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GENERALIZED HARDY SPACES ON TUBE DOMAINS OVER CONES

BY

GUSTAVO GARRIGÓS (Orléans)

Abstract. We define a class of spaces Hpµ, 0 < p < ∞, of holomorphic functions on
the tube, with a norm of Hardy type:

‖F‖p
H
p

µ

= sup
y∈Ω

\
Ω

\
Rn

|F (x+ i(y + t))|p dx dµ(t).

We allow µ to be any quasi-invariant measure with respect to a group acting simply
transitively on the cone. We show the existence of boundary limits for functions in Hpµ,
and when p ≥ 1, characterize the boundary values as the functions in Lpµ satisfying the
tangential CR equations. A careful description of the measures µ when their supports lie
on the boundary of the cone is also provided.

1. Introduction. Let Ω be an irreducible symmetric cone in R
n, and

let

TΩ = R
n + iΩ ⊂ C

n

be the tube domain based on Ω. As in [3], we shall write r = rankΩ, and
G(Ω) for the group of linear transformations of the cone.

In this paper we study a general family of spaces Hpµ(TΩ) of holomorphic
functions in TΩ satisfying an integrability condition of Hardy type:

‖F‖Hpµ := sup
y∈Ω

[ \
Ω

\
Rn

|F (x+ i(y + t))|p dx dµ(t)
]1/p

<∞.(1.1)

In this definition we let 0 < p < ∞, and µ be any positive measure in Rn

with the following two geometric assumptions:

1. µ is locally finite in R
n, with Suppµ ⊂ Ω;

2. µ is quasi-invariant (or homogeneous) with respect to a subgroup H
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of G(Ω), acting simply transitively on the cone; that is,\
f(h−1y) dµ(y) = χ(h)

\
f(y) dµ(y), ∀f ∈ L1(dµ), h ∈ H,

where χ is a character of the group H.

Such measures appear in different contexts related to symmetric cones
and Siegel domains, and were completely characterized by Gindikin in [5],
[4] (see also §2.3 below).
The particular choice µ = δ0 (the delta distribution at the origin) corre-

sponds to the classical Hardy space on the tube:

Hp(TΩ) =
{
F ∈ H(TΩ) : ‖F‖Hp = sup

y∈Ω

[ \
Rn

|F (x+ iy)|p dx
]1/p

<∞
}
.

On the other hand, the Lebesgue measure dµ(t) = χΩ(t) dt, quasi-invariant
with respect to G(Ω) (with χ(g) = |det g|), gives rise to the Bergman space

Ap(TΩ) =
{
F ∈ H(TΩ) : ‖F‖pAp =

\
Ω

\
Rn

|F (x+ iy)|p dx dy <∞
}
.

In this case, the “sup” in (1.1) plays no role by the monotonicity of the
integrals (see 3.9 below). The properties of these two spaces have been widely
studied, in particular those concerning the existence of boundary values (see,
e.g., Chapter III of [13], and [1] for the Bergman case).
Other choices of quasi-invariant measures µ lead to less known holomor-

phic function spaces in the tube, which for p = 2 appear in the representation
theory of the semisimple Lie group G(TΩ) (see [15], [10], [11]). These spaces
are “intermediate” between Bergman and Hardy spaces, in the sense that
they share many different properties with each of them. Our goal in this
paper is to provide a characterization of the boundary values of functions in
Hpµ(TΩ), in the same spirit as for the classical Hardy spaces. The difference
is that, in the general situation of Hpµ(TΩ), the boundary values lie naturally
on a “complex manifold”

Tµ = R
n + iSuppµ ⊂ C

n,

rather than in the “distinguished boundary” R
n + i{0}. To state our first

theorem, let us establish the notation:

Lpµ := L
p(Rn + iSuppµ; dxdµ(t)) = Lp(Tµ; dxdµ).

Theorem 1.2. Let 0 < p < ∞ and µ be a measure as above. Then for
every F ∈ Hpµ(TΩ) there exists F (b) ∈ Lpµ such that

lim
y→0
y∈Ω0

‖F (·+ iy)− F (b)‖Lpµ = 0,

lim
y→0
y∈Ω0

F (z + iy) = F (b)(z) for a.e. z ∈ Tµ,
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for every proper subcone Ω0 of Ω. When p ≥ 1, the first limit holds as well
with Ω0 replaced by Ω.

Observe that the function F (b) in the theorem is defined in Tµ, and
therefore, it is only a boundary value of F when the measure µ is singular
(i.e., supported on ∂Ω). In other words, the preceding theorem does not give
new information for Bergman type spaces: F (b) = F (see [1] for a different
treatment of this case).

We also remark that, if we exclude the classical Hardy space (i.e., µ = δ0,
for which Tµ is purely real), the function F

(b) exhibits a holomorphic be-
havior in the “complex part” of the manifold Tµ = R

n + iSuppµ ⊂ C
n.

This is expressed in terms of the tangential Cauchy–Riemann equations in
Tµ: F

(b) ∈ CR(Tµ). Thus, one can interpret the boundary value F (b) as a
function belonging to a “Bergman space” on the manifold Tµ: A

p
µ(Tµ) ≡

Lp(Tµ; dxdµ) ∩ CR(Tµ). The next theorem shows under what conditions
this property actually characterizes Hpµ(TΩ). Below, we denote by co (E)
the closed convex envelope of a given E ⊂ R

n.

Theorem 1.3. Let 1 ≤ p < ∞, and µ be a quasi-invariant measure as
above.

(1) If F ∈ Hpµ(TΩ), then its boundary value F (b) belongs to Apµ(Tµ).
(2) Suppose, in addition, that co (Suppµ) = Ω. Then if G ∈ Apµ(Tµ)

there exists a holomorphic function F ∈ Hpµ(TΩ) such that G = F (b). In
this case,

F ∈ Hpµ(TΩ) 7→ G = F (b) ∈ Apµ(Tµ)
is an isometric isomorphism of Banach spaces.

The assumption on µ in the second part of the theorem is made so that
every G ∈ Apµ(Tµ) has a holomorphic extension to the whole tube TΩ . This
occurs when the support of µ is “large enough” (e.g., when µ is homogeneous
under G, see [10]). For general measures there is also a characterization
theorem where the extension property is obtained from a condition on the
Fourier transform of Gt := G(·+ it) ∈ Lp(Rn):
Theorem 1.4. Let 1 ≤ p < ∞, and µ a quasi-invariant measure as

above. Consider the following closed subspace of Apµ(Tµ):

Apµ(Tµ;Ω) := {G ∈ Apµ(Tµ) : Supp Ĝt ⊂ Ω for a.e. t ∈ Suppµ}.
Then the correspondence F 7→ G = F (b) is an isometric isomorphism from
Hpµ(TΩ) onto A

p
µ(Tµ;Ω). In particular , A

p
µ(Tµ) = Apµ(Tµ;Ω) if and only if

co (Suppµ) = Ω.

The previous theorems have been stated assuming only the general ho-
mogeneity property in the definition of µ. The proofs we present, however,



216 G. GARRIGÓS

Fig. 1.1. The Wallach set Ξ of a cone of rank 2

will eventually require an explicit expression of the measure, in order to
describe the manifold structure of Tµ and obtain the CR equations.
When Ω is an irreducible symmetric cone and H a simply transitive

group acting on it, a characterization of quasi-invariant measures was given
by Gindikin in [5]. Following the presentation in [3] (see §2 below for details),
these measures coincide precisely with the positive Riesz distributions in Ω:

dµν(t) = χΩ(t)
∆ν(t)

ΓΩ(ν)

dt

∆(t)n/r
, ν = (ν1, . . . , νr) ∈ Ξ.(1.5)

Here Ξ denotes the Wallach set of Ω, consisting of those indices ν ∈ C
r

so that µν is a positive measure. The subset Ξ1 =
{
ν

∣∣ νj > j−1
r−1

(
n
r − 1

)}

corresponds to absolutely continuous measures, while Ξ\Ξ1 comprises those
with support in ∂Ω (see Figure 1).
Our last result in this paper gives a complete description of the structure

of Suppµν , in terms of the orbits of H on Ω.

Theorem 1.6. There exists a partition of Ω = Ω1 ∪ . . . ∪ Ωs with the
following properties:

(1) The sets Ωj are orbits of H. Further , there is a subgroup Hj of H
and a point tj ∈ Ω such that Ωj = Hjtj.
(2) The sets Ωj are regular submanifolds of R

n, and the measures µν
are smooth volume forms.

(3) If ν ∈ Ξ, there exists a unique j = j(ν) such that
Suppµν = Ωj and µν(Ωl) = 0 ∀l 6= j.

