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A FAMILY OF STATIONARY PROCESSES WITH INFINITE

MEMORY HAVING THE SAME p-MARGINALS.
ERGODIC AND SPECTRAL PROPERTIES

BY

M. COURBAGE and D. HAMDAN (Paris)

Abstract. We construct a large family of ergodic non-Markovian processes with infi-
nite memory having the same p-dimensional marginal laws of an arbitrary ergodic Markov
chain or projection of Markov chains. Some of their spectral and mixing properties are
given. We show that the Chapman–Kolmogorov equation for the ergodic transition matrix
is generically satisfied by infinite memory processes.

1. Introduction. According to the Kolmogorov theorem a stochastic
process is defined by the family of all compatible finite-dimensional distri-
butions. It is a natural question to ask about the existence or non-existence
of some subfamily of finite-dimensional marginal laws which completely de-
termine the process. In the case of a finite state space, there exist station-
ary ergodic processes which are completely determined by the family of
2-dimensional marginal laws [8].
In this paper, we characterize a class of Markovian and non-Markovian

processes non-uniquely determined by the above family. This means that if
X = (Xn), n ∈ Z, is an ergodic stationary process on a finite state space
K = {0, 1, . . . , k − 1}, then there is an ergodic process Y = (Yn), Yn ∈ K,
distinct from X such that the law of (Yn1 , . . . , Ynp) is equal to the law of
(Xn1 , . . . , Xnp), for any p-uple (n1, . . . , np) of integers. For Bernoulli pro-
cesses, well known examples of non-independent processes which are pair-
wise independent have been given by Lévy, Feller, Janson and Bradeley
(see references in [1], [3], [4]). Ergodic examples of such processes have
been given by Robertson and Womack [12], Flaminio [9], Bretagnolle and
Kłopotowski [1] and the authors [3]–[6]. In [3], [5] we constructed, in the
case of Markov chains with strictly positive transition matrix, a continuum
of non-Markovian processes having the same 2-dimensional marginal laws,
and we extended [4] that result to mixing Markov chains. This implies that

2000 Mathematics Subject Classification: 60Gxx, 28Dxx.
Key words and phrases: Chapman–Kolmogorov measure, Markov chain, infinite mem-

ory process, mixing subsets, spectral type, integral over an automorphism.

[159]



160 M. COURBAGE AND D. HAMDAN

the Chapman–Kolmogorov equation is also satisfied by non-Markovian pro-
cesses.

The construction given in [3]–[5] is extended here in order to provide new
ergodic processes having the same p-dimensional marginals as any ergodic
Markov chain or some family of non-Markovian functions of Markov chains.
Let σ be the left-shift transformation on KZ. In Sections 2 and 4, we give
a family of non-Markovian processes resulting from a mapping φn acting
on the set Mn of shift-invariant measures on K

n+1, n ≥ 1, into the set
M(KZ, σ) of all shift-invariant probability measures on KZ. We prove new
properties of φn(µ), µ ∈Mn (Lemmas 2 and 3 and Theorem 4), namely, φn
is one-to-one and marginals preserving. This allows us to reduce the con-
struction of the above family of processes to Mn. In [7] and [10], the last
problem is solved for 2-marginals and p-marginals respectively. In Section 5,
we prove that these processes have infinite memory and that the set of mea-
sures with infinite memory is dense in the class of measures having the same
2-dimensional marginals of any ergodic Markov chain. These shift dynamical
systems are also characterized as factors of an integral automorphism. This
allows us to show in Section 3 that they have countable Lebesgue spectrum
and finite point spectrum. We show that they have a continuum of mutually
mixing subsets, finite Pinsker σ-algebra and consequently positive entropy.
We characterize a family of functions with decaying correlations.

2. The class φnMn. Let K = {0, . . . , k − 1}, k ≥ 2. Let Ω = KZ be
the set of all doubly infinite sequences ω = (ωi), ωi ∈ K, i ∈ Z, and A the
σ-algebra generated by the cylindric sets {ω : ωi1 = j1, . . . , ωin = jn}, also
denoted by {ωi1 = j1, . . . , ωin = jn}. The shift transformation acts on Ω by
(σ(ω))i = ωi+1. We denote by M(Ω, σ) the set of all σ-invariant probability
measures on (Ω,A). We also denote by Mn, n ≥ 2, the set of all probability
measures on Kn+1 that are invariant under the shift, that is,

∑

y

µ({ω0 = y, ω1 = x0, . . . , ωp+1 = xp}) = µ({ω0 = x0, . . . , ωp = xp}),

0 ≤ p ≤ n− 1.
We assume that all the probability measures µ we consider are such that
µ({ω0 = y}) > 0 for all y.
We define a probability measure ν0 = ν0(µ) on K

N by the identity

(1) ν0({ω ∈ Ω : ω0 = x0, . . . , ωpn = xpn})
:= µ(x0, . . . , xn)µ(xn+1, . . . , x2n |xn) . . . µ(x(p−1)n+1, . . . , xpn |x(p−1)n)

for any positive integer p. Here and in what follows, µ(x0, . . . , xt) means
µ({ω ∈ Kn+1 : ω0 = x0, . . . , ωt = xt}) and µ(xs, . . . , xs+t |xs−1) means the
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conditional probability of the set {ω ∈ Kn+1 : ω1 = xs, . . . , ω1+t = xs+t}
given the set {ω ∈ Kn+1 : ω0 = xs−1}.
As ν0 is σ

n-invariant: σnν0 := ν0 ◦ σ−n = ν0, the measure

ν :=
1

n

n−1∑

i=0

σiν0

is σ-invariant. We denote by φnµ the measure on K
Z defined by

(φnµ)({ω ∈ Ω : ωl = x0, . . . , ωl+t = xt})
:= ν({ω ∈ KN : ω0 = x0, . . . , ωt = xt})

for any l ∈ Z.

The mapping φn can be identified with a mapping defined on the set
M(Ω, σ) of all σ-invariant measures on Ω. In fact, any µ ∈ Mn can be ex-
tended to a stationary n-order Markov chain on K. Conversely, the restric-
tion to the coordinates (ω0, . . . , ωn) of any measure from M(Ω, σ) belongs
to Mn. Thus, {φn : n ≥ 2} is a family of mappings from M(Ω, σ) into itself.
The measure φnµ is a function of a stationary Markov chain on an ex-

tended state space. The state space of this Markov chain is L =
⋃n+1
m=2K

m

where the only transition permitted leads from (x0, . . . , xm) to (x0, . . . ,
xm+1) with transition probability

(2) P(x0,...,xm),(x0,...,xm+1) = µ(xm+1 |x0, . . . , xm)
if 1 ≤ m ≤ n− 1, and
(3) P(x0,...,xn),(xn,xn+1) = µ(xn+1 |xn)
otherwise. The stationary probability row vector p(x0,...,xm) is equal to
n−1µ(x0, . . . , xm), 1 ≤ m ≤ n. Denoting this Markov chain by (zi), zi ∈ L,
i ∈ Z, we consider the function yi = f(zi), where

f(x0, . . . , xm) = xm, 1 ≤ m ≤ n.
It is straightforward to verify that the finite joint distributions of (yi) are
the same as those of φnµ.

