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COMPUTATION OF SOME EXAMPLES OF BROWN’S

SPECTRAL MEASURE IN FREE PROBABILITY

BY
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Abstract. We use free probability techniques to compute spectra and Brown mea-
sures of some non-hermitian operators in finite von Neumann algebras. Examples include
un+u∞ where un and u∞ are the generators of Zn and Z respectively, in the free product
Zn ∗ Z, or elliptic elements of the form Sα + iSβ where Sα and Sβ are free semicircular
elements of variance α and β.

1. Introduction. Recently Haagerup and Larsen [9] have computed
the spectrum and the Brown measure of R-diagonal elements in a finite von
Neumann algebra, in terms of the distribution of its radial part. (See also
[19] for a combinatorial approach.) The purpose of this paper is to apply
free probability techniques for computing spectra and Brown measures of
some non-hermitian and non-R-diagonal elements in finite von Neumann
algebras, which can be written as a free sum of an R-diagonal element and
an element with arbitrary ∗-distribution.
Motivations for this study are twofold. On the one hand some of these

elements appear as transition operators of random walks on groups or semi-
groups (see e.g. [10], [11], [2]); here we shall for example treat linear combi-
nations of un and u∞, the generators of Zn and Z in Zn∗Z and u2+v2+u∞.
On the other hand random matrix theory has a close connection with free
probability (see [21]), but for the moment very little has been done for un-
derstanding limit distributions of spectra of non-normal matrices in terms of
free probability. For example, the empirical distribution on the eigenvalues
of a random matrix with independent identically distributed complex en-
tries, suitably rescaled, converges, with probability one, as its size grows to
infinity, to the circular law (the uniform distribution on the unit disk; see [6],
[7], [1]), which is the Brown measure for a circular element, in the sense of
Voiculescu. It is known that the circular element is the limit in ∗-distribution
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of the above random matrices, but it is not possible to deduce from this the
convergence of the empirical distribution on the spectrum (see Lemma 2.1
below).

Another example that we shall consider in this paper is the free sum of
an arbitrary element with a circular element. Hopefully, the corresponding
Brown measures should represent the limit of eigenvalue distributions of
random matrices of the form A +W where A is a matrix with some limit
∗-distribution, and W is a matrix with independent entries. In addition to
the circular element discussed above, this is known to be true for the so-
called elliptic element , which can be written as Sα + iSβ and whose Brown
measure was first computed in [15] by ad-hoc methods. It turns out to be
treatable by our method as well. The empirical eigenvalue distribution of
its matrix model with Gaussian random matrices is computed in [12] and
shown to converge to the uniform measure on its spectrum, an ellipse.
However in this paper we shall stick to the purely free probabilistic as-

pects of the subject, and not touch upon the random matrix problem. We
hope to deal with this elsewhere.
This paper is organized as follows. In Section 2 we recall preliminary

facts about Brown measures and free probability theory. In Section 3 we
give a general approach towards the computation of the Brown measure
for the sum of an R-diagonal element with an arbitrary element. We spe-
cialize in Sections 4 and 5 to the cases where the R-diagonal element is a
Haar unitary or a circular element, respectively. We close with some final
remarks in Section 6. The pictures of random matrix spectra appearing in
various sections of this papers were computed with GNU octave and plot-
ted with gnuplot; the plots of densities of various Brown measures, which
accompany or replace the rather unwieldy density formulae, were computed
with Mathematica.
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Schrödinger Institute in Vienna in spring 1999, organized by the Institut
für Funktionalanalysis of the University of Linz and its head J. B. Cooper.
The second author was supported by the EU-network “Non-commutative
geometry” ERB FMRX CT960073.

2. Preliminaries

2.1. The Fuglede–Kadison determinant and Brown’s spectral measure.

Let M be a finite von Neumann algebra with faithful tracial state τ and
denote, for invertible a ∈ M, by ∆(a) = eτ(log |a|) its Fuglede–Kadison
determinant (cf. [5]). Denoting by µx the spectral measure for the self-adjoint
element x ∈M, i.e. the unique probability measure on the real line satisfying
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τ(xn) =
T
tn dµ(t), we have the following formula for the logarithm of the

determinant, which serves as a definition of the determinant in the case
where a is not invertible:

log∆(a) =
\
R

log t dµ|a|(t).

The function ∆(λ−a) is a subharmonic function of the complex variable λ,
and there is a unique probability measure µa on C, with support on the
spectrum of a, called the Brown measure of a, such that

log∆(λ− a) =
\
log |λ− z|µa(dz);

it is given by

µa =
1

2π
∇2 log∆(λ− a)

where ∇2 is the Laplace operator in the complex plane, in the sense of
distributions (see [4]). If a is normal, then µa is just the spectral measure
of a. When M is Mn(C), with the canonical normalized trace, then µa is
the empirical distribution on the spectrum of a (counting multiplicities).
Although the Brown measure of a can be computed from its ∗-distribution,
i.e. the collection of all its ∗-moments τ(aε1 . . . aεn), where aεj is either a
or a∗, it does not depend continuously on these ∗-moments. Indeed let for
example an be the n × n nilpotent matrix with ones on the first upper
diagonal and zeros elsewhere; then as n goes to infinity the ∗-moments of
an converge towards those of a Haar unitary (a unitary element u with
τ(un) = 0 for n 6= 0) whose Brown measure is the Haar measure on the unit
circle, whereas the Brown measure of an is δ0 for all n.

Lemma 2.1. Let (an;n ≥ 0) be a uniformly bounded sequence whose
∗-distributions converge towards that of a, and suppose the Brown measure
of an converges weakly towards some measure µ. Then:

(i)
T
log |λ− z|µ(dz) ≤ ∆(λ− a) =

T
log |λ− z|µa(dz) for all λ ∈ C,

(ii)
T
log |λ − z|µ(dz) = ∆(λ − a) =

T
log |λ − z|µa(dz) for all λ large

enough.

Proof. The distribution of |λ − an| has a support which remains in a
fixed compact set, and it converges weakly towards that of |λ− a|. Part (i)
follows from this and the fact that the function log is a limit of a decreasing
sequence of continuous functions. If λ is large enough, then the union of
the supports of the distributions of the |λ − an| is away from 0, hence the
function log is continuous there and (ii) follows from weak convergence.

The outcome of (i) of the lemma is that the measure µa is a balayée of µ,
while from (ii) we get the following
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Corollary 2.2. Let Ua be the unbounded connected component of the
complement of the support of µa. Then the support of µ is included in C\Ua.
Proof. The functions

T
log |λ− z|µa(dz) and

T
log |λ− z|µ(dz) are har-

monic and subharmonic in Ua, respectively, hence their difference is a non-
negative superharmonic function on Ua. Since this function attains the value
0 by (ii), it is identically 0 by the minimum principle, so

T
log |λ− z|µ(dz)

is harmonic on Ua, and thus the support of µ is included in C \ Ua.
Conversely, given two measures µ and µa on C satisfying (i) and (ii), we

do not know whether there always exists a corresponding sequence (an)n≥0,
satisfying the hypotheses of Lemma 2.1.

2.2. R- and S-transforms.We shall refer to [21], and [20] or [13] for basic
concepts of free probability theory. Let (M, τ) be as in Section 2.1, and let
a ∈M. The power series

Ga(ζ) =
1

ζ

∞∑

n=0

τ(an)

ζn

can be inverted (for composition of formal power series), in the form

Ka(z) =
1

z
+

∞∑

n=0

cn+1z
n =
1

z
(1 +Ra(z)).

