that F admits
a reduction of type I (with active element f3) if the following conditions are
satisfied:

(a) deg f1 = 2n, deg f2 = sn, s odd ≥ 3, 2n < deg f3 ≤ sn and f3 6∈
〈f1, f2〉.

(b) There exists α ∈ k∗ such that g1 := f1 and g2 := f2 − αf3 satisfy:

(i) g1, g2 is a ∗-reduced pair with deg g1 = 2n and deg g2 = sn.
(ii) (g1, g2, f3)→red (g1, g2, g3) with deg [g1, g3] < sn+ deg [g1, g2].

Observe that each fi has degree > 1. Furthermore such a map F has
the property that after a preliminary linear transformation L of the form
L = (x1, x2 − αx3, x3) with α ∈ k∗ the map L ◦ F = (g1, g2, g3) admits
an elementary reduction, where deg g1 = deg f1 and deg g2 = deg f2. More
precisely there exists a ∈ 〈g1, g2〉 such that deg(g3 − a(g1, g2)) < deg g3. In
other words, if E = (x1, x2, x3 − a(x1, x2)) then degE ◦ L ◦ F < degF .
So if F admits a reduction of type I, then it admits a reduction to an
automorphism of lower degree (than F ) by a sequence of two elementary
transformations.

Now the next question is: does every non-linear automorphism of k3

admit either an elementary reduction or a reduction of type I? It turns
out that the situation is much more complicated: in their paper Shestakov
and Umirbaev introduce 3 more classes of “exotic” automorphisms, ad-
mitting a reduction of type II, III, or IV. Just as in the type I case the
components fi of these automorphisms have very special restrictions on
their degrees. In particular it follows that deg fi > 1 for all i. Furthermore,
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without going into details we just mention that if an automorphism F ad-
mits a reduction of type II it can be reduced to an automorphism G with
degG < degF by a sequence of three elementary transformations, two of
which are linear. Similarly F admitting a reduction of type III can be re-
duced to an automorphism G with degG < degF by a sequence of three
elementary transformations, one of which is linear and another is of the form
(x1, x2, x3) 7→ (x1, x2−γx3−αx2

3, x3), i.e. quadratic. The type IV reduction
is even more complicated since it consists of a sequence of four elementary
transformations one of which is linear and two are quadratic. During the
reduction process in the type III and IV cases the degree may go up at the
intermediate steps, but finally becomes lower than degF . Now the main
theorem of [8] is:

Theorem 4.2. Every non-linear tame automorphism of k3 admits ei-
ther an elementary reduction or a reduction of one of the types I–IV.

Corollary 4.3. Let F = (f1, f2, f3) be a non-linear tame automor-
phism with f3 = x3. Then F admits an elementary reduction.

Proof. If F admits a reduction of one of the types I–IV then, as observed
before, deg fi > 1 for all i. Since deg f3 = 1 Theorem 4.2 implies that F
admits an elementary reduction.

Corollary 4.4. Let F be as in 4.3. Then F is tame iff (f1, f2) is tame
over k[x3].

Corollary 4.5. The Nagata automorphism σ : C3 → C3 is not tame.

5. Sketch of the proof of Theorem 4.2. To prove Theorem 4.2 we
introduce the class of so-called simple automorphisms.

Definition 5.1. By induction on degF we define simple automor-
phisms of k3. First, all automorphisms of degree 3, i.e. linear ones, are
simple; and if degF > 3 then F is called simple if it admits either an
elementary reduction or a reduction of one of the types I–IV to a simple
automorphism G (with degG < degF ).

Theorem 4.2 can then be reformulated as

Theorem 5.2. If F is tame, then F is simple.

The converse is obvious since every reduction is done by a sequence of
elementary transformations.

We are going to prove this theorem by contradiction. So suppose that
there exists a tame automorphism F of k3 which is not simple. Then we
have a sequence

F0 := F → F1 → · · · → Fl = I,
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where F0 is not simple, but Fl is simple. Let r be maximal such that Fr is not
simple. So r ≤ l−1. Then Fr →E Fr+1 with Fr not simple and Fr+1 simple.
Hence Fr+1 →E−1 Fr. So θ := Fr+1 and τ := Fr are tame automorphisms,
which satisfy: 1) θ → τ , 2) θ is simple, and 3) τ is not simple.