There is another relation between φnµ and Markov chains. In fact, it is
straightforward to verify that ν0 is a σ

n-invariant measure isomorphic to
the Markov chain on the state space formed by the points (x0, . . . , xn−1) of
Kn such that µ(x0, . . . , xn−1) > 0 with transition matrix W defined by

(4) W(x0,...,xn−1),(y0,...,yn−1) = µ(y1, . . . , yn−1 | y0) · µ(y0 |x0, . . . , xn−1)
and the invariant row probability vector µ(x0, . . . , xn−1). The mapping θ :
KZ → (Kn)Z defined by
(5) (θ(ω))i = (ωin, . . . , ω(i+1)n−1)
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realizes the isomorphism between the Markov chain ((Kn)Z, σ, µW ) and
(KZ, σn, ν0), since θσ

n = σθ, and µW = ν0θ
−1.

It can be shown as in [5] that φnµ converges to µ in the w
∗-topology so

that
⋃∞
n=1 φnM(Ω, σ) is dense in M(Ω, σ).

We now characterize the case in which φnµ is a Markov chain.

We introduce some notation. If Π is a k × k stochastic matrix and p is
an invariant row probability vector, we denote by µΠ the stationary Markov
chain with initial probability distribution p and transition matrix Π. If µ ∈
M(Ω, σ), we define the stochastic transition matrices Ar(µ) by

(6) (Ar(µ))i,j := µ(ωr = j |ω0 = i)

for i, j ∈ K and r ∈ N; A1(µ) will be denoted by Π(µ) or simply Π. We
also denote by Rnµ the restriction of µ to K

n+1.

Lemma 1. Let µ ∈Mn and Π := A1(µ). Then we have the implications
(i)⇒(ii)⇒(iii)⇔(iv)⇔(v)⇒(vi), where:
(i) φnµ is strongly mixing ,

(ii) φnµ is weakly mixing ,

(iii) ν0(µ) is σ-invariant ,

(iv) Rnµ = RnµΠ ,

(v) ν0(µ) = µΠ ,

(vi) φnµ = µΠ .

If moreover Π is irreducible and aperiodic these assertions are equivalent.

Therefore, if a measure µ from Mn is distinct from the Markov measure,
then φnµ is non-weakly mixing and non-Markovian. We also know from [5]
that the only fixed points of φnRn are the Markov chains.

The next result shows that the mapping φn : Mn → M(Ω, σ) is one-to-
one.

Lemma 2. Let µ1, µ2 ∈Mn. If φnµ1 = φnµ2, then µ1 = µ2.

Proof. The proof is by induction. Let µ1, µ2 be such that φnµ1 = φnµ2.
Then µ1(x0, x1) = µ2(x0, x1). Suppose that µ1(x0, . . . , xp) = µ2(x0, . . . , xp)
for (x0, . . . , xp)-cylinders and 1 ≤ p ≤ m ≤ n− 1. We now compute

φnµ1(x0, . . . , xm+1) =
1

n

n−1∑

i=0

σiν0(x0, . . . , xm+1)

=
1

n

n−1∑

i=0

ν0(µ1)({ωi = x0, . . . , ωi+m+1 = xm+1})
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=
1

n

n−m−1∑

i=0

ν0(µ1)({ω0 = x0, . . . , ωm+1 = xm+1})

+
1

n

n−1∑

i=n−m

ν0(µ1)({ωi = x0, . . . , ωi+m+1 = xm+1})

=
n−m
n
µ1(x0, . . . , xm+1)

+
1

n

n−1∑

i=n−m

µ1(x0, . . . , xn−i)µ1(xn−i+1, . . . , xm+1 |xn−i).

Comparing this with the same expression for µ2, since in the above sum
1 ≤ n− i ≤ m, we obtain by induction

µ1(x0, . . . , xm+1) = µ2(x0, . . . , xm+1).

Now, we characterize the measures φnµ as factors of integrals of some
automorphisms of Ω. This provides a new proof of the ergodicity of φnµ.
We recall some useful definitions and results [2].

Definition 1. A dynamical system (Y,G, ν, S) is a measure preserving
automorphism S of the measure space (Y,G, ν). It is said to be a factor of
the dynamical system (X,F ,m, T ) if there exists a measurable map ϕ from
X onto Y such that m ◦ ϕ−1 = ν and ϕ ◦ T = S ◦ ϕ.
A factor of an ergodic system is ergodic.

Definition 2. Let (X,F ,m, T ) be a dynamical system and f ∈ L1(m).
The integral of (X,F ,m, T ) corresponding to f is defined to be the dynam-
ical system (Xf ,Ff ,mf , T f ) where

Xf = {(x, i) : x ∈ X, 1 ≤ i ≤ f(x)}, mf (A× {i}) = 1T
f dm

m(A)

and

T f (x, i) =

{
(x, i+ 1) if i+ 1 ≤ f(x),
(Tx, 1) if i+ 1 > f(x).

(Xf , T f ,mf ) is ergodic if and only if (X,T,m) is ergodic.

We consider a particular case relevant to our systems: let (X,T,m) be
the dynamical system with X = Ω, m = ν0(µ), T = σ

n and take f to be the
constant function on Ω with value n; we shall use the following notations:

Ω̃ = Ωf = Ω × {1, . . . , n},

T̃ (ω, i) =

{
T f (ω, i) = (ω, i+ 1) if i+ 1 ≤ n,
(σnω, 1) if i = n,
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and m̃(A × {i}) = mf (A × {i}) = m(A)/n. Let us define, as above, ν :=
n−1
∑n−1
i=0 m ◦ σ−i.

Theorem 1. With the notations above, (Ω, ν, σ) is a factor of (Ω̃, m̃, T̃ ).

Proof. Define the map ϕ : Ω̃ → Ω by ϕ(ω, i) = σiω. If A is a measurable
subset of Ω, we have ϕ−1(A) =

⋃n
i=1 σ

−iA× {i}; therefore

m̃(ϕ−1(A)) =
1

n

n∑

i=1

m(σ−iA) =
1

n

n−1∑

i=1

m(σ−iA) +
1

n
m(A) = ν(A).