The power series Ra is called the R-transform of a (note that this slightly
differs from the original definition of Voiculescu) and its coefficients are
called the free cumulants of a. Let

ψa(z) =
∞∑

n=1

τ(an)zn =
1

z
Ga

(
1

z

)
− 1

be the generating moment series for a, and assume that the first moment is
non-zero, so that ψ′a(0) 6= 0. Then ψa has an inverse χa, and the S-transform
of a is defined as

Sa(z) =
1 + z

z
χa(z).

Observe that the power series zSa(z) and Ra(z) are then inverses of each
other (when the mean is non-zero). The relevance of these series to free
probability is that, if a, b ∈M are free, then

Ra+b = Ra +Rb and Sab = SaSb

(see e.g. [21]).

2.3. Calculus of R-diagonal elements. We use the same notations as in
the previous section.
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Definition 2.3. A non-commutative random variable x is called R-
diagonal if x has polar decomposition x = uh, where u is a Haar unitary
free from the radial part h = |x|.

Recall that a unitary u ∈ M is called a Haar unitary if τ(un) = 0
for all integers n 6= 0. One can check that the product of an arbitrary
element y with a free Haar unitary is an R-diagonal element. According
to [9], any R-diagonal element with polar decomposition x = uh has the

same distribution as a product ah̃, where h̃ has a symmetric distribution,
and its absolute value is distributed as h, whereas a is a self-adjoint unitary,
free from h̃, and of zero trace. Indeed, one can assume h̃ = a′h, where
a′ is a symmetry commuting with h and aa′ is a Haar unitary free from
h. Let a, b be two free R-diagonal elements. Then one has equality in ∗-
distribution of the pairs (a, b) and (ua, ub) where u is a Haar unitary free
from {a, b}, therefore a+ b has the same ∗-distribution as u(a+ b) which is
R-diagonal, and thus the sum of two free R-diagonal elements is again R-
diagonal. Let fx(z

2) = Rh̃(z) be the cumulant series of h̃, which determines
the ∗-distribution of x. Then the power series z(1+ z)Sx∗x(z) and fx(z) are
inverses of each other. Furthermore if a, b are two free R-diagonal elements,
then

(2.1) fa+b = fa + fb.

See [17], [18] and [9].

2.4. Brown measure of R-diagonal elements. In [9] the Brown measure
of an R-diagonal element is determined as follows.

Theorem 2.4 ([9, Thm. 4.4, Prop. 4.6]). Let u, h be ∗-free random vari-
ables in (M, τ), with u a Haar unitary and h positive such that the distri-
bution µh of h is not a Dirac measure. Then the Brown measure µuh of uh
has the following properties.

(i) µuh is rotation invariant and its support is the annulus with inner
radius ‖h−1‖−12 and outer radius ‖h‖2.
(ii) The S-transform Sµ

h2
of h2 has an analytic continuation to a neigh-

bourhood of ]µh({0}) − 1, 0] and its derivative S′µ
h2
is strictly negative on

this interval and its range is Sµh2 (]µh({0})− 1, 0]) = [‖h‖
−2
2 , ‖h−1‖22[.

(iii) µuh({0}) = µh({0}) and for t ∈ ]µh({0}), 1],

µuh

(
B

(
0,

1√
Sµ
h2
(t− 1)

))
= t.

(iv) µuh is the only rotationally symmetric probability measure satisfy-
ing (iii).
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(v) If h is invertible then σ(uh) = suppµuh, i.e., the annulus discussed
above.

(vi) If h is not invertible then σ(uh) = B(0, ‖h‖2).
The proof involves a formula for the spectral radius of products of free

elements.

Proposition 2.5 ([9, Prop. 4.1]). Let a, b be ∗-free centred elements in
M. Then the spectral radius of ab is

̺(ab) = ‖a‖2‖b‖2.
In particular, an R-diagonal element a = uh can be written as u1u2h,

with free Haar unitaries u1, u2 and therefore its spectral radius is ̺(a) =
‖u1‖2 ‖u2h‖2 = ‖a‖2.

3. Adding an R-diagonal element. In this section we give a general
approach to computing the Brown measure of the sum of a random variable
with an arbitrary distribution and a free R-diagonal element. So we let a be
an arbitrary element, h be self-adjoint and u a Haar unitary, with {a, u, h}
forming a free family.

3.1. The spectrum of a+ uh. The spectrum of a+ uh is determined as
follows. For λ 6∈ σ(a), λ−a−uh is invertible if and only if 1−uh(λ−a)−1 is
invertible. If h is not invertible, then by the result of Haagerup and Larsen
on R-diagonal elements, the latter is the case if and only if

(3.1) ‖h(λ− a)−1‖2 = ‖h‖2 ‖(λ− a)−1‖2 < 1;
if h is invertible, we get the additional possibility that 1 < ‖h−1‖2 ‖λ− a‖2.
In this case we can look at (uh)−1(λ− a)− 1.
The case where λ ∈ σ(a) must be considered individually. Complications

arise for those λ for which λ ∈ σ(a) but ‖(λ − a)−1‖2 < ∞. Otherwise
condition (3.1) will be satisfied when approaching λ from the outside of
σ(a), so that λ lies in the closure of the spectrum of a + uh, hence in the
spectrum.

3.2. The Brown measure of a+ uh. We can assume that u = u∗1u2 with
u1 and u2 Haar unitaries, where {u1, u2, a, h} is a free family, to get

log∆(λ− a− uh) = τ(log |u∗1(u1(λ− a)− u2h)|)
= τ(log |u1(λ− a)− u2h|)
=
\
log |z| dµu1(λ−a)−u2h(z)

and this is the Fuglede–Kadison determinant of xλ = u1(λ−a)−u2h, which
is an R-diagonal element whose ∗-distribution can be computed according
to (2.1), i.e. fxλ = fu1|λ−a| + fu2h. This in turn will yield the S-transform
of x∗λxλ, and then by Theorem 2.4, we can compute log∆(λ− a− uh).
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To proceed further, we need the determining series fxλ .

Lemma 3.1. Let x be an R-diagonal element. Then

(3.2)

(
1

z
(1 + fxλ(z))

)〈−1〉
(ζ) =

1

ζ

(
1 +Rx∗λxλ

(
1

ζ

))
.

Proof. Let x = uh be the polar decomposition of x and denote by h̃ the
symmetrization of the positive part h. Recall that fx(z

2) = Rh̃(z) and let
ζ = 1z (1 + fx(z)) = Kh̃(

√
z)/
√
z. We need to show that

1

ζ

(
1 +Rxx∗

(
1

ζ

))
= z.

To see this, note that

Gxx∗(v
2) = Gh2(v

2) =
Gh̃(v)

v

and therefore with v = Kh̃(
√
z) = ζ

√
z we have

Gxx∗(Kh̃(
√
z)2) =

√
z

Kh̃(
√
z)
=
1

ζ
;

applying Kxx∗ to both sides of this equation yields

zζ2 = Kxx∗

(
1

ζ

)
= ζ

(
1 +Rxx∗

(
1

ζ

))
,

which is the claimed formula.