(4) Given ν ∈ Ξ, we have co (Suppµν) = Ω if and only if ν1 6= 0.
We point out that the preceding result is not completely new, since parts

of it are contained in earlier work of Gindikin [5], [4], and more recent papers
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of H. Ishi [8], [9]. For the sake of completeness we shall present here a more
affordable proof, using the modern notation of [3].

The paper is structured as follows. In §2 we recall the basic notions of
symmetric cones and quasi-invariant measures. In §3 we study the spaces
Hpµ(TΩ) and give a proof of Theorem 1.2, and other related results. In §4
we characterize the special case p = 2 with a Paley–Wiener type theorem,
obtaining as well reproducing formulas for the spacesHpµ(TΩ). In §5 we study
the boundary of the cone, and give a proof of Theorem 1.6. Finally, §6 is
devoted to the tangential CR equations in Tµ, and the proof of Theorems 1.3
and 1.4. Some technical matters on Jordan algebras and symmetric cones
are also postponed to the appendix.

2. Symmetric cones and homogeneous measures. We first set
some notation and recall well known properties from the theory of sym-
metric cones. We refer the reader to [3] for proofs and further results.

2.1. Generalities about symmetric cones. In this section Ω is an ir-
reducible symmetric cone of rank r in R

n. It is well known that Ω in-
duces in V ≡ R

n the structure of a Euclidean Jordan algebra, in which
Ω = {x2 : x ∈ V }. We denote by e the identity element in V and by
(x|y) = tr(xy) the canonical inner product (1).
Let G(Ω) be the group of transformations of Ω, and G its identity com-

ponent. Since the cone is homogeneous, the group G acts transitively on Ω.
We shall choose a natural subgroup H of G which acts simply transitively on
Ω. That is, every y ∈ Ω can be uniquely written as y = he with h ∈ H. This
allows us to identify Ω with the quotient G/K, where K is the stabilizer
of e:

K = {g ∈ G : ge = e} = G ∩O(V )
(see Chapter I of [3]).

To give a precise description of H we fix a Jordan frame {c1, . . . , cr}
in V . That is, a system of primitive idempotents with the properties

c1 + . . .+ cr = e and cicj = 0, i 6= j.
This induces a Peirce decomposition:

V =
⊕

1≤i≤j≤r

Vi,j ,(2.1)

which formally lets us regard V as a space of symmetric matrices (with Vi,j
as “(i, j)-entry”; see Chapter IV of [3]). More precisely, the subspaces in

(1) The reader less familiar with Jordan algebras can look at the example Ω =
Sym+(r,R). In this case, V = Sym(r,R), with the Jordan product defined as x ◦ y =
(xy + yx)/2, from the usual matrix multiplication xy.
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(2.1) are given by Vi,i = R · ci and
Vi,j = V (ci, 1/2) ∩ V (cj, 1/2) = {x ∈ V : cix = cjx = x/2} for i < j.

For each i < j, the dimension of Vi,j is a constant integer

d = 2
n/r − 1
r − 1 .

We define H as the subgroup of matrices h ∈ G which are lower trian-
gular with respect to Peirce decomposition of R

n. That is, given a vector
x =
∑
i≤j xi,j ∈

⊕
i≤j Vi,j ≡ R

n, we have

(hxk,l)i,j = 0 if (i, j) < (k, l),

(hxi,j)i,j = λi,jxi,j for some λi,j > 0,

where (i, j) < (k, l) denotes the lexicographic order. Then, by Theorem
VI.3.6 in [3], H acts simply transitively on Ω. Further, one can write H =
NA = AN , where N denotes the strict triangular subgroup of H (i.e.,
matrices with λi,j = 1), and A the diagonal subgroup (i.e., (hxk,l)i,j = 0 if
(k, l) 6= (i, j), and also λi,j = λiλj).
A more explicit expression of all these groups can be given in terms of

the endomorphisms of left multiplication in the Jordan algebra V :

L(x) : y 7→ xy for x ∈ V.
Each endomorphism L(x) is a symmetric operator (with respect to the inner
product (·|·)) belonging to the Lie algebra g of G (see Chapter III of [3]).
The main use of L is to define the following two important transformations
in a symmetric cone (see Chapters II and VI in [3]):

1. The quadratic representation:

x ∈ V 7→ P (x) = 2L(x)2 − L(x2).
When x ∈ Ω = {ey : y ∈ V }, P (x) can also be written as

x = ey ∈ Ω 7→ P (x) = exp(2L(y)) ∈ G.
2. The Frobenius transformation:

z ∈ V (cj, 1/2) 7→ τ (j)(z) = exp(L(z) + 2[L(z), L(cj)]) ∈ G.
With this notation, the statement of Theorem VI.3.6 in [3] can also be

read as:

A =
{
P (a) : a =

r∑

j=1

ajcj , aj > 0, 1 ≤ j ≤ r
}
,

N =
{
τ (1)(z1) . . . τ

(r−1)(zr−1) : zj ∈
r⊕

k=j+1

Vj,k, 1 ≤ j ≤ r − 1
}
,
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and every h ∈ H can be uniquely written as
h = τ (1)(z1) . . . τ

(r−1)(zr−1)P (a)(2.2)

for a, zj as above. In addition, we have the equalityNA = AN , which follows
from the identity

P (a)τ (j)(z) = τ (j)(z̃)P (a) where z̃ =

r∑

k=j+1

ak
aj
zj,k(2.3)

and a =
∑r
j=1 ajcj , z =

∑r
k=j+1 zj,k are as above (see Proposition VI.3.7 of

[3]).

In the particular case of Ω = Sym+(r,R), (2.2) corresponds to the Gauss
factorization of a triangular r×r-matrix h. We point out that the theory just
described provides two classical decompositions of a semisimple Lie group:
G = NAK and G = KAK.

2.2. Determinants and integrals. As in [3], we let ∆(x) = det(x), x ∈ V .
Furthermore, we denote by ∆1(x), . . . , ∆r(x) the principal minors of x ∈ V ,
with respect to the fixed Jordan frame {c1, . . . , cr}. That is, ∆k(x) is the
determinant of the projection Pkx of x in the Jordan subalgebra V

(k) =⊕
1≤i≤j≤k Vi,j . It is well known (see Chapter VI of [3]) that the action of N
leaves invariant each of these forms:

∆k(nx) = ∆k(x), n ∈ N, x ∈ V.
Also, for a = a1c1 + . . . + arcr we have ∆k(P (a)x) = a21 . . . a

2
k∆k(x). In

particular, ∆k(x) > 0 for all k = 1, . . . , r and x ∈ Ω.
The generalized power function on Ω is defined as

∆
s
(x) = ∆s1−s21 (x)∆s2−s32 (x) . . .∆srr (x), s = (s1, s2, . . . , sr) ∈ C

r, x ∈ Ω.
In the particular case x = a1c1+ . . .+arcr ∈ Ω, one has ∆s(x) = as11 . . . asrr .
The next lemma characterizes the characters of H (see also [4]).

Lemma 2.4. The characters of the group H are the functions

h ∈ H 7→ ∆
s
(he) for every s = (s1, . . . , sr) ∈ C

r.(2.5)

Proof. It is easy to see that the functions in (2.5) are characters of H.
Indeed, this follows from the properties of principal minors: ∆k(hh

′e) =
∆k(he)∆k(h

′e) for all h, h′ ∈ H (see Proposition VI.3.10 in [3]). Conversely,
if χ is a character of H then we must have χ(h) = χ(khk−1) for all k, h ∈ H.
Since H consists of triangular matrices, this implies that χ(h) can only
depend on the diagonal entries of h ∈ H. Thus, χ(nP (a)) = χ(P (a)), and
the lemma follows immediately, since the characters of the abelian group A
are precisely the powers as11 . . . a

sr
r for s1, . . . , sr ∈ C.
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Finally, we recall the definition of the generalized gamma function on Ω:

ΓΩ(s) =
\
Ω

e−(e|ξ)∆
s
(ξ)

dξ

∆(ξ)n/r
, s = (s1, . . . , sr) ∈ C

r.

This integral converges if and only if

Re sj > (j − 1)
n/r − 1
r − 1 = (j − 1)

d

2
for all j = 1, . . . , r,

and in this case it is equal to

ΓΩ(s) = (2π)
(n−r)/2

r∏

j=1

Γ

(
sj − (j − 1)

n/r − 1
r − 1

)

(see Chapter VII of [3]). As usual, we shall denote ΓΩ(s) by ΓΩ(s) when s =
(s, . . . , s). The main result concerns the Laplace transform of the generalized
power function, whose formula is not difficult to deduce from the invariance
properties of ∆

s
(see Proposition VII.1.2 in [3]).