Here we have used the invariance of m under T = σn. On the other hand,
ϕ ◦ T̃ = σ ◦ ϕ. In fact, if i+ 1 ≤ n we have

ϕ ◦ T̃ (ω, i) = ϕ(ω, i+ 1) = σi+1ω = σ(σiω) = σ ◦ ϕ(ω, i),
and if i = n, we have

ϕ ◦ T̃ (ω, n) = ϕ(σnω, 1) = σn+1ω = σ ◦ ϕ(ω, n).
Theorem 2. Let µ ∈ M(Ω, σ) and n ≥ 2. If An(µ) is irreducible the

system (Ω,φnµ, σ) is ergodic.

Proof. By the above theorem it suffices to show that (Ω, ν0(µ), σ
n) is

ergodic. To do this, recall (see (4)) that this system is isomorphic to the
Markov chain µW on the state space K

n with the transition matrix W
defined by

W(x0,...,xn−1),(y0,...,yn−1) = µ(y1, . . . , yn−1 | y0)µ(y0 |x0, . . . , xn−1)
and the invariant row probability vector µ(x0, . . . , xn−1).
Note that it is straightforward to verify that the dynamical system

(Ω, σν0(µ), σ
n) (which is isomorphic to the first one by σ) is isomorphic

to the Markov chain µW (1) on the state space K
n given by the transition

matrix

W
(1)
(x0,...,xn−1),(y0,...,yn−1)

= µ(y0, . . . , yn−1 |xn−1)
and the invariant row probability vector µ(x0, . . . , xn−1). The theorem now
results from the following lemma:

Lemma 3. With the above notations:

(i) W is irreducible ⇔ W (1) is irreducible ⇔ An(µ) is irreducible.
(ii) W is irreducible and aperiodic ⇔ W (1) is irreducible and aperiodic

⇔ An(µ) is irreducible and aperiodic.
Proof. (i) The first equivalence follows from the isomorphism mentioned

in the proof of the above theorem. Let us prove the second equivalence.
By definition W (1) is irreducible if and only if for every (x0, . . . , xn−1) and
(y0, . . . , yn−1) in K

n such that µ(x0, . . . , xn−1)µ(y0, . . . , yn−1) > 0, there
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exists an integer l and l points (xn, . . . , x2n−1), . . . , (xln, . . . , x(l+1)n−1) in
Kn such that

W
(1)
(x0,...,xn−1),(xn,...,x2n−1)

. . .W
(1)
(xln,...,x(l+1)n−1),(y0,...,yn−1)

> 0.

This inequality means

(7) µ(xn, . . . , x2n−1 |xn−1)µ(x2n, . . . , x3n−1 |x2n−1) . . .
. . . µ(xln, . . . , x(l+1)n−1 |xln−1)µ(y0, . . . , yn−1 |x(l+1)n−1) > 0.

Now for every j = 1, . . . , l we have

(8)
∑

xjn,...,x(j+1)n−2

µ(xjn, . . . , x(j+1)n−1 |xjn−1)

= µ(ωn = x(j+1)n−1 |ω0 = xjn−1)

= (An(µ))xjn−1,x(j+1)n−1 .

Suppose that An(µ) is irreducible. Then there is an integer l such that
[(An(µ))

l+1]xn−1,yn−1 > 0, that is, there are x2n−1, . . . , x(l+1)n−1 such that

(An(µ))xn−1,x2n−1(An(µ))x2n−1,x3n−1 . . . (An(µ))x(l+1)n−1,yn−1 > 0

and in view of (7) and (8) we see that W (1) is irreducible.

Conversely, suppose that W (1) is irreducible. Then, as µ(a)µ(b) > 0
for any a, b in K, there exist x0, . . . , xn−2, y0, . . . , yn−2 in K such that
µ(x0, . . . , xn−2, a)µ(y0, . . . , yn−2, b) > 0, so, by the irreducibility of W

(1)

there exists an integer l and l points inKn, (xjn, . . . , x(j+1)n−1), j = 1, . . . , l,
such that (7) is satisfied with xn−1 = a and yn−1 = b. But in view of (8)
this implies

(An(µ))a,x2n−1(An(µ))x2n−1,x3n−1 . . .

. . . (An(µ))xln−1,x(l+1)n−1(An(µ))x(l+1)n−1,b > 0.

Therefore [(An(µ))
l]a,b > 0 and the proof of (i) is complete.

The proof of (ii) is similar and will be omitted.

Another proof. We have shown above that φnµ is a function of a Markov
chain on the extended state space L. It can be seen, by calculations which
we omit, that this chain is irreducible if An is irreducible. But a function
of an ergodic process is ergodic, therefore, this gives a third proof of the
ergodicity of φnµ.

3. Decay of correlations, spectral and mixing properties. Let
(X,m, T = Sn) be a dynamical system and (Xf ,mf , T f ) its integral auto-
morphism defined in the preceding section, where f ≡ n. We denote
(Xf ,mf , T f ) by (X̃, m̃, T̃ ). We shall relate the spectrum of (X̃, m̃, T̃ ) to
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the spectrum of (X,m, T ). Denote by UT the unitary operator on L
2
m in-

duced by T : UT f = f ◦ T . We define UT̃ similarly.
It can be checked that the characteristic functions 1Ω×{i}, which we

denote by ei, are translated by UT̃ according to the relations

U
T̃
ei = ei−1 for 2 ≤ i ≤ n,

U
T̃
e1 = en.

We denote by V the subspace of L2m̃ generated by {ei}.

Theorem 3. If UT has countable Lebesgue spectrum in {1}⊥, then UT̃
has countable Lebesgue spectrum in the orthocomplement of V and a discrete
spectrum on V concentrated on the n roots of unity. The maximal spectral
type of T̃ is λ+

∑n−1
k=0 δ(2kπ/n) where λ is the Lebesgue measure.