To be more specific, assume that a is self-adjoint. Then the computation
of the distribution of (λ− a)∗(λ− a) is conveniently accomplished by using
the Cauchy transform of a, namely factorizing ζ−|λ−x|2 = (x−x+)(x−x−)
with

(3.3) x± =
1

2
(λ+ λ±

√
(λ− λ)2 + 4ζ) = Reλ± i

√
(Imλ)2 − ζ

and expanding into partial fractions

1

ζ − |λ− x|2 =
1

x+ − x−

(
1

x+ − x
− 1

x− − x

)

we get

(3.4) G|λ−a|2(ζ) =
\ dµa(x)

ζ − |λ− x|2 =
Ga(x+)−Ga(x−)

x+ − x−
.

Using the same technique one can compute the 2-norm of the inverse of
λ− a. Indeed, as a is self-adjoint we have
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‖(λ− a)−1‖22 =
\dµa(x)
|λ− x|2 =

\ dµa(x)

(λ− x)(λ− x)
(3.5)

=
1

λ− λ
\( 1

λ− x
− 1

λ− x

)
dµa(x)

= −Ga(λ)−Ga(λ)
λ− λ

.

Consider the simplest non-trivial random variable, namely a = u2 =[
0
1
1
0

]
, having 2-point spectrum, so that |λ−u2|2 has a Bernoulli distribution.

The R-transform of |λ − u2|2 = 1 + |λ|2 + (λ + λ)u2 is easily computed to
be

Rx∗λxλ(z) = (1 + |λ|
2) z +

1

2
(
√
1 + 4(λ+ λ)2z2 − 1)

and inverting it according to (3.2) leads to an equation of fourth degree,
which is apparently unsuitable for further computations. So even this simple
case seems to be intractable by this method. In fact, so far we have no
concrete example where the general method above can be carried out to the
end. We shall develop other methods, in the next two sections, in order to
treat the cases where the R-diagonal element is a Haar unitary or a circular
element.

4. Haar unitary case. Now a is an element with an arbitrary distri-
bution, free from a Haar unitary u.

4.1. The spectrum. The spectrum of a + u is determined as follows:
one has λ ∈ σ(a + u) if and only if 1 ∈ σ(u∗(λ − a)) and since the latter
is R-diagonal, we infer from Theorem 2.4 that a necessary and sufficient
condition is

(4.1) ‖(λ− a)−1‖−12 ≤ 1 ≤ ‖(λ− a)‖2
if λ 6∈ σ(a); otherwise the condition is simply 1 ≤ ‖λ− a‖2.
4.2. First approach to the Fuglede–Kadison determinant. We get the

following formula for the Fuglede–Kadison determinant:

log∆(λ− a− u) = τ(log |λ− a− u|) = τ(log |u∗(λ− a)− 1|)(4.2)

=
\
log |z − 1| dµu∗(λ−a)(z).

Observe that u∗(λ − a) is an R-diagonal element, and we can evaluate the
integral as follows. The Brown measure of an R-diagonal element uh is
rotationally symmetric with radial distribution ν(dr) and one has\

log |z − 1| dµuh(z) =
‖h‖2\
‖h−1‖−1

2

2π\
0

log |reiθ − 1| dθ ν(dr)
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where the inner integral reduces to

1

2π

2π\
0

log |reiθ − 1| dθ =
{
0, r < 1,
log r, r ≥ 1.

Introduce the radial distribution function

Fuh(r) = µuh(B(0, r)) = 2π

r\
‖h−1‖−1

2

ν(d̺),

which according to Theorem 2.4 is related to the moment generating function
ψh2 by

ψh2

(
Fuh(r)− 1
Fuh(r)r2

)
= Fuh(r)− 1

(for ‖h−1‖−12 ≤ r ≤ ‖h‖2). By partial integration (note that F (‖h‖2) = 1),

τ(log |uh− 1|) =
‖h‖2\

max(1,‖h−1‖−1
2
)

2π log(r) ν(dr)

= log rFuh(r)
∣∣‖h‖2
max(1,‖h−1‖−1

2
)
−

‖h‖2\
max(1,‖h−1‖−1

2
)

Fuh(̺)

̺
d̺

=

‖h‖2\
max(1,‖h−1‖−1

2
)

1− Fuh(̺)
̺

d̺.

Example 4.1 (2 × 2 matrix). Let a have the ∗-distribution of a 2 × 2
matrix, and consider a + u, u a Haar unitary. Let µ± = µ±(λ) be the
eigenvalues of |λ− a|2 and let

G|λ−a|2(ζ) =
1

2

(
1

ζ − µ+
+

1

ζ − µ−

)

be its Cauchy transform. Then

ψ(z) =
1

z
G

(
1

z

)
− 1 = 1

2

(
1

1− µ+z
+

1

1− µ−z

)
− 1

and we get F (r) by solving the equation ψ
(
t−1
tr2

)
= t− 1 for t:

1

1− µ+ t−1tr2
+

1

1− µ− t−1tr2
= 2t.

The obvious solution t = 1 is not interesting for us, and dividing it out leads
to the other solution

F (r) =
2µ+µ− − r2(µ+µ−)
2(r2 − µ+)(r2 − µ−)

=
det|λ− a|2 − r2τ(|λ− a|2)
det(r2 − |λ− a|2) .
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The logarithm of the Fuglede–Kadison determinant is, for λ ∈ σ(a+ u),

τ(log |λ− a− u|) =
‖λ−a‖2\
1

1− F (r)
r

dr

=

‖λ−a‖2\
1

1

2

(
r

r2 − µ+
+

r

r2 − µ−

)
dr

=
1

4
(log |r2 − µ+|+ log |r2 − µ−|)

∣∣‖λ−a‖2
1

=
1

4

(
log
∣∣‖λ− a‖42 − det |λ− a|2

∣∣

− log
∣∣1− 2‖λ− a‖22 + det |λ− a|2

∣∣)

=
1

2
log

∣∣∣∣
µ+ − µ−
2

∣∣∣∣−
1

4
(log |1− µ+|+ log |1− µ−|).

It is now convenient to use the representation of the Laplacian in terms of

∂λ =
1

2

(
∂

∂ Reλ
− i ∂

∂ Imλ

)

and its adjoint, namely

∇2 = ∂2

∂(Reλ)2
+

∂2

∂(Imλ)2
= 4∂λ∂λ.

Then we have the formulae

∂λ‖λ− a‖22 = ∂λτ((λ− a)∗(λ− a)) = τ(λ− a∗),
∂λ det(λ− a) = ∂λ((λ− λ1(a))(λ− λ2(a)))

= 2λ− λ1(a)− λ2(a)
= 2τ(λ− a)

and the density of the Brown measure of a+ u is

pa+u(λ) =
2

π
∂λ∂λ
(
log
∣∣‖λ− a‖42 − det |λ− a|2

∣∣(4.3)

− log
∣∣1− 2‖λ− a‖22 + det |λ− a|2

∣∣)

=
2

π
∂λ

(
2‖λ− a‖22τ(λ− a∗)− 2τ(λ− a) det(λ− a∗)

‖λ− a‖42 − det |λ− a|2

− −2τ(λ− a
∗) + 2τ(λ− a) det(λ− a∗)

1− 2‖λ− a‖22 + det |λ− a|2
)
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=
4

π

( ‖λ− a‖22 − |τ(λ− a)|2
‖λ− a‖42 − det |λ− a|2

− 2
∣∣‖λ− a‖22 τ(λ− a∗)− det(λ− a∗) τ(λ− a)