Lemma 2.6. Let s = (s1, . . . , sr) ∈ C
r with Re sj > (j − 1)d/2, j =

1, . . . , r. Then for all y ∈ Ω we have\
Ω

e−(ξ|y)∆
s
(ξ)

dξ

∆(ξ)n/r
= ΓΩ(s)∆s(y

−1).

Remark 2.7. The power function ∆
s
(y−1) above can also be expressed

in terms of the rotated Jordan frame {cr, . . . , c1}. If we denote by ∆∗j , j =
1, . . . , r, the principal minors with respect to this new frame then

∆
s
(y−1) = [∆∗

s
∗(y)]−1, ∀s = (s1, . . . , sr) ∈ C

r,

where we have set s∗ := (sr, . . . , s1) (see Proposition VII.1.5 in [3]).

2.3. The quasi-invariant measures. Recall from (1.3) the definition of
the measures µ

s
. As we pointed out, by analytic continuation one extends

this definition to all s ∈ C
r, obtaining a family of tempered distributions

(see Theorem VII.2.6 in [3]). The following result of Gindikin characterizes
the positive measures in the family {µ

s
}
s∈Cr (see [5], or Theorem VII.3.2 in

[3]). Below, we denote by ε(u) the signum function: ε(u) = 1 if u > 0, and
ε(0) = 0.

Proposition 2.8. Let s = (s1, . . . , sr) ∈ C
r. Then µ

s
is a positive mea-

sure if and only if s belongs to the Wallach set

Ξ =

{(
u1, u2+

d

2
ε(u1), . . . , ur+

d

2
[ε(u1)+ . . .+ε(ur−1)]

)
: u1, . . . , ur ≥ 0

}
.

Let now µ be a positive measure in R
n, locally finite, and with support

contained in Ω. Suppose also that µ is quasi-invariant with respect to the
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group H in §2.1. That is, for every h ∈ H there exists χ(h) ∈ C so that\
f(h−1y) dµ(y) = χ(h)

\
f(y) dµ(y), f ∈ L1(dµ).(2.9)

The group composition implies that χ is a character of H: χ(hh′) =
χ(h)χ(h′). Therefore, by Lemma 2.4 there must exist s ∈ C

r such that
χ(h) = ∆

s
(he). The next proposition tells us that, modulo a constant, µ

must be equal to µ
s
(see also [5]).

Proposition 2.10. Let µ be a positive locally finite measure in R
n with

support in Ω. Then µ is quasi-invariant with respect to H if and only if
µ = cµ

s
for some c > 0 and s ∈ Ξ.

Proof. It is clear from the results in §2.2 that each measure µ
s
is quasi-

invariant. For the converse, let µ be a measure with the above assumptions,
and with associated character χ(h) = ∆

s
(he). We shall show that necessarily

µ = cµ
s
for some constant c > 0. To do this we prove that µ is a tempered

distribution, and (modulo a constant) µ and µ
s
have the same Fourier–

Laplace transform.
The first claim follows easily from the quasi-invariance. Indeed, one just

notices that the measure of a ball B(0, R) grows at most polynomially with
the radius R:\

χB(0,R)(y) dµ(y) =
\
χB(0,1)(y/R) dµ(y) = R

s1+...+sr µ(B(0, 1)).

For the second assertion, we first show that the integral defining the
Laplace transform Lµ(ξ), ξ ∈ Ω, converges absolutely. Indeed, by Lemma
I.1.5 in [3], there is a constant Cξ > 0 so that (ξ|t) ≥ Cξ|t| for all t ∈ Ω.
Thus, using the condition Suppµ ⊂ Ω, we see that the integral

Lµ(ξ) =
\
e−(ξ|y) dµ(y), ξ ∈ Ω,

converges absolutely, and moreover, the Fourier–Laplace transform

Fµ(z) =
\
ei(z|y) dµ(y), z ∈ TΩ ,

defines a holomorphic function on the tube TΩ . Since the measures µs are
also supported in Ω, and a holomorphic function in TΩ is determined by its
values in iΩ, it suffices to show the equality Lµ(ξ) = cLµ

s
(ξ) for all ξ ∈ Ω.

To do this, let ξ = h∗e, for h ∈ H, be an arbitrary point in Ω. Then,
choosing c(µ) = Lµ(e), we have

Lµ(ξ) =
\
e−(ξ|y) dµ(y) =

\
e−(e|hy) dµ(y)

= ∆
s
(h−1e)Lµ(e) = c(µ)∆

s
(ξ−1) = c(µ)Lµ

s
(ξ),

where we have used the identity h−1e = (h∗e)−1 (see p. 124 of [3]), and
Lemma 2.6.

We conclude this section with a simple lemma, valid for all measures,
which will be useful later.
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Lemma 2.11. Let µ be a locally finite positive measure in R
n, not null

in a neighborhood of the origin. Then there exist c, c′ > 0 so that

c
\

B1/8(e)

f(y) dy ≤
\

B1/4(0)

\
B1/4(e)

f(y + t) dy dµ(t) ≤ c′
\

B1/2(e)

f(y) dy

for all non-negative f .

Proof. The second inequality is obvious with c′ = µ(B1/4(0)). For the
first inequality, note that given t ∈ B1/8(0) we have\

B1/8(e)

f(y) dy =
\

B1/8(e)−t

f(y + t) dy ≤
\

B1/4(e)

f(y + t) dy.

Integrating with respect to dµ(t) we obtain

µ(B1/8(0))
\

B1/8(e)

f(y) dy ≤
\

B1/8(0)

\
B1/4(e)

f(y + t) dy dµ(t).

3. The spaces Hpµ(TΩ). Throughout this section 0 < p < ∞ is fixed
and µ is a quasi-invariant measure with respect to H. We assume that µ
has associated character χ(h) = ∆

s
(he) for some s ∈ Ξ. This implies that,

modulo a constant, µ = µ
s
, although on the formal level we shall not use

this fact.

3.1. Basic properties of the norm. Our first result tells us that the spaces
Hpµ(TΩ) are invariant under transformations in H.

Proposition 3.1. Let h ∈ H. Then F ∈ Hpµ(TΩ) if and only if F ◦ h ∈
Hpµ(TΩ). In this case,

‖F‖Hpµ = ∆s+n/r(he)1/p‖F ◦ h‖Hpµ .
Proof. The proof is an immediate consequence of the quasi-invariance

of µ:

‖F ◦ h−1‖p
Hpµ
= sup
y∈Ω

\\
Rn

|F ◦ h−1(x+ i(y + t))|p dx dµ(t)

= (Deth) sup
y∈Ω

\\
Rn

|F (x+ i(y + h−1t))|p dx dµ(t)

= ∆n/r(he)∆
s
(he)‖F‖p

Hpµ
,

where we used the identity Deth = ∆(he)n/r (see III.4.3 of [3]).

Proposition 3.2. There exists a constant c > 0 so that , for all F ∈
Hpµ(TΩ),

|F (x+ iy)| ≤ c∆
s+n/r(y)

−1/p‖F‖Hpµ , ∀x+ iy ∈ TΩ .(3.3)

Proof. Since Hpµ(TΩ) is invariant under translation by x ∈ R
n we may

assume x = 0. Next, we show (3.3) for y = e. The mean value property
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applied to the subharmonic function |F |p, together with Lemma 2.11, gives
us

|F (ie)|p ≤ c
\

B1/8(e)

\
B1(0)

|F (x+ iy)|p dx dy

≤ c′
\

B1/4(e)

\
B1/4(0)

\
B1(0)

|F (x+ i(y + t))|p dx dµ(t) dy ≤ c′′‖F‖p
Hpµ
.

In general, if y = he for some h ∈ H, we apply the previous inequality
to F ◦ h and use Proposition 3.1:

|F (iy)|p = |F ◦ h(ie)|p ≤ c′′‖F ◦ h‖p
Hpµ
= c′′∆

s+n/r(y)
−1‖F‖p

Hpµ
.

The previous proposition tells us that the pointwise evaluation is a con-
tinuous linear functional in Hpµ(TΩ). A standard argument, using conver-
gence on compact sets, gives the following corollary.

Corollary 3.4. Hpµ(TΩ) is a complete metric space.

A slight refinement in the proof of Proposition 3.2 provides a result which
will be of crucial importance to us.

Proposition 3.5. There exists a constant c > 0 so that , for all F ∈
Hpµ(TΩ) and y ∈ Ω,

‖F (·+ iy)‖Lp(Rn) ≤ c∆s(y)−1/p‖F‖Hpµ .(3.6)

Proof. We first show (3.6) for y = e. Now, the first part of the proof of
Proposition 3.2 applied to F (·+ x) gives
|F (x+ ie)|p ≤ c

\
B1/4(e)

\
B1/4(0)

\
B1(0)

|F (x+ x′ + i(y + t))|p dx′ dµ(t) dy.