Proof. For every i = 1, . . . , n denote by Hi the closed linear subspace of
all f ∈ L2m̃ such that f(x, j) = 0 for m-almost all x and all j 6= i. Clearly
the Hi are mutually orthogonal and L

2
m̃ =
⊕
iHi. Let {ep,q : p ∈ Z, q ∈ N}

be an orthonormal basis of L2m ⊖ 1 such that UT ep,q = ep+1,q for all p
and q. For every i = 1, . . . , n and all (p, q) ∈ Z × N define eip,q ∈ L2m̃
by eip,q(x, j) = ei(x, j)ep,q(x) a.e. Then {

√
n eip,q : p ∈ Z, q ∈ N} is an

orthonormal basis of Hi⊖ ei. Furthermore, UT̃ eip,q = ei−1p,q for 2 ≤ i ≤ n and
U
T̃
e1p,q = e

n
p+1,q. In fact, let (x, j) ∈ X̃; then for j < n and i 6= 1,

U
T̃
eip,q(x, j) = e

i
p,q(T̃ (x, j)) = e

i
p,q(x, j + 1) = ei(x, j + 1)ep,q(x)

= ei−1(x, j)ep,q(x) = e
i−1
p,q (x, j),

and for j = n we have

U
T̃
eip,q(x, n) = e

i
p,q(T̃ (x, n)) = e

i
p,q(Tx, 1) = ei(Tx, 1)ep,q(Tx) = 0

= ei−1(x, n)ep,q(x) = e
i−1
p,q (x, n).

Now for i = 1 and j + 1 ≤ n,

U
T̃
e1p,q(x, j) = e

1
p,q(T̃ (x, j)) = e

1
p,q(x, j + 1) = e1(x, j + 1)ep,q(x) = 0

= en(x, j)ep+1,q(x) = e
n
p+1,q(x, j)

and, finally,

U
T̃
e1p,q(x, n) = e

1
p,q(T̃ (x, n)) = e

1
p,q(Tx, 1)

= e1(Tx, 1)ep,q(Tx) = en(x, n)ep+1,q(x) = e
n
p+1,q(x, n).

Thus, we have shown that U
T̃
has a countable Lebesgue spectrum in the

orthocomplement of V .
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Now, U
T̃
, acting on V , is represented by the matrix

A =




0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . . . . .
0 0 0 . . . 1
1 0 0 . . . 0




which has the n roots of the unity as eigenvalues. Thus, the spectrum of
U
T̃
on V is simple and concentrated on the n roots of the unity. Then the

maximal spectral type of U
T̃
is λ+

∑n−1
k=0 δ(2kπ/n), where δ(a) is the Dirac

measure concentrated on {a} and λ is the Lebesgue measure.
The spectrum of U

T̃
in V ⊥ can be analyzed in terms of the spectrum of

UT |{1}⊥, when T has an arbitrary spectrum.
Theorem 4. Let h ∈ L2m and let hi ∈ L2m̃ be defined by hi(x, j) =

h(x)ei(x, j). Then:

(i) σhi is singular (resp. absolutely continuous, with respect to the Lebes-
gue measure) if and only if σh is singular (resp. absolutely continuous, with
respect to the Lebesgue measure).
(ii) σhi is discrete if and only if σh is discrete.

Proof. For t ∈ Z and r ∈ {0, 1, . . . , n− 1} we have

σ̂hi(nt+ r) = 〈hi, U
(nt+r)

T̃
hi〉 =

{
0 if r 6= 0,
n−1σ̂h(t) if r = 0.

Now we use the following lemmas to complete the proof of the theorem:

Lemma 4. Let σ1 and σ2 be two measures on the circle S
1 whose Fourier

coefficients satisfy σ̂1(tn) = σ̂2(t) for any t ∈ Z, where n is a fixed positive
integer. Then σ2 = σ1τ

−1 where τ is the mapping x 7→ τx = nx (mod 2π)
from S1 onto itself.

Lemma 5. Let σ1 and σ2 be two measures such that σ2 = σ1τ
−1 where

τx = nx (mod 1). Then

(i) σ1 is singular iff σ2 is singular to the Lebesgue measure λ.
(ii) σ1 is absolutely continuous (with respect to the Lebesgue measure λ)

iff σ2 is a.c. with respect to λ.
(iii) σ1 is discrete iff σ2 is discrete.

Now, we turn to the dynamical system (X,F , ν, S), where ν =
n−1
∑n−1
i=0 m ◦ S−i. We shall investigate mixing subsets of this system.

Definition 3. Two subsets A, B are said to be mutually mixing (or,
simply, mixing) for (X,F , ν, S) if ν(A ∩ S−nB) → ν(A)ν(B) as |n| → ∞.
A set A is called a mixing set if it is mixing with itself.
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Theorem 5. With the above notations, let (X,F ,m, Sn) be a dynamical
system with absolutely continuous spectrum. Consider (X,F , ν, S) where ν =
n−1
∑n−1
i=0 m ◦ S−i.
(i) The spectral measure of f ∈ L2ν is absolutely continuous with respect

to the Lebesgue measure if and only if\
f(Six) dm(x) = 0, ∀i.

(ii) A subset A ∈ F is mixing for (X,F , ν, S) if and only if
m(S−iA) = m(A), ∀i = 1, . . . , n.

(iii) If a subset A is mixing then A mixes with every set B.

Proof. (i) Recall that (X, ν, S) is a factor of (X̃, m̃, T̃ ) where T = Sn,
the factor map being (x, i) 7→ ϕ(x, i) = Six. Now the spectral measure of
f ∈ L2ν (relative to the unitary operator US) is also the spectral measure of
f ◦ϕ relative to the unitary operator U

T̃
. By the theorem above the spectral

measure of f ◦ ϕ is absolutely continuous with respect to the Lebesgue
measure if and only if f ◦ϕ is orthogonal to the ei’s, that is, 〈f ◦ϕ, ei〉 = 0.
But

〈f ◦ ϕ, ei〉 =
1

n

\
f ◦ ϕ(x, i) dm(x) = 1

n

\
f(Six) dm(x).

(ii) The subset A is mixing if the Fourier coefficients of the spectral
measure of f := 1A − ν(A) go to zero at infinity.
By the above theorem the Fourier coefficients of σf tend to zero at

infinity if and only if σf is absolutely continuous with respect to Lebesgue
measure and by (i) this is equivalent to

T
f(Six) dm(x) = 0. That is to say,T

1A(S
ix) dm(x)−ν(A) = 0 for all i, which means m(S−iA) = ν(A) for all i.

This is equivalent to m(S−iA) = m(A) for all i.
(iii) This is a general result for any dynamical system.

The next theorem shows the existence of mixing subsets in (X, ν, S).