∣∣2

(‖λ− a‖42 − det |λ− a|2)2

− 2|τ(λ− a)|2 − 1
1− 2‖λ− a‖22 + det |λ− a|2

+ 2

∣∣τ(λ− a∗)− τ(λ− a) det(λ− a∗)
∣∣2

(1− 2‖λ− a‖22 + det |λ− a|2)2
)

and in terms of eigenvalues

(4.4) pa+u(λ)

=
2

π
∂λ∂λ

(
1

2
log

∣∣∣∣
µ+ − µ−
2

∣∣∣∣−
1

4
(log |1− µ+|+ log |1− µ−|)

)

=
1

π
∂λ

(
1

µ+−µ−
∂λ(µ+−µ−)+

1

2

(
1

1−µ+
∂λµ++

1

1−µ−
∂λµ−

))

=
1

π

(
∂λ∂λ(µ+ − µ−)

µ+ − µ−
−
∣∣∣∣
∂λ(µ+ − µ−)
µ+ − µ−

∣∣∣∣
2

+
1

2

(
∂λ∂λµ+
1− µ+

+
∂λ∂λµ−
1− µ−

+

∣∣∣∣
∂λµ+
1− µ+

∣∣∣∣
2

+

∣∣∣∣
∂λµ−
1− µ−

∣∣∣∣
2))

In particular, if a =
[
α
0
0
β

]
(Bernoulli distribution) one gets µ± = {|λ−α|2|,

|λ− β|2} and consequently the density is

pa+u(λ) = −
|β − α|2

π(|λ− α|2 − |λ− β|2)2

+
1

2π

(
1

(1− |λ− α|2)2 +
1

(1− |λ− β|2)2
)

on the spectrum, which is determined by the inequalities

(4.5)
1

µ+
+
1

µ−
≥ 2, µ+ + µ− ≥ 2.

Specifying further α = 1, β = −1, so that a is a symmetry, the spectrum
is the region bounded by the lemniscate-like curve in the complex plane with
the equation

|λ|2 + 1 = |λ2 − 1|2

and we get the picture shown in Figure 1.
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Fig. 1. Density of µu2+u∞
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Fig. 2. 200 samples of eigenvalues of 150× 150 random matrices U2 + U∞

This should be compared with the sample Figure 2 of eigenvalues of
random 2N×2N matrices of the formX = U2+U∞, where U∞ is chosen with
the Haar measure on U(2N), and U2 = V ΛV ∗, with V a Haar distributed
unitary independent of U∞, and Λ a fixed symmetry of trace zero.

As another example, set a =
[
0
0
t
0

]
. As we will see, the spectrum and

Brown measure are radially symmetric. The eigenvalues of |λ− a|2 are

(4.6) µ± =
t2 + 2|λ|2 ± t

√
t2 + 4|λ|2

2

and hence, substituting this into (4.5), we get

σ(a+ u) = {λ : 1− t2/2 ≤ |λ|2 ≤
√
t2/2 + 1/4 + 1/2},

which is a full disk for t ≥
√
2 and an annulus otherwise. For the density we
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substitute the parameters

‖λ− a‖22 = |λ|2 + t2/2, det |λ− a|2 = |λ|4

into formula (4.3) to get the radially symmetric density function

pa+u(λ) =
4

π

(
2t2

(4|λ|2 + t2)2 +
(1− |λ|2)2 − (1− 2|λ|2)t2
((1− |λ|2)2 − t2)2

)
.

4.3. An alternative expression for the Fuglede–Kadison determinant. In
order to treat more complicated examples, instead of the integral (4.2) it will
be more convenient to use a more direct formula for the Kadison–Fuglede
determinant, which we state as a lemma.

Lemma 4.2 ([9, Proof of Theorem 4.4]). Let uh be an R-diagonal ele-
ment and define functions on R+ \ {0} by

f(v) = τ((1 + vh2)−1), g(v) =
1− f(v)
vf(v)

.

Then g(v) is strictly decreasing with g(]0,∞[) = ]‖h−1‖−22 , ‖h‖22[ and for
every z ∈ ]‖h−1‖−22 , ‖h‖22[ there is a unique v > 0 such that z2 = g(v). With
this v we have

log∆(uh− z) = 1
2

\
log(1 + vt) dµh2(t) +

1

2
log

z2

1 + vz2
.

For our problem of computing log∆(λ− a − u) = log∆(u∗(λ − a) − 1)
this translates as follows. Put f(v, λ) = τ((1 + v|a− λ|2)−1) and denote by
v(λ) the unique positive solution of the equation (1 + v)f(v, λ) = 1. Then

log∆(λ− a− u) = log∆(u∗(λ− a)− 1)

=
1

2
τ(log(1 + v|a− λ|2))− 1

2
log(1 + v).

Note that this approach cannot be used in the general setting of Section 3.2,
as it does not tell how to evaluate the Kadison–Fuglede determinant at z = 0.

For the rest of this section we assume that a is normal with spectral
measure µa, so that we can write

(4.7) f(v, λ) =
\ dµa(t)

1 + v|λ− t|2

and again with (1 + v)f(v, λ) = 1,

log∆(a+ u− λ) = 1
2

\
log(1 + v|λ− t|2) dµa(t)−

1

2
log(1 + v).

For the density of the Brown measure we obtain
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p(λ) =
2

π
∂λ∂λ log∆(a+ u− λ)

=
1

π
∂λ

(\|λ− t|2∂λv + v(λ− t)
1 + v |λ− t|2 dµ(t)− 1

1 + v
∂λv

)

=
1

π
∂λ

(
∂λv

(\ |λ− t|2
1 + v |λ− t|2 dµ(t)−

1

1 + v

)

︸ ︷︷ ︸
=0

+ v
\ λ− t
1 + v |λ− t|2 dµ(t)

)

=
1

π
∂λ

\ 1
λ− t

v |λ− t|2
1 + v |λ− t|2 dµ(t)

=
1

π
∂λ

\ 1
λ− t

(
1− 1

1 + v |λ− t|2 dµ(t)
)

=
1

π

\ 1
λ− t

|λ− t|2 ∂λv + v(λ− t)
(1 + v |λ− t|2)2 dµ(t)

=
1

π

(
∂λv

\ λ− t
(1 + v |λ− t|2)2 dµ(t) +

\ v

(1 + v |λ− t|2)2 dµ(t)
)
.

Now by implicit differentiation,

1 = (1 + v)f(v, λ),

0 = ∂λv f(v, λ) + (1 + v)(∂vf(v, λ) ∂λv + ∂λf(v, λ)),

∂λv = −
(1 + v)∂λf

f + (1 + v)∂vf
,

∂λf(v, λ) = −
\ v(λ− t)
(1 + v|λ− t|2)2 dµ(t),

∂vf(v, λ) = −
\ |λ− t|2
(1 + v|λ− t|2)2 dµ(t),

and thus

p(λ) =
1

π

(
1 + v

v(f(v, λ) + (1 + v)∂vf(v, λ))
|∂λf(v, λ)|2(4.8)

+ vf(v, λ) + v2 ∂vf(v, λ)

)
.