Amongst all pairs θ, τ satisfying 1), 2) and 3) we choose (once and for
all) one pair θ0, τ0 such that deg θ0 is minimal and we write θ0 = (f1, f2, f3).
Since θ0 → τ0 we have 3 cases:

(1) τ0 = (f1 + a(f2, f3), f2, f3),
(2) τ0 = (f1, f2 + a(f1, f3), f3),
(3) τ0 = (f1, f2, f3 + a(f1, f2)).

Since θ0 is simple there are 5 cases for θ0, namely θ0 admits either an
elementary reduction or a reduction of one of the types I–IV to a simple
automorphism.

The whole proof consists of showing that in each of the 15 cases τ0 is
simple, which is a contradiction since by definition it is not!

To get an idea of how the simplicity of τ0 is obtained, we consider from
these 15 cases only a relatively easy case, namely when τ0 is of the form (2)
and θ0 admits a reduction of type I to a simple automorphism. More precisely
we show

Proposition 5.3. If θ0 = (f1, f2, f3) admits a reduction of type I and
τ0 = (f1, f2 + a(f1, f3), f3), then τ0 is simple.

Proof. First we claim

(5.3.1) deg a(f1, f3) ≤ deg f2.

Namely, suppose deg a(f1, f3)> deg f2. Then deg τ0 > deg θ0. Also θ0→E τ0,
whence τ0 →E−1 θ0. So τ0 admits an elementary reduction to the simple
automorphism θ0 which has lower degree. So by the definition of simplicity
this implies that τ0 is simple, a contradiction. So (5.3.1) holds.

Now the point is that the estimation (5.3.1) gives a very strong restriction
on the form of the polynomial a(f1, f3). More precisely we get

Lemma 5.4. a(f1, f3) = βf3 + T (f1), β ∈ k∗, deg T (f1) < deg f2.

The proof of this lemma is the most technical part. Therefore we post-
pone its proof until the next section.

Now let us show how Lemma 5.4 enables us to prove Proposition 5.3.
First, since θ0 admits a reduction of type I we have

θ0 = (f1, f2, f3)→ (f1, f2 − αf3︸ ︷︷ ︸
:=g2

, f3)→ (g1, g2, f3 − g(g1, g2)︸ ︷︷ ︸
:=g3

)
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with g1 := f1, deg g2 = deg f2, deg g3 < deg f3, g1, g2 is a ∗-reduced pair,
G := (g1, g2, g3) is simple and deg [g1, g3] < sn+ deg [g1, g2]. By Lemma 5.4
we have τ0 = (f1, f, f3), where f := f2 + βf3 + T (f1) with T (f1) < deg f2.
Now we distinguish two cases.

Case 1: α + β 6= 0. We show that τ0 admits a reduction of type I to a
simple automorphism (hence τ0 is simple!) namely

τ0 = (f1, f, f3)→ (f1, f − (α+ β)f3, f3) = (f1, (f2 − αf3) + T (f1), f3)

= (g1, g2 + T (g1)︸ ︷︷ ︸
:=g′2

, f3)→ (g1, g
′
2, f3 − g(g1, g2)︸ ︷︷ ︸

=g3

) = (g1, g
′
2, f3 − g̃(g1, g

′
2)︸ ︷︷ ︸

=g3

).

To see that τ0 = (f1, f, f3) → (f1, f − (α + β)f3, f3) → (g1, g
′
2, g3) is a re-

duction of type I one also needs to check that deg g′2 = deg f , (g1, g
′
2) is a

∗-reduced pair and deg [g1, g3] < sn+deg [g1, g
′
2]. We leave this easy verifica-

tion to the reader. It remains to see that G′ := (g1, g
′
2, g3) is simple. Assume

that G′ is not simple. Since θ0 admits a reduction of type I to the simple
automorphism G = (g1, g2, g3) we see that G is simple and degG < deg θ0.
Also G → G′, since g′2 = g2 + T (g1). But G is simple and G′ is not simple.
Since degG < deg θ0 this gives a contradiction with the minimal choice of
θ0. So G′ is simple, which completes the proof of case 1.

Case 2: α + β = 0, i.e. β = −α. Now we will show that τ0 admits
an elementary reduction to a simple automorphism (hence τ0 is simple).
Namely we get

τ0 = (f1, f, f3) = (f1, f2 − αf3︸ ︷︷ ︸
=g2

+T (f1), f3) = (g1, g2 + T (g1)︸ ︷︷ ︸
:=g′2

, f3)

→ (g1, g
′
2, f3 − g(g1, g2)︸ ︷︷ ︸

=g3

) = (g1, g
′
2, f3 − g̃(g1, g

′
2)).