Theorem 6. With the notations of the above theorem, for any t ∈ [0, 1]
there exists a set A ∈ F such that m(S−iA) = t for all i.
Proof. As m is weakly mixing for Sn it is non-atomic. The same holds

for m ◦ S−i for all i = 1, . . . , n − 1. Consider the R
n-valued measure F

defined on (Ω,F) by F (A) = (m(A),m(S−1A), . . . ,m(S−(n−1)A)). Then
F is non-atomic. Therefore, according to the Lyapunov convexity theorem
[11], F has a convex compact range in R

n. As F (Φ) = 0 and F (X) =
(1, 1, . . . , 1), tF (X)+ (1− t)F (Φ) = (t, t, . . . , t) is in the range of F for every
t ∈ [0, 1]; the theorem is proved.
Theorem 7. Let n ≥ 2 be an integer. Let S be a measurable transforma-

tion on the probability measure space (X,F ,m) such that Sn preserves m.
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We suppose that (X,F ,m, Sn) has an absolutely continuous spectrum and
that there exist C > 0 and λ ∈ [0, 1[ such that |m(A∩S−ntB)−m(A)m(B)| ≤
Cλt for all A,B in F . Let ν = n−1∑n−1i=0 m◦S−i. Then if A and B are two
mixing sets in (X,F , ν, S) we have |ν(A∩S−lB)− ν(A)ν(B)| ≤ Cλt, where
t is defined by l = nt+ r with r = 0, 1, . . . , n− 1.

Proof. Let A, B be two mixing sets in (X,F , ν, S). Then m(S−iA) =
ν(A) for all i and the same holds for B. Now for l = nt + r with r =
0, 1, . . . , n− 1 we have
|ν(A ∩ S−nt−rB)− ν(A)ν(B)|

=

∣∣∣∣
1

n

n−1∑

i=0

m(S−iA ∩ S−ntS−i−rB)−m(A)m(B)
∣∣∣∣

≤ 1
n

n−1∑

i=0

|m(S−iA ∩ S−nt(S−r−iB))−m(A)m(B)|

=
1

n

n−1∑

i=0

|m(S−iA ∩ S−ntS−r−iB)−m(S−iA)m(S−r−iB)|

≤ 1
n

n−1∑

i=0

Cλt = Cλt.

Corollary. Let n ≥ 2 and let µ ∈ Mn be such that An(µ) irre-
ducible and aperiodic. If two sets A, B are mixing for the dynamical system
(Ω,B(Ω), φnµ, σ) then they mix with an exponential rate.

Proof. The hypothesis An(µ) irreducible and aperiodic implies that
(Ω, ν0(µ), σ

n) is a mixing Markov chain. It is well known that a mixing
Markov chain has a countable Lebesgue spectrum and that it is exponen-
tially mixing with a uniform rate. Now the result follows from the theorem
above.

Theorems 5 and 6 give a description of the family of mixing subsets in
(Ω,B(Ω), φnµ, σ). A subset A ∈ B(Ω) is mixing if and only if

ν0(A) = ν0(σ
−1A) = . . . = ν0(σ

−n+1A).

Therefore, mixing cylindric subsets can be easily characterized in terms
of the measure µ. In particular, any cylinder based on two successive coordi-
nates is mixing. Moreover, it follows by direct calculations from the above
equalities that if any cylindric set of length n + 1 (equal to the dimension
of µ) is mixing then µ is Markovian. Therefore, for non-Markovian µ, there
is at least one cylindric set of length n+ 1 which is not mixing.
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Theorem 6 says that there is a continuum of mixing subsets for φnµ.
Nevertheless, we shall show the following proposition:

Proposition. If a dynamical system (Ω,A, µ, T ) is non-mixing then in
the space of measurable subsets endowed with the Nikodym metric d(A,B) =
µ(A△B), the family of all non-mixing subsets is open and dense (i.e., it is
generic).

Proof. Put f = 1A − µ(A), and denote the Fourier coefficients of the
spectral measure σf by σ̂f (n) = 〈UnT f, f〉. Then

σ̂f (n) = µ(A ∩ T−nA)− µ(A)2.
Therefore, by the Wiener lemma, σf is continuous if A is mixing. Now, the
convergence of An to A with respect to the Nikodym metric is equivalent
to the L2-convergence of the corresponding fn to f. As the subspace Hc of
continuous spectrum of U is closed in L2µ, this implies that the family of
mixing subsets of T is closed. Now, as the system is non-mixing, for any
ε > 0, there is a non-mixing measurable subset Aε of measure µ(Aε) < ε.
Let A be a mixing subset, and write A0ε = Aε ∩A and A1ε = Ac ∩Aε. Either
A0ε or A

1
ε is non-mixing. In the first case, the subset A \ A0ε is non-mixing

and in the second case A ∪ A1ε is non-mixing. In both cases, we obtain
non-mixing subsets as close to the mixing subset A as we want. This shows
that the family of non-mixing subsets is dense.

Therefore, although according to Sinai’s theorem, the above system hav-
ing positive entropy has a Bernoullian factor, this factor corresponds to a
rare family of subsets, since it is contained in the family of mixing subsets.

The Pinsker σ-algebra of φnµ. Recall that the Pinsker σ-algebra of a
dynamical system (X,F , µ, T ) is the smallest σ-algebra π(T ) that contains
all finite partitions P such that

h(T,P) = 0.
The Pinsker σ-algebra is invariant under T .

It follows that a set A ∈ F is in π(T ) if and only if h(T, {A,Ac}) = 0.
Now, we describe the Pinsker σ-algebra of (Ω,φnµ, σ) when (Ω, σ

n, ν0)
is ergodic. In this case, the measures ν0 ◦ σ−i are mutually singular. Let
B0, B1, . . . , Bn−1 be measurable subsets such that ν0(σ

−iBj) = δij .

Theorem 8. Under the above hypothesis, set ν = φnµ. Then:

(i) A set B is in the Pinsker σ-algebra of (Ω, ν, σ) if and only if it is
periodic, that is, there exists m > 0 such that σ−mB = B ν-a.e.

(ii) If (Ω, ν0, σ
n) has absolutely continuous spectrum, then the Pinsker

σ-algebra of (Ω,φnµ, σ) is generated by B0, . . . , Bn−1.
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Proof. (i) As explained in Section 2, (KZ, ν, σ) is a factor of the (p, P )
Markov chain (LZ, ν1, σ). Denote by ϕ the factor map and by P [resp. P1]
the Pinsker σ-algebra of (KZ, ν, σ) [resp. (LZ, ν1, σ)]. It is known that the
Pinsker σ-algebra of a Markov chain is the largest invariant σ-algebra con-
tained in the time zero σ-algebra of the chain, so P1 is finite. It follows that
for every A in P1, σ−mA = A for some integer m > 0, that is, the elements
of P1 are periodic. On the other hand it is clear that every periodic set is
in P1 so P1 is the σ-algebra of periodic sets with respect to σ (in fact since
P1 is finite we can take the same period). It follows that a set B is in P if
and only if there is m > 0 such that σ−mϕ−1B = ϕ−1B ν1-a.e.; but this
equality is equivalent to σ−mB = B ν-a.e. so (i) is proved.
(ii) Let B ∈ P. By (i) there is m > 0 such that σ−mB = B ν-a.e., and

for all t ∈ Z and r = 0, 1, . . . ,m− 1 we have
〈1B, Umt+rσ 1B〉 = ν(B ∩ σ−mt−rB) = ν(B ∩ σ−rB).