Integrating on x ∈ R
n we obtain

‖F (·+ ie)‖pLp(Rn)
≤ c′

\
B1/4(e)

\
B1/4(0)

‖F (·+ i(y + t))‖p
Lp(Rn)

dµ(t) dy ≤ c′′‖F‖p
Hpµ
.

For a general y = he ∈ Ω, we apply the previous inequality to F ◦ h and
obtain

‖F (·+ iy)‖Lp(Rn) = (Deth)1/p‖F ◦ h(·+ ie)‖Lp(Rn)
≤ c(Deth)1/p‖F ◦ h‖p

Hpµ
= c∆

s
(y)−1/p‖F‖Hpµ .

Corollary 3.7. If F ∈ Hpµ(TΩ) and y ∈ Ω, then Fy := F (· + iy) ∈
Hp(TΩ) and there is a constant c > 0 so that

‖Fy‖Hp ≤ c∆s(y)−1/p‖F‖Hpµ .
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The proof is an immediate consequence of Proposition 3.5 and the next
general lemma on symmetric cones, whose proof is postponed to the ap-
pendix.

Lemma 3.8. Let s1, . . . , sr ≥ 0 and s = (s1, . . . , sr). Then
∆
s
(y + y′) ≥ ∆

s
(y) ∀y, y′ ∈ Ω.

A second corollary of Proposition 3.5 gives us the monotonicity of the
integrals defining the norm ‖F‖Hpµ . Recall that L

p
µ = Lp(Rn + iΩ; dxdµ(t)).

Corollary 3.9. Let F ∈ Hpµ(TΩ) and y, y′ ∈ Ω. Then
‖F (·+ i(y + y′))‖Lpµ ≤ ‖F (·+ iy)‖Lpµ .

Furthermore,

‖F‖Hpµ = limy→0
y∈Ω

[\\
Rn

|F (x+ i(y + t))|p dx dµ(t)
]1/p

.

Proof. The first inequality follows directly from the previous corollary
and the properties of Hardy spaces, since these imply

‖F (·+ i(y + y′ + t))‖Lp(Rn) ≤ ‖F (·+ i(y + t))‖Lp(Rn) ∀y, y′ ∈ Ω, t ∈ Ω.
As a consequence we have

lim
yn→0
‖F (·+ iyn)‖Lpµ = sup

y∈Ω
‖F (·+ iy)‖Lpµ = ‖F‖Hpµ

for any decreasing sequence yn ց 0 in Ω (i.e., decreasing with respect to the
partial order of the cone: y < y′ iff y′−y ∈ Ω). To establish the convergence
of the limit within all the cone, it suffices to see that every sequence yn → 0 in
Ω has a decreasing subsequence. But this is easy to construct by induction,
since y > λe if λ is smaller than all the eigenvalues of y.

Finally, as a scholium of the previous corollary we obtain the following:

Corollary 3.10. If F ∈ Hpµ(TΩ) and y ∈ Ω, then Fy = F (· + iy) ∈
Hpµ(TΩ) and ‖Fy‖Hpµ = ‖Fy‖Lpµ. Further ,

‖F‖Hpµ = limy→0
y∈Ω

‖Fy‖Hpµ .

3.2. Boundary values in Hpµ(TΩ). With the background in the previous
subsection we are now in a position to prove the following:

Theorem 3.11. Let 0 < p < ∞ and µ be a measure as above. Let Ω0
be a proper subcone of Ω and define, for F ∈ Hpµ(TΩ),

F ∗(z) = sup
y∈Ω0

|F (z + iy)|, z ∈ R
n + iSuppµ.(3.12)
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Then F ∗ ∈ Lpµ, and there is a constant c = c(Ω0) > 0 such that
‖F‖Hpµ ≤ ‖F ∗‖Lpµ ≤ c‖F‖Hpµ for all F ∈ Hpµ(TΩ).

Proof. Let ε > 0, t ∈ Suppµ and write η = t + εe ∈ Ω. Then, by
Corollary 3.7, we have Fη = F (·+ iη) ∈ Hpµ ∩Hp. Now, properties of Hardy
spaces (see 5.13 in Chapter 3 of [12]) imply that

(Fη)
∗(x) := sup

y∈Ω0

|Fη(x+ iy)| ∈ Lp(Rn),(3.13)

and there exists a constant c = c(Ω0) > 0 so that\
Rn

|(Fη)∗(x)|p dx ≤ c
\

Rn

|(Fη)(x)|p dx.

We can write the last inequality as\
Rn

sup
y∈Ω0

|F (x+ i(y + t+ εe))|p dx ≤ c
\

Rn

|F (x+ i(t+ εe))|p dx,

and therefore, after integrating with respect to dµ(t) we obtain\\
Rn

sup
y∈Ω0

|Fεe(x+ i(y + t))|p dx dµ(t) ≤ c
\\

Rn

|Fεe(x+ it)|p dx dµ(t).

We may now let ε→ 0. Using Corollary 3.10 on the right hand side and the
Monotone Convergence Theorem on the left hand side, we obtain

‖F ∗‖p
Lpµ
=
\\

Rn

lim
ε→0

sup
y∈Ω0+εe

|F (x+ i(y + t))|p dx dµ(t) ≤ c‖F‖p
Hpµ
.

The reverse inequality is clear since for any y0 ∈ Ω0 we have
‖F‖Hpµ = limε→0 ‖Fεy0‖Lpµ ≤ ‖F

∗‖Lpµ .

For simplicity, we have stated the previous theorem using the vertical
(restricted) maximal function

F ∗(x) := sup
y∈Ω0

|F (x+ iy)|, x ∈ R
n.

But we could have as well taken a non-tangential (restricted) maximal func-
tion:

F ∗∗(x0) := sup
(x,y)∈γα(x0)
y∈Ω0

|F (x+ iy)|, x0 ∈ R
n, α = (α1, . . . , αn),(3.14)

where

γα(x
0) = {(x, y) ∈ R

2n : |xj − x0j | < αjyj , j = 1, . . . , n}
is a cartesian product of conical regions with apertures α1, . . . , αn > 0.
Indeed, in the case of classical Hardy spaces it is known that

F ∈ Hp(TΩ) ⇒ F ∗∗ ∈ Lp(Rn)
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with equivalence of norms (see, e.g., Chapter III of [13]). Therefore, replac-
ing F ∗ by F ∗∗ in the previous proof we obtain the following refinement of
Theorem 3.11:

Theorem 3.15. Let Ω0 be a proper subcone of Ω and α = (α1, . . . , αn)
> 0. Let F ∈ Hpµ(TΩ) and
F ∗∗(x0 + it) := sup

(x,y)∈γα(x0)
y∈Ω0

|F (x+ i(t+ y))|, x0 + it ∈ R
n + iSuppµ.

Then F ∗∗ ∈ Lpµ and there is a constant c = c(Ω0,α) > 0 such that
‖F‖Hpµ ≤ ‖F ∗∗‖Lpµ ≤ c‖F‖Hpµ .

We now have all the tools to prove the existence of boundary limits for
functions in Hpµ(TΩ). We state the result separately as a slightly different
version of Theorem 1.2.

Theorem 3.16. Let Ω0 be a proper subcone of Ω and α = (α1, . . . , αn)
> 0. If F ∈ Hpµ(TΩ), then there exists F (b) ∈ Lpµ so that

lim
(x,y)→(x0,0)

(x,y)∈γα(x0), y∈Ω0

F (x+ i(y + t)) = F (b)(x0 + it)(3.17)

for a.e. x0 + it ∈ R
n + iSuppµ.

Proof. By Theorem 3.15 we may find a µ-null set E so that for every
t ∈ Suppµ \ E,

F ∗∗(x+ it) <∞ for a.e. x ∈ R
n.

Here F ∗∗ denotes the non-tangential maximal function restricted to a proper
subcone Ω0. Therefore, Ft = F (· + it) will be a holomorphic (hence har-
monic) function in the smaller tube TΩ0 , and non-tangentially bounded in
each variable at almost every x ∈ R

n. Thus, we can invoke the Theorem of
Calderón (2) (Theorem 3.24 in Chapter II of [13]) which asserts that Ft has

a non-tangential limit F
(b)
t in each set of variables at almost every x ∈ R

n.