So τ0 = (f1, f, f3) → (g1, g
′
2, g3) is an elementary reduction. By the same

argument as above (g1, g
′
2, g3) is simple, which completes the proof of Propo-

sition 5.3.

6. The proof of Lemma 5.4. The aim of this section is to give the
complete proof of Lemma 5.4, thereby clearly demonstrating how the fun-
damental estimates given in Theorem 3.3 play a crucial role. So it suffices
to show

Theorem 6.1. Let (f1, f2, f3) be an automorphism of k3 which admits a
reduction of type I. If a ∈ 〈f1, f3〉 satisfies deg a ≤ sn, then a = βf3 +T (f1)
for some β ∈ k∗ and T (f1) ∈ 〈f1〉 with deg T (f1) < sn.

The main ingredient in the proof is
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Proposition 6.2. Let (f1, f2, f3) be as in 6.1. Then

(i) deg [f1, f3] > sn.
(ii) If a ∈ 〈f1, f3〉, then either a ∈ 〈f1, f3〉 or deg a > sn.

It is the second statement which gives sufficient control over the highest
degree part of a polynomial in 〈f1, f3〉 ! Before we prove this result let us
first show how it implies 6.1.

Proof of Theorem 6.1. Since deg a ≤ sn it follows from 6.2(ii) that a ∈
〈f1, f3〉, so a =

∑
cijf

i
1f

j
3 with

(6.1.1) ideg f1 + j deg f3 ≤ sn.

First we show that terms f i1f
j
3 with j ≥ 2 cannot appear in a: namely

if j ≥ 2 then deg f i1f
j
3 ≥ deg f2

3 > deg f1 + deg f3 (since deg f3 > 2n =
deg f1) ≥ deg [f1, f3] > sn (by 6.2(i)), which contradicts (6.1.1).

Also the terms with j = 1 and i ≥ 1 cannot appear in a: namely, for such
a term we have deg f i1f

j
3 ≥ deg f1 + deg f3 ≥ deg [f1, f3] > sn (by 6.2(i)),

contradicting (6.1.1) again.
So a = βf3 + λf r1 with r · 2n ≤ sn. Now observe that 2r is even and s

is odd, so 2rn < sn. Then consider a1 := a− βf3 − λf r1 . So deg a1 < deg a.
Repeating the above argument with a1 instead of a we obtain a1 = a1(f1)
and deg a1 < sn. Hence a = βf3 + T (f1) with deg T (f1) < sn.

Proof of Proposition 6.2. Since f3 is reducible by g1, g2 there exists
G(g1, g2) such that g3 := f3 − G(g1, g2) satisfies deg g3 < deg f3. So f3 =
G(g1, g2).

Claim. f3 6∈ 〈g1, g2〉 (so G(g1, g2) 6∈ 〈g1, g2〉).

Case 1: deg f3 = sn. Then deg f3 = deg f2 = deg g2 = sn. So g2 =
f2 − αf3. Now suppose that f3 ∈ 〈g1, g2〉 = 〈f1, f2 − αf3〉. Then, since
deg f3 = deg(f2 − αf3) = sn (s odd) and deg f 1 = 2n, it follows that
f3 = c(f2− αf3) for some c ∈ k∗. So f2 and f3 are linearly dependent over
k. In particular f3 ∈ 〈f2〉, contradicting the hypothesis that f 3 6∈ 〈f1, f2〉.

Case 2: deg f3 < sn. Then g2 = f2, so 〈g1, g2〉 = 〈f1, f2〉. Since by
hypothesis f3 6∈ 〈f1, f2〉 we get f3 6∈ 〈g1, g2〉, which completes the proof of
the claim.

(i) Observe that g1, g2 is 2-reduced. Write degy G = q · 2 + r with 0 ≤
r ≤ 1. If q = 0 then degy G = r ≤ 1 < 2 (= p). So it follows from 3.6 that
G ∈ 〈g1, g2〉, which contradicts the claim. So q ≥ 1. Then by 3.3 we get

sn ≥ f3 = degG(g1, g2) ≥ q(2 · sn− sn− 2n+ deg [g1, g2]) + sn · r.
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Since q ≥ 1 it follows that r = 0. So degy G = 2q is even. Hence degy ∂G/∂y
= 2(q − 1) + 1. So applying 3.3 to ∂G/∂y (whose “r” is 1) we get

(6.2.1) deg
∂G

∂y
≥ (q − 1)N(g1, g2) + sn · 1 ≥ sn.