This proves that 1B has discrete spectral measure. Therefore, 1B ◦ ϕ is in
V and there exist scalars α1, . . . , αn such that 1B ◦ ϕ =

∑
j αjej ; hence for

every i and x, 1B(σ
ix) = αi, that is, 1σ−iB(x) = αi.

This implies each αi is 0 or 1 and ν0(σ
−iB) is 0 or 1. Let I = I(B) :=

{i : ν0(σ−iB) = 1}. We shall show that B =
⋃
i∈I Bi ν-a.e. In fact, if j ∈ I

we have

ν0 ◦ σ−j
(
B △
⋃

i∈I

Bi

)
≤ ν0 ◦ σ−j(B \Bj) + ν0 ◦ σ−j

(⋃

i∈I

Bi \B
)

≤ ν0(σ−jB \ σ−jBj) +
∑

i∈I

ν0(σ
−jBi \ σ−jB)

= ν0(σ
−jB \ σ−jBj) + ν0(σ−jBj \ σ−jB)

= ν0(σ
−jB △ σ−jBj) = 0,

and if j 6∈ I we have

ν0 ◦ σ−j
(
B △
⋃

i∈I

Bi

)
≤ ν0(σ−jB) + ν0

(
σ−j
⋃

i∈I

Bi

)

≤ ν0(σ−jB) +
∑

i∈I

ν0(σ
−jBi) = 0.

On the other hand Bi is in P for every i = 0, . . . , n− 1. In fact, in virtue
of (i) we have to show that there exists m > 0 such that σ−mBi = Bi ν-a.e.
or equivalently σ−mBi = Bi ν0 ◦ σ−j-a.e., for every j = 0, 1, . . . , n− 1. But
since ν0 is σ

n-invariant we have

ν0(σ
−j(σ−nBi)) = ν0(σ

−jBi) = δij ,

which proves σ−nBi = Bi ν0 ◦ σ−j-a.e. and so Bi is in P.
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Remarks. (i) If ν gives positive measure to all cylinders then the Pin-
sker σ-algebra of (Ω, ν, σ) contains no finite union B of cylinders, for other-
wise we must have ν(σ−mB ∩ Bc) = 0 for some m > 0, but Bc contains
cylinders and therefore σ−mB ∩Bc contains cylinders.
(ii) If ν0 gives positive measure to all cylinders then so does ν. It follows

that h(σ, {A,Ac}) > 0 for any cylinder A.

4. The class of p-dimensional marginals. Given a stochastic process
on a finite state space, is there another one, having identical p-dimensional
marginals? The family φnµ, µ ∈ Mn, gives an answer to this problem.
Lemma 2 states that φn is one-to-one and Theorem 9 (below) states that
it is marginals preserving. This allows us to reduce the construction of a
distinct process to the class Mn. In [7] and [10], the last problem is solved
for 2-marginals and p-marginals respectively for the ergodic Markov chains,
and more generally, for the φnµ processes.

Definition 4. (i) We define the family of p-marginals of µ ∈M(Ω, σ) to
be the family of joint distributions µ(ωn1 , . . . , ωnp) for any p-uple (n1, . . . , np)
of integers. We say a measure λ ∈ M(Ω, σ) has the same p-marginals as µ
if µ(ωn1 , . . . , ωnp) = λ(ωn1 , . . . , ωnp) for any p-uple as above.

(ii) We say that a measure µ in M(Ω, σ) has the Chapman–Kolmogorov
property (for short we write “µ is C.K.”) if the family (Ar(µ))r∈N forms a
semigroup of matrices, that is, Ar(µ) = (A1(µ))

r for every r ∈ N, where

(Ar(µ))i,j := µ(ωr = j |ω0 = i).

We start by proving a lemma which gives an expression of any two-
dimensional marginals of φnµ in terms of finitely many two-dimensional
marginals of µ in Mn.

Lemma 6. (i) We have A1(φnµ) = A1(µ) and for r = 2, . . . , n,

Ar(φnµ) =
n− r + 1
n

Ar(µ) +
1

n

r−1∑

i=1

Ai(µ)Ar−i(µ).

(ii) For l ∈ N
∗ and r ∈ {2, . . . , n− 1} we have

Aln+r(φnµ) =
1

n

[ n−r∑

i=0

An−i(µ)A
l−1
n (µ)Ar+i(µ)

+

n−1∑

i=n−r+1

An−i(µ)A
l
n(µ)Ar+i−n(µ)

]
,
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and for r = 0, 1,

Aln+r(φnµ) =
1

n

n−1∑

i=0

An−i(µ)A
l−1
n (µ)Ar+i(µ).

Proof. Let x, y ∈ K, and denote Ar(µ) by Ar.
(i) Let i ∈ {0, . . . , n− 1}. Then

σiν0(ω0 = x, ωr = y) = ν0(ωi = x, ωr+i = y)

=
∑

z

ν0(ω0 = z0, . . . , ωi−1 = zi−1, ωi = x,

ωi+1 = zi+1, . . . , ωr+i−1 = zr+i−1, ωr+i = y).

We consider two cases: r + i ≤ n and r + i > n. In the first case we obtain

σiν0(ω0 = x, ωr = y) =
∑

z

µ(z0, . . . , zi−1, x, zi+1, . . . , zn)

= µ(ωi = x, ωr+i = y) = µ(ω0 = x, ωr = y)

= µ(x)(Ar)x,y

and in the second case we can write

σiν0(ω0 = x, ωr = y)

=
∑

z

µ(z0, . . . , zi−1, x, zi+1, . . . , zr+i−1, y)µ(zn+1, . . . , zr+i−1, y | zn)

=
∑

z

µ(ωi = x, ωn = zn)µ(ωr+i−n = y |ω0 = zn)

=
∑

z

µ(x)µ(ωn−i = zn |ω0 = x)(Ar+i−n)zn,y

=
∑

z

µ(x)(An−i)x,zn(Ar+i−n)zn,y = µ(x)(An−iAr+i−n)x,y.