Note that we cannot say in principle that F
(b)
t (x) is jointly measurable

in (x, t) ∈ R
n + iSuppµ, and consequently, that the limit in (3.17) exists

almost everywhere. To bridge this problem we define the measurable set

A = {(x0, t) : lim
z→(x0,0)

ReF (z + it) > lim
z→(x0,0)

ReF (z + it)},

where the limits are in the same non-tangential sense as in the statement
of the theorem. Note that if we can show that A has dxdµ(t)-measure zero,

(2) Calderón’s Theorem is originally stated for harmonic functions in the tube R
n +

i(0,∞)n (i.e., in the cartesian product of upper half-planes). An appropriate change of
variables makes it valid for tubes R

n + iΩ0, where Ω0 is any proper subcone of Ω (see
Chapter III of [13]).
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then (after a parallel argument with ImF ) we obtain the existence of non-
tangential limits a.e., and the measurability of the limit function F (b). The
Lpµ-integrability will follow from the pointwise estimate: |F (b)| ≤ F ∗∗.
Let us therefore show that meas(A) = 0. We define

At = {x ∈ R
n : (x, t) ∈ A}, t ∈ Suppµ.

These are Lebesgue measurable sets in R
n and by Fubini’s theorem

meas(A) =
\
|At| dµ(t).

Therefore, it suffices to see that |At| = 0 for t ∈ Suppµ \ E. But At is
contained in the set of points x0 ∈ R

n for which Ft(x+iy) does not converge

(non-tangentially) to F
(b)
t (x

0). By Calderón’s Theorem, this last set has
Lebesgue measure zero, and therefore also |At| = 0. This completes the
proof of Theorem 3.16.

The following immediate corollary gives non-tangential restricted con-
vergence in norm, a bit less than was stated in Theorem 1.2.

Corollary 3.18. If F ∈ Hpµ(TΩ) and F (b) is its boundary value, then
‖F‖Hpµ = ‖F (b)‖Lpµ .

Furthermore, for every proper subcone Ω0 of Ω and α = (α1, . . . , αn) > 0
we have

lim
(x,y)→0

(x,y)∈γα(0), y∈Ω0

‖F (·+ x+ iy)− F (b)‖Lpµ = 0.(3.19)

Proof. By Corollary 3.9 it suffices to show the second equality. But this is
a consequence of Theorem 3.16 and the Dominated Convergence Theorem.

With not much more effort we can also show a converse of Theorem 3.16,
which will have an interesting consequence.

Theorem 3.20. Let F be holomorphic in TΩ and such that , for every
proper subcone Ω0 of Ω and some α > 0, we have F ∗∗ ∈ Lpµ. Then F ∈
Hpµ(TΩ) and

‖F‖Hpµ ≤ ‖F ∗∗‖Lpµ .
Proof. Exactly the same proof as in Theorem 3.16 gives us the existence

of a function F (b) ∈ Lpµ which is the non-tangential limit of F in the same
sense as in (3.17). Consequently, by the Dominated Convergence Theorem
we will also have

lim
y→0
y∈Ω0

\\
Rn

|F (x+ i(y + t))|p dx dµ(t) =
\\

Rn

|F (b)(x+ it)|p dx dµ(t).
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Let us fix for the moment a proper subcone Ω0 of Ω. Then

sup
y∈Ω0

\
Rn

|Ft(x+ iy)|p dx ≤
\

Rn

|F ∗∗(x+ it)|p dx ∀t ∈ Suppµ.

Now, except for a set E = E(Ω0) of µ-measure zero we know that the integral
on the right hand side is finite. Thus, we conclude that Ft ∈ Hp(TΩ0), and
therefore

sup
y∈Ω0

\
Rn

|Ft(x+ iy)|p dx = lim
y→0
y∈Ω0

\
Rn

|Ft(x+ iy)|p dx(3.21)

=
\

Rn

|F (b)(x+ it)|p dx.

Taking an increasing sequence of proper subcones {Ωj}∞j=0 covering Ω, we
deduce that, except for t in a set E =

⋃∞
j=0E(Ωj) of µ-measure zero, the

following equality holds:

sup
y∈Ω

\
Rn

|Ft(x+ iy)|p dx =
\

Rn

|F (b)(x+ it)|p dx.

Thus, Ft ∈ Hp(TΩ). Further,\
‖Ft‖pHp(TΩ) dµ(t) = ‖F

(b)‖p
Lpµ
.

We now claim that F must belong to Hpµ(TΩ). Indeed, using (3.21), the fact
that y → ‖Ft(·+ iy)‖Lp(Rn) is decreasing (in the partial order of the cone),
and the Monotone Convergence Theorem we obtain

sup
y∈Ω0

\\
Rn

|Fy(x+ it)|p dx dµ(t) = lim
y→0
y∈Ω0

‖Fy‖pLpµ = ‖F
(b)‖p
Lpµ
.

Since this holds for any arbitrary subcone the claim follows, completing the
proof of the theorem.

A corollary of the previous proof is the following “vector-valued” result:

Corollary 3.22. If F ∈ Hpµ(TΩ), then Ft = F (· + it) ∈ Hp(TΩ) for
a.e. t ∈ Suppµ, and

[\
‖Ft‖pHp dµ(t)

]1/p
= ‖F‖Hpµ .

We conclude this section by proving a very general density result for the
spaces Hpµ(TΩ). First of all note that, as a consequence of (3.19),

lim
ε→0
‖Fεe − F‖Hpµ = 0.

Thus, by Corollary 3.7 the space Hpµ(TΩ)∩Hp(TΩ) is dense in Hpµ(TΩ). The
next result shows that a much smaller space is also dense.

Theorem 3.23. Let 0 < p, q <∞ and µ, µ′ be a pair of quasi-invariant
measures with respect to H. Then Hpµ ∩Hqµ′ is dense in H

p
µ(TΩ).
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Proof. It will suffice to show that for N large we have

G(z) =
ei(z|e)

∆((z + ie)/i)N
∈ Hqµ′(TΩ).(3.24)

Indeed, in this case

F ε(z) := G(εz)F (z + iεe) ∈ Hpµ ∩Hqµ′ ,
since both Fεe and G are bounded (

3). Further, the pointwise limit of F ε(z)
is F (z) when ε→ 0. Since F ∗ ∈ Lpµ, we may use the Dominated Convergence
Theorem and our previous results to obtain

lim
ε→0
‖F ε − F‖Hpµ = limε→0 ‖(F

ε)(b) − F (b)‖Lpµ = 0.

Our claim in (3.24) will be a consequence of the following lemma, which
we prove in a more general setting in the appendix.

Lemma 3.25. If α > 2n/r− 1, then there is a constant c(α) > 0 so that\
Rn

|∆(y + ix)|−α dx = c(α)∆(y)−α+n/r ∀y ∈ Ω.(3.26)

Indeed, assume for a moment that the lemma holds. Then taking any
integer N so that Nq > 2n/r − 1 we obtain\\

Rn

|G(x+ it)|q dx dµ′(t) =
\
e−q(t|e)

\
Rn

|∆(e+ t+ ix)|−Nq dx dµ′(t)

= c(Nq)
\
e−q(t|e)∆(e+ t)−Nq+n/r dµ′(t)

≤ c(Nq)
\
e−q(t|e) dµ′(t) = c′Lµ′(e) <∞,

where in the inequality we have used Lemma 3.8. This shows (3.24) and
establishes the theorem.

4. Reproducing kernels on Hpµ(TΩ). In this section we give some
reconstruction formulas from the boundary values of functions in Hpµ(TΩ),
p ≥ 1. These will be obtained from positive kernels of Poisson–Szegő type.
Among the consequences, we shall prove unrestricted Lpµ-convergence of Fy
to F (b), as stated in Theorem 1.2. We start with the case p = 2, which has
a simpler characterization in terms of a Paley–Wiener theorem.

4.1. A characterization of H2µ(TΩ). In this section we shall assume that
µ = µ

s
for some fixed s ∈ Ξ. We also let

L2
s
∗(Ω) = L2(Ω;∆∗

s
∗(2ξ)dξ) = L2(Ω;∆s((2ξ)

−1)−1dξ).

(3) That G(z) is holomorphic and bounded follows directly from the definition and an
elementary estimation on ∆(z) for complex z. We present these facts in some more detail
in the appendix.
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The following theorem gives a Paley–Wiener characterization for the space
H2µ(TΩ). We point out that this type of result, for some of the spaces men-
tioned in the introduction, has been previously obtained by different authors
[4], [10], [2], . . . Here we include an elementary proof that covers the whole
range of spaces.

Theorem 4.1. For every F ∈ H2µ(TΩ) there exists f ∈ L2s∗(Ω) such that

F (z) =
1

(2π)n/2

\
Ω

ei(z|ξ)f(ξ)∆∗
s
∗(2ξ) dξ, z ∈ TΩ .(4.2)

Conversely , if f ∈ L2
s
∗(Ω) then the integral above converges absolutely to a

function F ∈ H2µ(TΩ). In this case,
‖F‖H2µ = ‖f‖L2

s
∗
.