We will apply this in three situations here. First consider a finite-dimen-
sional normal operator a, like e.g. a = un, the generator of the von Neumann
algebra of Zn. Then the integrals become finite sums and can be evaluated
numerically. As an example see Figure 3, which should again be compared
to the corresponding samples of spectra of random matrices in Figure 4.
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There U3 is a fixed 150 × 150 permutation matrix with the same spectral
distribution as u3 and U∞ is again a 150 × 150 standard unitary random
matrix.

Fig. 3. Density of µu3+u∞

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

line 1

Fig. 4. 200 samples of eigenvalues of 150× 150 random matrices U3 + U∞
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Secondly, assume that a is self-adjoint. Then we can factorize the de-
nominator in the integral (4.7) as 1+v|λ− t|2 = vt2−v(λ+λ)t+1+v|λ|2 =
v(t− z0)(t− z0) where

z0 = Reλ+
i

v

√
v2(Imλ)2 + v.

From this we can express f(v, λ) and therefore p(λ) in terms of the Cauchy
transform G(ζ) of a as follows:

f(v, λ) =
\ dµ(t)

v (t− z0)(t− z0)
=
1

v

\ 1

z0 − z0

(
1

t− z0
− 1

t− z0

)
dµ(t)

= − ImG(z0)√
v2(Imλ)2 + v

.

As an example consider a = u2+ v2, where u2 and v2 are the generators
of two free copies of Z2. Then a is self-adjoint and distributed according
to the arcsine law (or Kesten measure) and has Cauchy transform G(ζ) =
1/(ζ
√
1− 4/ζ2). A picture of the density of the Brown measure of u2+v2+u

is presented in Figure 5.

Fig. 5. Density of µu2+v2+u∞

Finally, consider the free sum of an arbitrary unitary v and a Haar
unitary u. Let dµ(θ) be the spectral measure of v on the unit circle. For
the evaluation of the integral (4.7) we factorize the denominator again, this
time writing

f(v, λ) =
\ dµ(θ)

1 + v |λ− eiθ|2 =
\ dµ(θ)

1 + v(|λ|2 + 1)− v(λe−iθ + λeiθ)

= −
\ eiθ

vλe2iθ − (1 + v(|λ|2 + 1))eiθ + vλ
dµ(θ)

= − 1
vλ

\ eiθ

(eiθ − z+)(eiθ − z−)
dµ(θ)
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where

z± =
1

2vλ
(1 + v(|λ|2 + 1)±

√
(1 + v(|λ|2 + 1)2) (1 + v(|λ|2 − 1)2)).

Note that |z+z−| = |λ/λ| and |z+| > |z−|, and thus |z+| > 1 > |z−|. Hence

f(v, λ) =
1

vλ

\ eiθ

z+z−

(
1

z+ − eiθ
− 1

z− − eiθ
)
dµ(θ)

=
1

vλ

\ 1
z+z−

(
z+

z+ − eiθ
− z−
z− − eiθ

)
dµ(θ)

=
z+G(z+)− z−G(z−)

vλ(z+ − z−)

=
z+G(z+)− z−G(z−)√

(1 + v(|λ|2 + 1)2) (1 + v(|λ|2 − 1)2)
.

For the determination of the spectrum (4.1) we need

‖(λ− v)−1‖22 =
\ dµ(θ)

|λ− eiθ|2

=
1

|λ|2 − 1
\( λ

λ− eiθ +
λ

λ− e−iθ
− 1
)
dµ(θ)

=
λG(λ) + λG(λ)− 1

|λ|2 − 1 .

As an example consider for q ∈ [−1, 1] the unitary uq with Poisson
distribution, i.e. whose moments are τ(unq ) = q|n|. For q = 0 this is the
Haar distribution, while for q = 1 it is the Dirac measure at 1. By Fourier
transform, the density of the spectral measure is

dµq(θ) =
1

2π

1− q2
|1− qeiθ|2 .

The Cauchy transform is

Gq(ζ) =





1

ζ − q , |ζ| > 1,
1

ζ − q−1 , |ζ| < 1,

and from this we get the other relevant functions

‖(λ− uq)−1‖22 =





|λ|2 − q2
(|λ|2 − 1) |λ− q|2 , |λ| > 1,

q−2 − |λ|2
(1− |λ|2) |λ− q−1|2 , |λ| < 1,
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f(v, λ) =
qz+ − q−1 z−

(z+ − q)(z− − q−1)
· 1√
(1+v(|λ|2+1)2) (1+v(|λ|2−1)2)

.

Substituting this into (4.8), we get pictures like Figure 6, where q = 0.7.

Fig. 6. Density of µuq+u∞ at q = 0.7

5. Adding a circular element. A standard circular element has the
∗-distribution of C = S1 + iS2 where S1, S2 are free standard semicir-
cular elements, i.e., self-adjoints whose distribution is the semicircle law
1
2π

√
4− x2 dx on [−2, 2]. Its polar decomposition is C = uh with u a Haar

unitary free from h (hence C is R-diagonal), and h has the quarter circular

distribution 1√
2π

√
8− x2 dx on [0,

√
8]. The symmetrized h̃ in Haagerup–

Larsen’s decomposition C = ah̃ has a semicircular distribution of variance 2.
In this section we consider the Brown measure of Xt = X0 + Ct, where X0
has arbitrary ∗-distribution, it is free from Ct and Ct is a circular element of
variance t, i.e. Ct ∼=

√
t/2C where C is a standard circular element. It will

be convenient to assume that the Ct form a circular process, i.e., for each
s < t, Ct−Cs is ∗-free from Cs. We shall use a heat equation like approach,
by differentiating in t. One has

log∆(λ−Xt) =
1

2
log∆(|λ−Xt|2) =

1

2
lim
ε→0
log∆(|λ−Xt|2 + ε2).

Define Ht,ε = |λ−Xt|2 + ε2 and compute the derivative ∂∂t log∆(Ht,ε). To
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this end let dt be small, dCt = Ct+dt − Ct (so that τ(dC∗t dCt) = dt). Then

Ht+dt,ε = |λ−Xt+dt|2 + ε2 = |λ−Xt − dCt|2 + ε2

= |λ−Xt|2 − (λ−Xt)∗dCt − dC∗t (λ−Xt) + |dCt|2 + ε2

= Ht,ε − (λ−Xt)∗dCt − dC∗t (λ−Xt) + dC∗t dCt
= Ht,ε[1−H−1t,ε ((λ−Xt)∗dCt + dC∗t (λ−Xt)− dC∗t dCt)]

and hence

log∆(Ht+dt,ε)

= log∆(Ht,ε)+log∆(1−H−1t,ε ((λ−Xt)∗dCt+dC∗t (λ−Xt)−dC∗t dCt))

= log∆(Ht,ε)+τ(log |1−H−1t,ε ((λ−Xt)∗dCt+dC∗t (λ−Xt)−dC∗t dCt)|).

Now observe that

τ(log |1 + a
√
dt+ b dt|)

=
1

2
τ(log |1 + a

√
dt+ b dt|2)

=
1

2
τ(log(1 + (a+ a∗)

√
dt+ (b+ b∗)dt+ a∗a dt+O((dt)3/2))

=
1

2
τ

(
(a+ a∗)

√
dt+ (b+ b∗ + a∗a)dt− 1

2
(a+ a∗)2dt

)
+O((dt)3/2)

=
1

2
τ

(
(a+ a∗)

√
dt+

(
b+ b∗ − a2 + a∗2

2

)
dt

)
+O((dt)3/2).