Hence

φnµ(ω0 = x, ωr = y) =
1

n

n−r∑

i=0

µ(x)(Ar)x,y

+
1

n

n−1∑

i=n−r+1

µ(x)(An−iAr+i−n)x,y.

So if we put n − i = j we obtain n − r + 1 ≤ i ≤ n − 1 ⇔ 1 ≤ j ≤ r − 1;
therefore

φnµ(ω0 = x, ωr = y) = µ(x)

[
n− r + 1
n

(Ar)x,y +
1

n

r−1∑

j=1

(AjAr−j)x,y

]
.
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(ii) We have

σiν0(ω0 = x, ωln+r = y) = ν0(ωi = x, ωln+r+i = y)

=
∑

z

ν0(ω0 = z0, . . . , ωi−1 = zi−1, ωi = x, ωi+1 = zi+1, . . . ,

ωln+r+i−1 = zln+r+i−1, ωln+r+i = y).

Then if r + i ≤ n we can write

σiν0(ω0 = x, ωln+r = y)

=
∑

z

µ(z0, . . . , zi−1, x, zi+1, . . . , zn)

× µ(zn+1, . . . , z2n | zn) . . . µ(z(l−1)n+1, . . . , zln | z(l−1)n)

× µ(zln+1, . . . , zln+r+i−1, y | zln)

=
∑

z

µ(ωi = x, ωn = zn)µ(ωn = z2n |ω0 = zn) . . .

. . . µ(ωn = zln |ω0 = z(l−1)n)µ(ωr+i = y |ω0 = zln)

= µ(x)
∑

z

(An−i)x,zn(An)zn,z2n . . . (An)z(l−1)n,zln(Ar+i)zln,y

= µ(x)(An−iA
l−1
n Ar+i)x,y,

and if r + i > n we have

σiν0(ω0 = x, ωln+r = y)

=
∑

z

µ(z0, . . . , zi−1, x, zi+1, . . . , zn)

× µ(zn+1, . . . , z2n | zn) . . . µ(zln+1, . . . , z(l+1)n | zln)

× µ(z(l+1)n+1, . . . , zln+r+i−1, y | z(l+1)n)

=
∑

z

µ(ωi = x, ωn = zn)µ(ωn = z2n |ω0 = zn) . . .

. . . µ(ωn = z(l+1)n |ω0 = zln)µ(ωln+r+i−(l+1)n = y |ω0 = z(l+1)n)

= µ(x)
∑

z

(An−i)x,zn(An)zn,z2n . . . (An)zln,z(l+1)n(Ar+i−n)z(l+1)n,y

= µ(x)(An−i(An)
lAr+i−n)x,y
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so

φnµ(ω0 = x, ωln+r = y)

= µ(x)
1

n

[ n−r∑

i=0

(An−iA
l−1
n Ar+i)x,y +

n−1∑

i=n−r+1

(An−iA
l
nAr+i−n)x,y

]
.

It is evident that for r = 0, 1 we have r + i ≤ n so the second term on the
right side does not exist; so for r = 0, 1,

φnµ(ω0 = x, ωln+r = y) =
1

n

n−1∑

i=0

(An−iA
l−1
n Ar+i)x,y.

Corollary. For µ ∈M(Ω, σ), the following are equivalent :
(i) Ar(µ) = (A1(µ))

r for r = 1, . . . , n.

(ii) Ar(φnµ) = (A1(φnµ))
r for r = 1, . . . , n.

(iii) Ar(φnµ) = (A1(φnµ))
r for r ∈ N.

Proof. The implication (iii)⇒(ii) is trivial. The implication (i)⇒(iii) fol-
lows from Lemma 6. We prove that (ii) implies (i) by induction on r. For
r = 1, Ar(µ) = (A1(µ))

r. Let r ≤ n − 1 and suppose As(µ) = (A1(µ))s for
s ≤ r. As A1(φnµ) = A1(µ), the property (ii) and Lemma 6 imply

(A1(µ))
r+1 =

n− r
n
Ar+1(µ) +

1

n

r∑

i=1

Ai(µ)Ar+1−i(µ).

Now 1 ≤ i ≤ r ⇔ 1 ≤ r + 1− i ≤ r; therefore for such an i,
Ai(µ)Ar+1−i(µ) = (A1(µ))

i(A1(µ))
r+1−i = (A1(µ))

r+1

so we obtain the equality

(A1(µ))
r+1 =

n− r
n
Ar+1(µ) +

r

n
(A1(µ))

r+1,

which is equivalent to Ar+1(µ) = (A1(µ))
r+1.

Theorem 9. (i) For every n, two measures λ, µ ∈ Mn have the same
p-marginals if and only if φnλ and φnµ have the same p-marginals.

(ii) Let λ, µ ∈ M(Ω, σ). If φnλ and φnµ have the same p-marginals for
infinitely many n, then λ and µ have the same p-marginals.

Proof. (i) Suppose λ, µ ∈Mn have the same p-marginals. It follows from
the definitions (see Lemma 6 for the case n = 2) that ν0(λ) and ν0(µ) have
the same p-marginals. The same is true for σjν0(µ) and σ

jν0(λ) for all j,
and thus for their respective arithmetic means. For (ii) we give the proof for
the case p = 2. Let s ∈ N; so there is n ≥ s such that φnλ and φnµ have
the same 2-marginals; hence for every r, Ar(φnλ) = Ar(φnµ); therefore it
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follows by Lemma 6 that A1(λ) = A1(µ), and for every r = 2, . . . , n,

n− r + 1
n

Ar(λ) +
1

n

r−1∑

i=1

Ai(λ)Ar−i(λ)

=
n− r + 1
n

Ar(µ) +
1

n

r−1∑

i=1

Ai(µ)Ar−i(µ),

i.e.

(n− r + 1)(Ar(λ)−Ar(µ)) =
r−1∑

i=1

[Ai(µ)Ar−i(µ)−Ai(λ)Ar−i(λ)],

which by induction on r implies Ar(λ) = Ar(µ) for every r ≤ n and so for
r = s. This also proves the second part of (i).