Proof. Suppose first that F ∈ H2µ(TΩ) ∩ H2(TΩ). Then, by classical
results on Hardy spaces, there exists a function g ∈ L2(Ω) such that

F (z) =
1

(2π)n/2

\
Ω

ei(z|ξ)g(ξ) dξ, z ∈ TΩ(4.3)

(see Chapter III of [13]). Thus, for f(ξ) = g(ξ)∆∗−s∗(2ξ) the identity in (4.2)
holds. We shall show that f ∈ L2

s
∗ . Using the Plancherel theorem in (4.3)

we get \
Rn

|F (x+ i(y + t))|2 dx =
\
Ω

|e−(y+t|ξ)g(ξ)|2 dξ

=
\
Ω

e−2(y+t|ξ)|f(ξ)|2∆∗
s
∗(2ξ)2 dξ.

Integrating with respect to dµ(t), using Fubini’s Theorem, and the identity
Lµ(ξ) = ∆∗

s
∗(ξ)−1 in Lemma 2.6, we conclude that\

Ω

\
Rn

|F (x+ i(y + t))|2 dx dµ(t) =
\
Ω

|f(ξ)|2e−2(y|ξ)∆∗
s
∗(2ξ) dξ.

Thus, by Corollary 3.9 and the Monotone Convergence Theorem,

‖F‖H2µ = limy→0 ‖F (·+ iy)‖L2µ = ‖f‖L2s∗ .

The density result in Theorem 3.23 extends this isometry to all functions
F ∈ H2µ(TΩ), establishing the direct part of the theorem.
To see that the isometry is surjective, we take an arbitrary f ∈ L2

s
∗(Ω),

and show that the integral in (4.2) converges absolutely to a holomorphic
function F (z) in TΩ. This will suffice for our assertion, since exactly the
same computations as above will give F ∈ H2µ(TΩ).
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To prove the absolute convergence of the integral, it is enough to look
at z = ie. Now, using Hölder’s inequality and Lemma 2.6, we get\

Ω

e−(e|ξ)|f(ξ)|∆∗
s
∗(2ξ) dξ ≤ ‖f‖L2

s
∗

( \
Ω

e−2(e|ξ)∆∗2s∗(2ξ) dξ
)1/2

= ‖f‖L2
s
∗
2−n/2ΓΩ(2s

∗ + n/r)1/2,

which is a finite quantity because sj ≥ 0, j = 1, . . . , r.
In the next corollary we show the relation between the boundary limit

F (b), and the function f in (4.2).

Corollary 4.4. Let F ∈ H2µ(TΩ), and denote by F
(b) its boundary

limit and f the function in (4.2). Then for a.e. t ∈ Suppµ we have

F (b)(x+ it) =
1

(2π)n/2

\
Ω

ei(x|ξ)e−(t|ξ)f(ξ)∆∗
s
∗(2ξ) dξ,(4.5)

where the equality is interpreted in the Fourier–Plancherel sense. Moreover ,

lim
y→0
y∈Ω

‖F (·+ iy)− F (b)‖L2µ = 0.

Proof. From (4.2) we know that

F (x+ i(y + t)) =
1

(2π)n/2

\
Ω

ei(x|ξ)e−(y|ξ)e−(t|ξ)f(ξ)∆∗
s
∗(2ξ) dξ(4.6)

for all x + it ∈ R
n + Suppµ and y ∈ Ω. Now, as we saw in the previous

proof, the function (ξ, t) 7→ e−(t|ξ)f(ξ)∆∗
s
∗(2ξ) belongs to L2(dξdµ(t)). Thus,

by the Dominated Convergence Theorem we have

lim
yk→0
‖(e−(yk|ξ) − 1)e−(t|ξ)f(ξ)∆∗

s
∗(2ξ)‖L2(dξ dµ(t)) = 0

for any sequence yk → 0 contained in Ω. We conclude that the limit as
y → 0 (y ∈ Ω) of the right hand side of (4.6) exists (in L2µ), and equals the
right hand side of (4.5). On the other hand, by Theorem 1.2 the left hand
side of (4.6) converges to F (b)(x + it), giving us the identity in (4.5) and
completing the proof of the corollary.

A direct application of the isometric isomorphism in Theorem 4.1 pro-
vides an explicit formula for the reproducing kernel of the spaces H2µ(TΩ).
We shall write, with some abuse of notation, dµ(w) = dudµ(t) whenever
w = u+ it ∈ R

n + iSuppµ.

Corollary 4.7. Let s ∈ Ξ and µ = µ
s
. Then the reproducing kernel

for H2µ(TΩ) is given by

(4.8) Kµ(z, w) = c(s)

[
∆
s+n/r

(
z − w
2i

)]−1
, z ∈ TΩ , w ∈ R

n + iSuppµ,
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where c(s) = (4π)−nΓΩ(s
∗ + n/r). That is, if F ∈ H2µ(TΩ) and F (b) is its

boundary value, then

F (z) =
\\

Rn

Kµ(z, w)F
(b)(w) dµ(w), z ∈ TΩ .

Proof. The isometry in Theorem 4.1 gives an abstract formula for the
reproducing kernel of H2µ(TΩ):

Kµ(z, w) =
1

(2π)n

\
Ω

ei(z−w|ξ)∆∗
s
∗(2ξ) dξ

(see Proposition IX.3.4 in [3]). The final expression for Kµ in (4.8) follows
by computing the integral above, which can be done explicitly using Lemma
2.6 (see also (7.7) in the appendix).

4.2. Poisson–Szegő kernels in Hpµ(TΩ). In this subsection we use well
known techniques to construct a positive kernel that reproduces functions
in Hpµ(TΩ), for every 1 ≤ p <∞. We let

Sµ(z, w) =
|Kµ(z, w)|2
Kµ(z, z)

, z ∈ TΩ , w ∈ R
n + iSuppµ.(4.9)

Then the following properties are not difficult to verify:

(i) Sµ(z, w) > 0 for all z ∈ TΩ, w ∈ R
n + iSuppµ.

(ii)
TT
Sµ(z, w) dµ(w) = 1 for all z ∈ TΩ .

(iii) If 1 ≤ p ≤ ∞ and z = x+ iy ∈ TΩ , then Sµ(z, ·) ∈ Lpµ and

‖Sµ(z, ·)‖Lpµ ≤
(

c(s)

∆
s+n/r(y/4)

)1/p′
, where

1

p
+
1

p′
= 1.

(To check the last inequality, one can interpolate between the simpler cases
p = 1 and p = ∞. These follow from (ii), and elementary estimates in ∆;
see Lemmas 3.8 and 7.5.)

Proposition 4.10. Let 1 ≤ p < ∞. If F ∈ Hpµ(TΩ) and F
(b) is its

boundary limit , then

F (z) =
\\

Rn

Sµ(z, w)F
(b)(w) dµ(w), z ∈ TΩ.(4.11)

Proof. Let ε > 0. Then, for every fixed z ∈ TΩ , we have Kµ(w, z)Fεe(w)
∈ H2µ(TΩ) (since Fεe is bounded). Thus, from the previous corollary we see
that

Fεe(z) =
\\
Kµ(z, w)

Kµ(w, z)

Kµ(z, z)
Fεe(w) dµ(w)

=
\\
Sµ(z, w)Fεe(w) dµ(w).
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Now, since Sµ(z, ·) ∈ Lp
′

µ and Fεe → F (b) in Lpµ, as ε → 0, the identity in
(4.11) follows.

Observe that, when µ = δ0, Sµ(z, w) is the Poisson–Szegő kernel of the
tube domain. In this case we use the classical notation:

Py(x− u) = Sδ0(x+ iy, u), x+ iy ∈ TΩ , u ∈ R
n.

Now, Py is known to be an approximation of the identity. That is, in addition
to (i)–(iii) above it has the crucial property

(iv) lim
y→0
y∈Ω

\
|x|>δ

Py(x) dx = 0 for every δ > 0.

Using this, we obtain the following unrestricted limit in norm when p ≥ 1,
which establishes the last part of Theorem 1.2.

Theorem 4.12. Let 1 ≤ p < ∞ and F ∈ Hpµ(TΩ), with boundary limit
F (b). Then

lim
y→0
y∈Ω

‖F (·+ iy)− F (b)‖Lpµ = 0.(4.13)

Proof. We use Corollary 3.22 so that, except for t in a set of µ-measure 0,
Ft = F (·+ it) ∈ Hp(TΩ), and hence

Ft(x+ iy) =
\

Rn

F
(b)
t (x− u)Py(u) du, x+ iy ∈ TΩ .(4.14)

In particular, we can write

Ft(x+ iy)− F (b)t (x) =
\

Rn

(F
(b)
t (x− u)− F

(b)
t (x))Py(u) du.

Thus, taking Lpµ-norms in the above expression, for every δ > 0 we have

‖F (·+ iy)− F (b)‖Lpµ
≤

\
|u|<δ

‖F (b)(· − u)− F (b)‖Lpµ Py(u) du+
\
|u|≥δ

2‖F (b)‖Lpµ Py(u) du.