In our situation we have

a = −H−1t,ε
(
(λ−Xt)∗

dCt√
dt
+
dC∗t√
dt
(λ−Xt)

)
,

b = H−1t,ε
dC∗t dCt
dt

,

so that τ(a) = 0 and τ(b) = τ(H−1t,ε ) by freeness of dCt and {Ht,ε, λ−Xt}.
Further we have

τ(a2) = τ

((
H−1t,ε (λ−Xt)∗

dCt√
dt

)2
+

(
H−1t,ε

dC∗t√
dt
(λ−Xt)

)2

+ 2H−1t,ε (λ−Xt)∗
dCt√
dt
H−1t,ε

dC∗t√
dt
(λ−Xt)

)

and using the formula τ(a1b1a2b2) = τ(a1)τ(a2)τ(b1b2) if {a1, a2} is free
from {b1, b2} and τ(b1) = τ(b2) = 0, we see that only the last term is
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non-zero and equal to

2τ

(
(λ−Xt)H−1t,ε (λ−Xt)∗

dCt√
dt
H−1t,ε

dC∗t√
dt

)

= 2τ((λ−Xt)H−1t,ε (λ−Xt)∗)τ(H−1t,ε )

= 2τ(H−1t,ε (Ht,ε − ε2)τ(H−1t,ε )

= 2τ(H−1t,ε ) + 2ε
2τ(H−1t,ε )

2

so that

log∆(Ht+dt,ε)− log∆(Ht,ε)
dt

=
1

2
(2τ(H−1t,ε )− 2τ(H−1t,ε ) + 2ε2τ(H−1t,ε )2) +O((dt)1/2)

= ε2τ(H−1t,ε )
2 +O((dt)1/2)

hence
∂

∂t
log∆(Ht,ε) = ε

2τ(H−1t,ε )
2

and

log∆(H−1t,ε ) = log∆(H
−1
0,ε ) +

t\
0

ε2τ(H−1s,ε )
2 ds.

Let aλ,s be a self-adjoint element with symmetric distribution, whose abso-
lute value is distributed as |λ−Xs|. Now note that by the Stieltjes inversion
formula

ετ(H−1s,ε ) = τ(ε(|λ−Xs|2 + ε2)−1) = −τ(Im[(iε− aλ,s)−1])

→
ε→0

π
dµaλ,s(x)

dx

∣∣∣∣
x=0

,

i.e., the density at 0 of the distribution of aλ,s. Now we need the following

Lemma 5.1. Let a be a self-adjoint symmetrically distributed element ,
free from S and C, where S and C are a semicircular and a circular element
of same variance respectively. Then |a + S| and

∣∣|a| + C
∣∣ have the same

distribution.

Proof. Let b be a symmetry free from {a, S, C}. Then by [9, Prop. 4.2],
ba and bS are ∗-free, thus |a+S| = |ba+ bS| is distributed as |ba+C|. Now
using the fact that multiplying with a free Haar unitary u does not change
the ∗-distribution of C, we can replace the latter according to C ∼= u∗C,
and get the following equalities of ∗-distributions:

|ba+ C| ∼= |ba+ u∗C| ∼= |uba+ C| ∼=
∣∣u|a|+ C

∣∣ ∼=
∣∣|a|+ C

∣∣.
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Using the lemma we get

|λ−Xs| = |λ−X0 − Cs| ∼= |aλ + Ss|

where aλ is the symmetrization of |λ − X0|, free from the semicircular Ss
and therefore

|aλ,s| ∼= |aλ + Ss|.

It follows from Corollary 3 of [3, p. 711] that the distribution of aλ,s has a
density at 0 which is ps(0) = v(s)/(πs), with

(5.1) v(s) = inf

{
v ≥ 0 :

\dµ|λ−X0|(x)
x2 + v2

≤ 1
s

}
.

If λ 6∈ σ(X0), then by e.g. [3],

ετ(H−1s,ε ) ≤ sup
x∈R

dµaλ,s(x)

dx
≤ 1

π
√
s
.

Furthermore for s small enough, λ 6∈ σ(Xs) and τ(|λ−Xsλ|−2) is bounded
above, hence ετ(H−1s,ε ) also, therefore we can apply the dominated conver-
gence theorem to get

log∆(λ−Xt) =
1

2
lim
ε→0
log∆(H0,ε) +

1

2

t\
0

ε2τ(H−1s,ε )
2 ds(5.2)

= log∆(λ−X0) +
1

2

t\
0

v(s)2

s2
ds

= log∆(λ−X0) +
1

2

t\
tλ

v(s)2

s2
ds

where

tλ = inf{t : v(t) > 0} =
(\dµ|λ−X0|(x)

x2

)−1
.

So whenever λ 6∈ σ(X0), the density of the Brown measure is

pλ−Xt(λ) =
1

π
∂λ∂λ

t\
tλ

v(s)2

s2
ds =

1

π
∂λ

( t\
tλ

∂λv(s)
2

s2
ds− v(tλ)

2

t2λ
∂λtλ

)

and the second summand will be zero if v(t) is continuous at tλ.

Example 5.2 (2 × 2 matrix). Let X0 = a be as in Example 4.1, and
consider Xt = a + Ct. Let again µ± be the eigenvalues of (λ − a)∗(λ − a).
Then the relevant parameters are
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‖λ− a‖22 =
µ+ + µ−
2

,

‖(λ− a)−1‖22 =
1

2

(
1

µ+
+
1

µ−

)
=
‖λ− a‖22
det |λ− a|2 ,

tλ =

(\dµ|λ−a|(x)
x2

dx

)−1
= ‖(λ− a)−1‖−22 =

det |λ− a|2
‖λ− a‖22

.

The function v(s)2 is the solution of the quadratic equation

1

s
=
1

2

(
1

µ+ + v2
+

1

µ− + v2

)

=
1

2

µ+ + µ− + 2v2

µ+µ− + (µ+ + µ−)v2 + v4

=
‖λ− a‖22 + v2

det |λ− a|2 + 2‖λ− a‖22 v2 + v4
,

which is explicitly

v(s)2 =
1

2
(s−2‖λ−a‖22 ±

√
(s−2‖λ−a‖22)2−4(det |λ−a|2−s‖λ−a‖22))

=
1

2
(s−2‖λ−a‖22 ±

√
s2 + 4(‖λ− a‖42−det |λ−a|2)).