Is it possible to obtain, by using φn, measures distinct from any ergodic
non-Markovian measure µ and having the same 2-marginals? This would be
possible if φnµ had the same marginals as µ, for φnµ is necessarily distinct
from µ (recall that the Markov chains are the only fixed points of φn). But,
surprisingly, there are no measures other than the Chapman–Kolmogorov
measures for which φnµ has the same 2-marginals as µ. This is shown in the
following theorem:

Theorem 10. For a measure µ ∈ M(Ω, σ), let Cµ be the equivalence
class consisting of the measures in M(Ω, σ) having the same 2-marginals as
µ. Then the following are equivalent :

(i) µ is a Chapman–Kolmogorov (C.K.) measure.
(ii) There is n ≥ 2 such that φnµ ∈ Cµ.
(iii) φnµ ∈ Cµ for all n ≥ 2.
(iv) There is n0 such that φnµ is C.K. for all n ≥ n0.
(v) φnµ is C.K. for all n ≥ 2.
Proof. The implications (iii)⇒(ii) and (v)⇒(iv) are trivial. By (i)⇒(iii)

of the Corollary above we see that (i) implies (v). We complete the proof by
showing that (ii) implies (i) and that (iv) implies (iii).
Suppose (ii) and let n ≥ 2 be such that φnµ ∈ Cµ so Ar(φnµ) = Ar(µ)

for r ∈ N. By Lemma 6(i) we have A1(φnµ) = A1(µ) and

Ar(φnµ) =
n− r + 1
n

Ar(µ) +
1

n

r−1∑

i=1

Ai(µ)Ar−i(µ) for r = 2, . . . , n.

Therefore

Ar(µ) =
n− r + 1
n

Ar(µ) +
1

n

r−1∑

i=1

Ai(µ)Ar−i(µ) for r = 2, . . . , n.
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As i ∈ {1, . . . , r−1} if and only if r−i ∈ {1, . . . , r−1} it follows by induction
on r that

Ar(µ) = (A1(µ))
r for r = 1, . . . , n.

Now if l ∈ N
∗ and r ∈ {0, 1, . . . , n− 1} we see directly by Lemma 6(ii) that

Aln+r(µ) = (A1(µ))
ln+r;

thus (ii) implies (i).

Finally suppose (iv), so for every n ≥ n0 we have Ar(φnµ) = (A1(φnµ))r
for r = 1, . . . , n; but in view of (ii)⇒(i) of the Corollary above this implies
Ar(µ) = (A1(µ))

r for r = 1, . . . , n and so (iv)⇒(i); but (i) implies (iii) by
the Corollary above and the equalities A1(φmµ) = A1(µ), m ≥ 2, so (iv)
implies (iii).

Remark. We can replace (iv) by

(iv)′ There are infinitely many n such that φnµ is C.K.

5. Infinite memory chains. An invariant measure which is not a
Markov chain of a finite order is called a chain of infinite memory . We
show that the φnµ’s have infinite memory and that the set of measures
with infinite memory is dense in the class of 2-marginals of ergodic Markov
chains. We first need the following lemma proved essentially in [5].

Lemma 7. Let µ1, . . . , µr be a family of distinct irreducible Markov
chains on the same finite state space E. Suppose that there exist two dis-
tinct indices i and j such that for every state y ∈ E there is a state x with
µi(x, y)µj(x, y) > 0. Then every non-trivial convex combination

∑
i αiµi of

µi’s has infinite memory.

Theorem 11. Let µ ∈Mn and n ≥ 2. If µ is not Markovian and An(µ)
is irreducible then φnµ has infinite memory.

Proof. Let θ be the canonical isomorphism between n-order Markov
chains and Markov chains of order 1 (described in §2 for the measure
ν0). If φnµ is a p-order Markov chain it is a pn-order Markov chain and
therefore θ(φnµ) is also a p-order Markov chain on K

n. Then θ(φnµ) is a
barycenter of the Markov chains θ(σiν0), i = 1, . . . , n. Since the σ

iν0 for
distinct i’s are isomorphic, so also are the θ(σiνn). Then Lemma 3 asserts
that they are irreducible. Also Lemma 1 shows that ν0 and σν0 are dis-
tinct. Then all we need to show is that they satisfy the last hypothesis in
Lemma 7. So, let b = (y0, . . . , yn−1) ∈ Kn and let us prove that there exists
a = (x0, . . . , xn−1) ∈ Kn such that
(9) θ(ν0)(a, b)θ(σν0)(a, b) > 0.
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Now

θ(ν0(a, b)) = µ(x0, . . . , xn−1)µ(y0 |x0, . . . , xn−1)µ(y1, . . . , yn−1 | y0),
θ(σν0(a, b)) = µ(x0, . . . , xn−1)µ(y0, . . . , yn−1 |xn−1).

Thus (9) is true if and only if there is some (x0, . . . , xn−1) ∈ Kn such that
µ(x0, . . . , xn−1)µ(x0, . . . , xn−1, y0)µ(y0, . . . , yn−1)

× µ(xn−1, y0, . . . , yn−1) > 0,
that is, if and only if for some (x0, . . . , xn−1) ∈ Kn,
(10) µ(x0, . . . , xn−1, y0)µ(xn−1, y0, . . . , yn−1) > 0.

But this is true: in fact, take xn−1 ∈ K such that µ(xn−1, y0, . . . , yn−1) > 0.
It follows that µ(xn−1, y0) > 0; thus we can find x0, . . . , xn−2 ∈ K such that
µ(x0, . . . , xn−1, y0) > 0 so for this a = (x0, . . . , xn−1) we obtain the two
inequalities

µ(x0, . . . , xn−1, y0) > 0, µ(x0, . . . , xn−1)µ(xn−1, y0, . . . , yn−1) > 0,

which are equivalent to (10).

Corollary. If Π is a k × k stochastic matrix , denote CµΠ by CΠ .
(i) If Πn is irreducible and µ in CΠ,n is such that µ 6= µΠ , then φnµ

has infinite memory.

(ii) If Π is irreducible and aperiodic and µ in CΠ is such that Rnµ 6= µΠ ,
then φnµ has infinite memory.

Thus, the set SΠ =
⋃
φnCΠ,n \ µΠ consists of infinite memory chains if

Π is aperiodic and irreducible.

Theorem 12. If Π is irreducible then the set of all measures in CΠ with
infinite memory is a Gδ-dense set in CΠ .

Proof. Let µ ∈ CΠ and µ 6= µΠ . Then there exist at most a finite
number of n such that Rnµ = µΠ . We know that for all n sufficiently large,
φnRnµ 6= µΠ and converges to µ. The result will follow from (i) of the
above Corollary. In fact, one can show that the irreducibility of Π implies
that there are an infinite number of irreducible powers, denoted by Πnk ,
of Π. Then φnkRnkµ has infinite memory and converges to µ.
If µ = µΠ , let V be a neighborhood of µΠ . We have seen in [7] that CΠ

contains measures distinct from µΠ . Then there is such a measure also in V
because CΠ is convex. We call it ν. Again, all but a finite number of Rnν
are non-Markovian. As φnRnν → ν, it follows, as above, that the φnkRnkν
have infinite memory and belong to V for large k.
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