Now, using the continuity of the Lpµ-norm and (iv) above, one can easily
show (4.13) by an (ε, δ)-argument.

5. The boundary of a symmetric cone. In this section we go back to
the geometry of the cone. We prove Theorem 1.6 in detail, and set the basis
to study the tangential CR equations in the next section. We also provide
an explicit expression for the measures µν in terms of Gauss coordinates.
Let {c1, . . . , cr} be a fixed Jordan frame in V , and H the triangular

subgroup of G from §2.1. We begin by describing the orbits of H on Ω.
Since the group acts simply transitively on the cone, one can write

Ω = He as a single orbit. However, the action of H on the boundary is
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no longer transitive, and consequently, ∂Ω will consist of many disjoint or-
bits. In the next proposition we show that these are determined by the action
on the following idempotents:

cε = ε1c1 + . . .+ εrcr, where ε = (ε1, . . . , εr) ∈ {0, 1}r.
Proposition 5.1. Define I = {0, 1}r and I∗ = I \ {(1, . . . , 1)}. Then

Ω =
⋃

ε∈I

Hcε and ∂Ω =
⋃

ε∈I∗

Hcε,(5.2)

where the unions are pairwise disjoint.

For the proof of this proposition, and other results in this section, we
proceed by induction on the rank r of Ω. The usual technique goes as follows:
write each x ∈ V as

x = x1 + x1/2 + x0,

in terms of the Peirce decomposition V (c1, 1)⊕ V (c1, 1/2)⊕ V (c1, 0). Then
consider V0 := V (c1, 0) as a Jordan algebra of rank r−1, with Jordan frame
{c2, . . . , cr} and associated cone Ω0. The restriction of H to V0, denoted by
H0, consists of lower triangular matrices with 1 in their first entry and zeros
in the rest of the first column. That is, in the notation of (2.2), we can write
every h0 ∈ H0 as

h0 = τ
(2)(z2) . . . τ

(r−1)(zr−1)P
(
c1 +

r∑

j=2

ajcj

)
, aj > 0, zj ∈

r⊕

k=j+1

Vj,k.

Then one uses the following lemma, which gives the Gauss decomposition of
x ∈ Ω with respect to the idempotent c1.
Lemma 5.3 (see Proposition VI.3.2 in [3]). If x = x1 + x1/2 + x0 ∈ Ω

and x1 6= 0, then there exist unique v ∈ V (c1, 1/2) and u > 0 so that
x = τ (1)(v/u)(u2c1 + y) for some y ∈ V (c1, 0).

In this case, y ∈ Ω0 and
x1 = u

2c1, x1/2 = uv and x0 = (v
2)0 + y.

Proof of Proposition 5.1. It suffices to show the statement about Ω,
since the only orbit which intersects the open cone Ω is He. The proof is
by induction on the rank r of the cone. The case r = 1 is obvious (since
∂Ω = {0}). We now assume the result holds for cones of rank ≤ r − 1.
Take any x = x1 + x1/2 + x0 ∈ Ω. Since x1 = (x|c1)c1, if this term is

zero we have x = x0 ∈ V (c1, 0) = V0. Further, x ∈ Ω implies x ∈ Ω0, so the
induction hypothesis applies.
Assume now x1 6= 0, and consider the decomposition in Lemma 5.3.

Since y ∈ Ω0, by the induction hypothesis there exists h0 ∈ H0 so that
y = h0cε′ for some ε

′ = (0, ε0), ε0 ∈ {0, 1}r−1. Using h0c1 = c1, we can
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write x = τ (1)(v/u)(u2c1+h0cε′) = hc(1,ε0) for some h ∈ H. This establishes
the equality in (5.2).
It remains to prove that Hcε∩Hcε′ = ∅ when ε 6= ε′. That is, if cε = hcε′

for some h ∈ H, we want to show ε = ε′. Using the decomposition in (2.2),
we shall write h as

h = τ (1)(v/u)P (uc1 + c2 + . . .+ cr)h0(5.4)

for some u > 0, v ∈ V (c1, 1/2) and h0 ∈ H0. Now, set ε = (ε1, ε0) and ε′ =
(ε′1, ε

′
0), and observe that necessarily ε1 = ε

′
1, since H is lower triangular.

In the case ε1 = ε
′
1 = 0, cε = hcε′ is equivalent to cε0 = h0cε′0 (the terms

of h involving c1 play no role). Thus, the induction hypothesis gives ε0 = ε
′
0.

In the other case, i.e. ε1 = ε′1 = 1, the uniqueness in Lemma 5.3 applied
to x = cε implies u = 1, v = 0 and cε0 = y = h0cε′0 . Again, the induction
hypothesis gives ε0 = ε

′
0, establishing the proposition.

Next we define a differentiable structure on each orbit Mε := Hcε for
ε ∈ I. This is done by identifying Mε with the homogeneous space H/Hcε ,
where Hcε = {h ∈ H : hcε = cε} is the stabilizer of cε. Since H is a Lie
group acting analytically on R

n,Mε becomes a submanifold of R
n (see, e.g.,

Theorem 2.9.7 of [14]). In fact, from the following proposition we see that
Mε is actually a regular submanifold of R

n.

Proposition 5.5. Let cε = cj1 + . . . + cjs for 1 ≤ j1 < . . . < js ≤ r,
and Mε = Hcε. Then every x ∈Mε can be written uniquely as

x = τ (j1)(zj1) . . . τ
(js)(zjs)P (aj1cj1 + . . .+ ajscjs + (e− cε))cε,(5.6)

where z(ji) ∈ ⊕rk=ji+1 Vji,k and aji > 0, i = 1, . . . , s. Moreover , Mε is a
regular submanifold of R

n of dimension mε = s+ d
∑s
i=1(r − ji).

Proof. The proof is again by induction on r. Let x ∈ Mε, and write it
as x = hcε, where h ∈ H has been decomposed as in (5.4). If j1 6= 1, then
we may take u = 1 and v = 0 in (5.4), and therefore apply the induction
hypothesis to x = h0cε ∈ V0.
Suppose j1 = 1 instead, and let cε′ = cj2 + . . .+ cjs . Then, using (5.4),

we can write

x = τ (1)(v/u)(u2c1 + y),

where y = h0cε′ ∈ H0cε′ ⊂ V0. One more application of the induction
hypothesis gives

y = τ (j2)(zj2) . . . τ
(js)(zjs)P (aj2cj2 + . . .+ ajscjs + (e− cε))cε′

for appropriate zj and aj . Hence, combining the last two formulas, and using
the commutativity relation in (2.3), we obtain an expression like in (5.6).
The uniqueness of the decomposition is also a consequence of the induction
hypothesis, and the uniqueness in Lemma 5.3.



236 G. GARRIGÓS

Finally, we show that Mε is a regular submanifold of R
n. First note that

the correspondence in (5.4),

R+×V (c1, 1/2)×H0 → H, (u, v, h0) 7→ h = τ (1)(v/u)P (uc1+(e−c1))h0,
is actually a diffeomorphism (use again the induction hypothesis and Lemma
5.3). Therefore, it suffices to show that the mapping

(u, v, y) ∈ R+×V (c1, 1/2)×H0cε′ 7→ x = τ (1)(v/u)(u2c1+y) ∈Mε(5.7)

is open when the image spaceMε has the relative topology of R
n. One more

time, the induction hypothesis gives us the openness of the inclusion map

y ∈ H0cε′ 7→ y ∈Mε′ ⊂ V0
when the image space has the topology of V0 ≡ R

n0 . Thus, the openness of
(5.7) follows by writing

x = x1 + x1/2 + x0 = u
2c1 + uv + ((v

2)0 + y),

and looking at the projection in each variable separately.

A consequence of the preceding proposition is that each Mε is a Borel
set in R

n. To continue the proof of Theorem 1.6, we shall obtain an explicit
expression for the measures µ

s
, and compute µ

s
(Mε) for each s ∈ Ξ, ε ∈ I.

Proposition 5.8. Let s ∈ Ξ. Then there exists a unique ε = ε(s) ∈ I
so that

µ
s
(Mε) > 0 and µ

s
(Ω \Mε) = 0.

Proof. The proof is again by induction on r. The case r = 1 is simple,
since the only manifolds are M1 = Ω = (0,∞) and M0 = {0}, and the
measures µ

s
are given by\

Ω

f(x) dµ
s
(x) =





∞\
0

f(x)
xs

s

dx

x
if s > 0,

f(0) if s = 0.