Now we have to choose the right branch of the square root. To this end, let
us compute the spectrum of Xt: Assume λ 6∈ σ(a); then λ ∈ σ(a+Ct) if and
only if 1−Ct(λ− a)−1 is not invertible. Now Ct(λ− a)−1 is R-diagonal and
not invertible, so by Theorem 2.4(vi), 1 is in its spectrum if and only if its
spectral radius is at least 1 and using Proposition 2.5 we get the inequality

1 ≤ ̺(Ct(λ− a)−1) = ‖Ct‖2‖(λ− a)−1‖2;
in other words,

det |λ− a|2 ≤ t‖λ− a‖22
and hence for s < t, det |λ− a|2 − s‖λ− a‖22 < 0, and only the “+” branch
gives a non-negative solution. Consequently,

log∆(λ−Xt)− log∆(λ−X0)

=
1

2

t\
tλ

(
1

2s
− ‖λ− a‖

2
2

s2
+

√
s2 + 4(‖λ− a‖42 − det |λ− a|2)

2s2

)
ds

=
1

4
log s+

‖λ− a‖22
2s

+
1

4
log(s+

√
s2 + 4(‖λ− a‖42 − det |λ− a|2))

− 1
4s

√
s2 + 4(‖λ− a‖42 − det |λ− a|2)

∣∣t
s=tλ

.
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Now observe that

√
t2λ + 4(‖λ− a‖42 − det |λ− a|2) =

2‖λ− a‖42 − det |λ− a|2
‖λ− a‖22

and hence, setting

(5.3) R(λ) = 4(‖λ− a‖42 − det |λ− a|2) = (µ+ − µ−)2

we get

log∆(λ−Xt)− log∆(λ−X0)

=
1

4
log t+

‖λ− a‖22
2t

+
1

4
log(t+

√
t2 +R(λ))− 1

4t

√
t2 +R(λ)

− 1
4
log
det |λ− a|2
‖λ− a‖22

− ‖λ− a‖42
2 det |λ− a|2

− 1
4
log
det |λ− a|2 + 2‖λ− a‖42 − det |λ− a|2

‖λ− a‖22

+
‖λ− a‖22
4 det |λ− a|2 ·

2‖λ− a‖42 − det |λ− a|2
‖λ− a‖22

=
1

4
log t+

‖λ− a‖22
2t

+
1

4
log(t+

√
t2 +R(λ))− 1

4t

√
t2 +R(λ)

− 1
4
log det |λ− a|2 − 1

4
log 2− 1

4

and finally the density is (note that ∂λ∂λ log det |λ − a|2 = 0 and
∂λ∂λ‖λ− a‖22 = 1)

pa+Ct(λ) =
2

π
∂λ∂λ log∆(λ−Xt)

=
1

πt
+
1

2π
∂λ∂λ

(
log(t+

√
t2 +R(λ))−

√
t2 +R(λ)

t

)

=
1

πt
+
1

2π
∂λ

(
1

t+
√
t2 +R(λ)

− 1
t

)
∂λR(λ)

2
√
t2 +R(λ)

=
1

πt
+
1

4π
∂λ

(
t−
√
t2 +R(λ)

tR(λ)
∂λR(λ)

)

=
1

πt
+
1

4πt

(
− |∂λR(λ)|2
2R(λ)

√
t2 +R(λ)

+ (t−
√
t2 +R(λ))

R(λ)∂λ∂λR(λ)− |∂λR(λ)|2
R(λ)2

)
.
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Again we can specify to a =
[
0
1
1
0

]
, and we get the spectrum

σ(a+ Ct) = {λ : |λ2 − 1|2 ≤ t(|λ|2 + 1)}.
Note that for t = 1 this is the same as σ(u2+u) from Example 4.1. However
this time the density is a function of the real part alone, namely substituting
µ± = |λ ± 1|2 into (5.3), we get R(λ) = 4(λ + λ)2 and consequently the
density depends only on the real part:

pa+Ct(x+ iy) =
1

πt
+
1

8πx2

(
t√

t2 + 16x2
− 1
)
.

The situation for the nilpotent 2 × 2 matrix a =
[
0
0
1
0

]
is as follows. We

have computed the eigenvalues of |λ− a|2 in (4.6), and thus
σ(a+ Ct) = t{λ : 2|λ|4 ≤ t(1 + 2|λ|2)},

which is the disk with radius
√√

t2/4 + 1/2 + t/2. This is the same as

σ(a+
√
t u), but with the possible hole removed. Furthermore we get R(λ) =

(µ+ − µ−)2 = 1 + 4|λ|2 and the density function is again rotationally sym-
metric:

pa+Ct(λ) =
1

πt

(
1− 2|λ|2
(1 + 4|λ|2)

√
t2 + 1 + 4|λ|2

+
t−
√
t2 +R

(1 + 4|λ|2)2
)
.

Example 5.3 (Elliptic law). An interesting example is given by the so-
called elliptic random variable Sα + iSβ , where Sα and Sβ are free semicir-
cular variables of variances α and β. Note that for α = β this is a circular
variable C2α. The Brown measure has been computed by Haagerup (un-
published) by another method. The name elliptic stems from the shape of
its spectrum, which is an ellipse. This can be seen as follows. Assuming
that α > β let γ = α − β. Then for λ 6∈ σ(Sγ) = [−2

√
γ, 2
√
γ] we have

λ ∈ σ(Sγ + C2β) if and only if 1 − C2β(λ − Sγ)−1 is not invertible. From
Theorem 2.4 we infer that the spectrum of C2β(λ−Sγ)−1 is the disk centred
at zero with radius ‖C2β(λ− Sγ)−1‖2, so that we get

σ(Sγ + C2β) = {λ : 1 ≤ 2β ‖(λ− Sγ)−1‖22}.
We use formula (3.5) for the Cauchy transform

GSγ (ζ) =
ζ −
√
ζ2 − 4γ
2γ

to get

(5.4) ‖(λ− Sγ)−1‖22 =
1

2γ

(√
λ2 − 4γ −

√
λ2 − 4γ

λ− λ
− 1
)
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and hence the spectrum is

{
λ :

√
λ2 − 4γ −

√
λ2 − 4γ

λ− λ
≥ γ + β

β
=
α

β

}
.

Now consider the Zhukowski transformation f : ξ 7→ 1/ξ + γξ, which maps
the circles {eiθ/t : 0 ≤ θ < 2π} to the ellipses

{(γ/t+ t) cos θ + i(γ/t− t) sin θ : 0 ≤ θ < 2π}

and hence the open disk {ξ : |ξ| < 1/√γ} bijectively onto C \ [−2√γ, 2√γ].
Note that the excluded interval is exactly the spectrum of Sγ . So assume
that λ = f(ξ) with |ξ| < 1/√γ is not in the spectrum of Sγ . Then observe
that

λ2 − 4γ = 1/ξ2 + 2γ + γ2ξ2 − 4γ = (1/ξ − γξ)2

and hence λ ∈ σ(Sγ + C2β) if and only if

α

β
≤ 1/ξ − 1/ξ − γξ + γξ
1/ξ − 1/ξ + γξ − γξ

=
1 + γ|ξ|2
1− γ|ξ|2 .

This inequality reduces to

|ξ|2 ≥ 1

α+ β
,

thus

σ(Sγ + S2β) \ [−2
√
γ, 2
√
γ] =

{
f(ξ) :

1√
α+ β

≤ |ξ| < 1√
γ

}

and taking the closure of this set we obtain σ(Sγ + C2β) as the interior of
the ellipse

(5.5)

{
2α√
α+ β

cos θ +
2β√
α+ β

i sin θ : 0 ≤ θ < 2π
}
.

Now let us turn to the Brown measure. As already noted, the method
from Section 3.2 will not work on a = Sγ . Indeed the R-transform of |λ−Sγ |2
can be computed from the inverse of

G|λ−Sγ |2(ζ) =
1

2γ

(
1−
√
x2+ − 4γ −

√
x2− − 4γ

x+ − x−

)

where x± are as in (3.3). Let λ = ξ + iη. Then we can rewrite x± = ξ ±√
ζ − η2 and abbreviating y =

√
ζ − η2, solve the equation G|λ−Sγ |2(ζ) = z

for y, which gives
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y2 =
ξ2

(1− 2γz)2 +
1

z(1− γz) .