Now observe that

[f1, f3] = [g1, g3 +G(g1, g2)] = [g1, g3] +
∂G

∂y
(g1, g2)[g1, g2].

Since deg [g1, g3] < deg [g1, g2]+sn by 4.1(b)(ii), and deg ∂G
∂y (g1, g2)[g1, g2] ≥

sn+ deg [g1, g2] (by (6.2.1)), we get

deg [f1, f3] ≥ sn+ deg [g1, g2] > sn.

(ii) Now let a ∈ 〈f1, f3〉, say a = G(f1, f3). If f1, f3 are algebraically
independent over k, then a ∈ 〈f 1, f3〉. So assume that f1, f3 are algebraically
dependent over k. Then f1, f3 is a 2-reduced pair (because deg f1 = 2n and
deg f3 = sn, with s odd). Write degy G = q · 2 + r with 0 ≤ r ≤ 1. If q = 0
then degy G = r ≤ 1 < 2 (= p), so by 3.6, a ∈ 〈f 1, f3〉. So let q ≥ 1. Then
by 3.3,

deg a = degG(f1, f3) ≥ qN(f1, f3) + sn · r ≥ N(f1, f3) > deg [f1, f3]

(by (1) in Section 3). Since deg [f1, f3] > sn by (i), this completes the proof
of 6.2.

7. Final comments. The method described in [8] even gives an algo-
rithm to decide if a given polynomial automorphism of k3 is tame. More
precisely it decides if a given automorphism F admits an elementary re-
duction or a reduction of one of the types I–IV. To decide if F admits a
reduction of one of the types I–IV one needs various technical parts of the
proof. Therefore we only show how one can decide if F admits an elementary
reduction.

So let F = (f1, f2, f3). We show how to decide if f3 is elementarily
reducible by f1, f2. If f1, f2 are algebraically independent over k, then f3

is reducible iff f3 ∈ 〈f1, f2〉 and this question is easy to decide either by
Gröbner basis methods or using the homogeneity of the f i. So assume that
f1, f2 are algebraically dependent over k. If f 2 ∈ 〈f1〉, then f2 = cf t1 for
some c ∈ k∗ and t ≥ 1. Observe that f3 is reducible in F iff it is reducible
in F ′ := (f1, f2− cf t1, f3). Since degF ′ < degF the desired result follows by
induction on the degree. A similar argument holds if f 1 ∈ 〈f2〉. So we may
assume that f1, f2 is a ∗-reduced pair and that deg f1 < deg f2.

Now suppose that f3 is reducible by f1 and f2. Then there exists a
polynomial G(x, y) ∈ k[x, y] such that f 3 = G(f1, f2). Write degy G = qp+r
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with 0 ≤ r < p. Then by 3.3 and the fact that N(f1, f2) ≥ 1 we get

deg f3 = degG(f1, f2) ≥ qN(f1, f2) +mr ≥ q.
So q ≤ deg f3. Also r < p ≤ deg f1. So degy G = qp + r ≤ C := deg f3 ·
deg f1 + deg f1. Similarly using the second degree estimate in 3.3 involving
degxG we get degxG ≤ C. Hence G(f1, f2) belongs to the finite-dimensional
k-vector space V generated by the monomials f i1f

j
2 with i, j ≤ C. So if

we define V to be the finite-dimensional k-vector space generated by the
highest degree homogeneous parts of the elements of V , then we infer that
f3 is reducible by f1 and f2 iff f3 belongs to V , and this question is easy to
decide by linear algebra.

To conclude this paper let us mention some interesting open problems.

Problem 1. Do there exist tame automorphisms of type II–IV?

Problem 2. What happens if k has positive characteristic? Do there
exist non-tame automorphisms of k3?

In this respect the following 2001 result of Stefan Maubach [4] is inter-
esting. If k is a finite field and F an automorphism of kn, then obviously it
induces a bijection on kn, which we denote by E(F ). So this bijection has a
sign, i.e. it is either odd or even.

Theorem 7.1. Let k = F2m with m ≥ 2. If F ∈ Autk kn is tame, then
E(F ) is even.

This leads to the following problem:

Problem 3. Let k = F2m with m ≥ 2. Does there exist F ∈ Autk k3

with E(F ) odd?

To formulate the last problem we make the following observations:
in 1942 Jung proved the 2-dimensional case of the tame generators prob-
lem, in 1972 Nagata constructed his candidate counterexample and finally
in 2002 Shestakov and Umirbaev solved the 3-dimensional case. This leads
to

The 30-years cycle problem. What happens in 2032?
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