It follows that K(z) = y2 + η2 and

R|λ−Sγ |2(z) = z K(z)− 1 =
γz

1− γz +
ξ2z

(1− 2γz)2 + η
2z;

for real λ this has been used in [14] to characterize the semicircular distri-
butions. In order to get the determining series fu|λ−Sγ | according to (3.2)
one has to solve a fourth order equation, which is not suitable for further
computations. So we have to use formula (5.2), for which we need v(s) from
(5.1) first. We have done most of the work already, since\ dµ(x)

|λ− x|2 + v2 = −G|λ−Sγ |2(−v
2),

thus

v(s)2 = −K|λ−Sγ |2
(
−1
s

)
= −
(

ξ2s2

(s+ 2γ)2
− s2

s+ γ
+ η2
)

and

v(s)2

s2
= − (λ+ λ)

2

4(s+ 2γ)2
+
1

s+ γ
− (λ− λ)

2

4s2
.

and the density becomes

pSα+iSβ (λ) =
1

π
∂λ

2β\
tλ

∂λv(s)
2

s2
ds(5.6)

=
1

π
∂λ

2β\
tλ

(
− 2(λ+ λ)
4(s+ 2γ)2

+
2(λ− λ)
4s2

)
ds

=
1

2π
∂λ

(
λ+ λ

s+ 2γ
− λ− λ

s

)∣∣∣∣
2β

tλ

=
1

4π

(
1

α
+
1

β

)
− 1
2π
∂λ

(
λ+ λ

tλ + 2γ
− λ− λ

tλ

)
.

Now tλ = ‖(λ− Sγ)−1‖−22 has been computed above in (5.4), and if we set
ω =
√
λ2 − 4γ, it is

tλ = 2γ

(
ω − ω
λ− λ

− 1
)−1

.

We now claim that the second summand in (5.6) is zero. For this note that

ω2 − ω2 = λ2 − λ2 and hence
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− 1
2π

∂λ

(
λ+ λ

tλ + 2γ
− λ− λ

tλ

)

= − 1
4πγ

∂λ

(
(λ+ λ)

(
1− λ− λ

ω − ω

)
− (λ− λ)

(
ω − ω
λ− λ

− 1
))

= − 1
4πγ

∂λ((λ+ λ)− (ω + ω)− (ω − ω) + (λ− λ))

= − 1
4πγ

∂λ(2λ− 2ω) = 0.

Thus we see that the density is constant (4π)−1(1/α+ 1/β) on the interior
of the ellipse (5.5).

The elliptic law appears in the random matrix literature in [8].

6. Other examples. There are some other examples that can be done
by ad-hoc methods.

Example 6.1. Consider two freely independent symmetries u2 and v2
of trace zero, for example the generators of the left regular representation
of Z2 ∗ Z2. Here we compute the Brown measure of T = αu2 + βv2. To get
its spectrum, look at its square

(αu2 + βv2)
2 = α2 + β2 + αβ(u2v2 + v2u2).

Since u2v2 = (v2u2)
∗ is a Haar unitary, we see that T 2 is a normal element

with spectrum σ(T 2) = α2+β2+αβ[−2, 2]. Since T and −T have the same
distribution, it follows that

σ(αu2 + βv2) = {±
√
α2 + β2 + αβt : t ∈ [−2, 2]}.

The Brown measure can be deduced by the same symmetry considerations,
but for the sake of simplicity let us consider the special case α = 1, β = i
only. Here the spectrum is the union of the complex intervals [−1− i, 1 + i]
and [−1 + i, 1 − i]. The Brown measure of (u2 + iv2)2 = i(u2v2 + v2u2) is
the arcsine law (we are taking the real part of a Haar unitary)

dν(t) =
dt

π
√
4− t2

on the imaginary axis. By symmetry considerations we must have the same
measure on each of the four “legs” of the spectrum, call it µ0, which must
satisfy

√
2\
0

f(t2) dµ0(t) =
1

2

2\
0

f(t)
dt

π
√
4− t2

=

√
2\
0

f(u2)
u

π
√
4− u4

du
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and it follows that the density of the Brown measure is

dµ

(
1± i√
2
t

)
= dµ0(|t|) =

|t|
π
√
4− t4

dt.

Example 6.2. Other examples that are perhaps attackable arise from
the following matrix models. Consider U2+A, where U2 ∈ U(2N) is a unitary
matrix such that U2 = U

∗
2 and trU2 = 0, while A is an arbitrary 2N × 2N

matrix. The spectrum of U2 + A can be bounded as follows. Assume x is a
unit eigenvector of U2 + A with eigenvalue λ. Then it can be decomposed
along the spectral projections of U2: x = x+ + x− so that U2x = x+ − x−.
By assumption we also have (U2 +A)(x+ + x−) = λ(x+ + x−), and thus

x+ =
1

2
(1 + λ−A)x, x− =

1

2
(1− λ−A)x;

now by orthogonality 〈x+, x−〉 = 0 we get
0 = 〈(1 + λ−A)x, (1− λ+A)x〉
= (1 + λ)(1− λ)‖x‖2 + (1 + λ)〈x,Ax〉 − (1− λ)〈Ax, x〉 − ‖Ax‖2

= (1 + λ− λ− |λ|2)‖x‖2 + (λ+ 1)〈Ax, x〉+ (λ− 1)〈Ax, x〉 − ‖Ax‖2.
Separate real and imaginary part results in two equations:

1− |λ|2 − ‖Ax‖2 + λ 〈Ax, x〉+ λ〈Ax, x〉 = 0,
λ− λ+ 〈Ax, x〉 − 〈Ax, x〉 = 0.

Let us now consider two specific cases.

• A is unitary : In this case ‖Ax‖ = 1 and ̺ = 〈Ax, x〉 satisfies
−|λ|2 + λ̺+ λ̺ = 0, λ− λ = ̺− ̺,

or in other words

|λ− ̺|2 = |̺|2, Imλ = Im ̺.

Thus λ− ̺ is real and we have λ− ̺ = ±|̺|, i.e.,
λ ∈ {̺± |̺| : ̺ = 〈Ax, x〉 ∈ coσ(A)}.

• A = iB is purely imaginary: Here we assume A + A∗ = 0 and the
equations are

1− |λ|2 − ‖Bx‖2 + i(λ− λ)〈Bx, x〉 = 0, λ− λ = 2i 〈Bx, x〉
Hence

Imλ = 〈Bx, x〉, (Reλ)2 = 1− ‖Bx‖2 + 〈Bx, x〉2.
If one puts A = UU3U

∗, where U3 is a 6N × 6N model of the generator
of Z3, and U is a random unitary 6N×6N matrix, then possible eigenvalues
are enclosed in the region shown in Figure 7. And indeed, samples of small
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Fig. 7. Possible spectra of random U2 + U3
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Fig. 8. 5000 samples of eigenvalues of 6× 6 random matrices U2 + U3
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Fig. 9. 200 samples of eigenvalues of 150× 150 random matrices U2 + U3
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numeric random unitary matrices U2+UU3U
∗ have an eigenvalue density as

shown in Figure 8, while in higher dimensions the eigenvalues concentrate
(cf. Figure 9). We have been able to compute the border of the spectrum of
free sums like u2 + u3 recently [16] and will investigate this topic further in
future work.

REFERENCES

[1] Z. D. Bai, Circular law , Ann. Probab. 25 (1997), 494–529.
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