Suppose now the result holds for cones of rank ≤ r − 1, and let Ω be a
cone of rank r. Given s = (s1, s

′) ∈ Ξ, we write µ
s
using the coordinates of

the Peirce decomposition

x = x1 + x1/2 + x0 = u
2c1 + uv + (y + (v

2)0)

with u > 0, v ∈ V (c1, 1/2), and y ∈ Ω0. After an appropriate substitution
of the variables one obtains\

Ω

f(x) dµ
s
(x) =

\
Ω0

f(0, 0, y) dµ0
s
′(y) if s1 = 0,(5.9)
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Ω

f(x) dµ
s
(x) = c

s

\
Ω0

\
V (c1,1/2)

∞\
0

f(u2c1, uv, y + (v
2)0)(5.10)

×u2s1 du
u
dv dµ0

s
′−d/2(y) if s1 > 0,

with the constant c
s
= 2(2π)−(n/r−1)/Γ (s1). These formulas are proved, e.g.,

in Lemma VII.3.3 of [3].

Now, given ε = (ε1, ε
′) ∈ I, we can write the manifold Mε in Gauss

coordinates as

M(0,ε′) = {(0, 0, y) : y ∈M (0)ε′ = H0cε′},
M(1,ε′) = {(u, v, y) : u > 0, v ∈ V (c1, 1/2), y ∈M (0)ε′ }.

(5.11)

Suppose first s1 = 0. Then it is clear from (5.9) and (5.11) that

µ
s
(M(1,η′)) = 0 whenever η′ ∈ {0, 1}r−1.

Also, by the induction hypothesis, there exists a unique ε′ ∈ {0, 1}r−1 such
that µ0

s
′(M

(0)
ε′
) > 0. Thus, if η = (0,η′) we have

µ
s
(Mη) = µ

0
s
′(M

(0)
η′
) > 0 iff η′ = ε′.

Suppose now s1 > 0. Again from (5.10) and (5.11) it follows that

µ
s
(M(0,η′)) = 0 for all η′ ∈ {0, 1}r−1.

Also, by the induction hypothesis, there exists a unique ε′ ∈ {0, 1}r−1 such
that µ0

s
′−d/2(M

(0)
ε′
) > 0. Thus, if η = (1,η′) we have

µ
s
(Mη) = cs lim

N→∞

( \
|v|≤N

N\
1/N

u2s1
du

u
dv

)
µ0
s
′−d/2(M

(0)
η′
),

which is non-zero if and only if µ0
s
′−d/2(M

(0)
η′
) > 0, or equivalently, η′ = ε′.

For the last statement of Theorem 1.6, we need the following result.

Lemma 5.12. In the conditions of this section, co (Hc1) = Ω.

Proof. It suffices to show that

cj ∈ Hc1, j = 2, . . . , r.(5.13)

Indeed, in this case
⋃r
j=2Hcj ⊂ Hc1, and therefore,

co (Hc1) = co (Hc1 +Hc2 + . . .+Hcr) = co (He) = Ω.

To see (5.13), let v ∈ V1,j with |v| =
√
2, and un ց 0. Then, by Proposition

5.3,

xn := τ
(1)(v/un)(u

2
nc1) = u

2
nc1 + unv + (v

2)0 ∈ Hc1.
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Thus, limn→∞ xn = (v
2)0 ∈ Hc1. But v2 ∈ V1,1 ⊕ Vj,j , and therefore,
(v2)0 = (v

2|cj)cj = 12 |v|2cj = cj .
The last statement of Theorem 1.6 follows immediately from the previous

lemma. Indeed, if cε = cj1 + . . . + cjs with 1 ≤ j1 < . . . < js ≤ r, then
co (Hcε) = Ω(j1), which is the cone of squares associated with the Jordan
algebra V(j1) =

⊕
j1≤j≤k≤r

Vj,k. Thus, our claim follows from a fact we saw

above: for s ∈ Ξ, s1 = 0 if and only if ε(s) = (0, ε′) for some ε′ ∈ I ′.
With the preceding propositions we have essentially completed the proof

of Theorem 1.6. The fact that the measures µ
s
are smooth volume forms

in Mε is contained in the proofs presented above. Indeed, it follows from
the parametrization of both, manifold and measure, in terms of the Gauss
coordinates (see (5.9)–(5.11)).
To conclude completely the proof of Theorem 1.6 it only remains to show

that the orbits Mε = Hcε can actually be written as Mε = Hεcε for a Lie
subgroup Hε of H. In view of Proposition 5.5, if cε = cj1 + . . .+ cjs , we let
Hε be the set of h ∈ H of the form

h = τ (j1)(zj1) . . . τ
(js)(zjs)P (aj1cj1 + . . .+ ajscjs + (e− cε))(5.14)

for zji , aji as in (5.6). Then Hε is a closed subset of H acting simply tran-
sitively on Mε. We further claim that Hε is a subgroup of H. To see this,
recall from §2.2 that

τ (i)(z) = exp(2z 2 ci), z ∈ V (ci, 1/2),
where z 2 w = L(zw) + [L(z), L(w)] (see also Chapter VI of [3]). Let

gi,j = {X = z 2 ci : z ∈ Vi,j} ⊂ g.

Then our claim follows from the next lemma:

Lemma 5.15. Let 1 ≤ i < k ≤ r, 1 ≤ j < l ≤ r, and suppose i ≤ j.
Then, if z ∈ Vi,k and w ∈ Vj,l, we have

[z 2 ci, w 2 cj ] = −δj,k(zw)2 ci = −12δj,k L(zw).(5.16)

Indeed, as Vi,jVj,l ⊂ Vi,l (see Chapter IV of [3]), the lemma implies that∑r
k=i+1 gi,k ⊕

∑r
l=j+1 gj,l is a Lie subalgebra of g for every i < j. Thus, by

the Baker–Campbell formula (see, e.g., Theorem 2.15.4 of [14]), the set

{
τ (i)(z)τ (j)(w) : z ∈

r⊕

k=i+1

Vi,k, w ∈
r⊕

l=j+1

Vj,l

}

is a closed subgroup of H. After iteration, and by (2.3), it follows that Hε
is also a closed subgroup of H. Note that the inverse of h ∈ Hε in (5.14) is
given by

h−1 = P (a−1j1 cj1 + . . .+ a
−1
js
cjs + (e− cε))τ (js)(−zjs) . . . τ (j1)(−zj1).
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The proof of Lemma 5.15 is elementary, and will be presented in the
appendix.

6. The characterization of the spaces Hpµ(TΩ). In this section we
present a proof for the last two theorems of the paper: 1.3 and 1.4. This
requires the use of results developed in previous sections, but also some new
techniques involving CR equations in complex manifolds. For the last part
we shall follow the presentation in [10], where, as we pointed out, the spaces
H2µ(TΩ) were already characterized.

6.1. The tangential Cauchy–Riemann equations. Throughout this sub-
section, M will be a regular submanifold of R

n, and H a Lie group acting
simply transitively on M . That is, there exists a fixed t0 ∈M such that ev-
ery x ∈M can be written uniquely as x = ht0 for some h ∈ H. We suppose
m = dimM > 0. A particular case of this situation are the orbits described
in §5: Mε = Hεcε for ε ∈ I \ {0}.
Consider the (real) manifold TM = R

n + iM ⊂ R
n + iRn. We denote by

Tp(TM ) the tangent space of TM at p, and by Tp(TM )C its complexification.
A tangential CR vector field in TM is a smooth vector field Z : p 7→ Zp ∈
Tp(TM )C which is antiholomorphic in C

n ≡ R
n + iRn. That is,

Zp ∈ spanC

{
∂

∂z1

∣∣∣∣
p

, . . . ,
∂

∂zn

∣∣∣∣
p

}
, where

∂

∂zj

∣∣∣∣
p

=
1

2

(
∂

∂xj

∣∣∣∣
p

+ i
∂

∂yj

∣∣∣∣
p

)
.

Definition 6.1. We say that a function f ∈ C1(TM ) satisfies the tan-
gential Cauchy–Riemann (CR) equations if Zf = 0 for every tangential CR
vector field Z in TM .

A careful description of these equations related to manifolds of the form
TM (and even more general Siegel domains) can be found in [10]. For com-
pleteness, we give a more explicit form here, in terms of the action of the
group H.

Suppose {e1, . . . , en} is a fixed basis of Rn, for which the tangent plane
at t0 of M is given by

Tt0(M) = spanR{De1|t0 , . . . , Dem|t0},
and where Dv, v ∈ R

n \ {0}, denotes the directional derivative vector field:

Dv|p[f ] = lim
ε→0

f(p+ εv)− f(p)
ε

if f ∈ C1(p).

Let {e1, . . . , en, ie1, . . . , ien} be the corresponding basis of the complex-
ification R

n + iRn ≡ R
2n. Then the tangent space of TM = R

n +M at it0
has the form

Tit0(TM ) = spanR{De1|it0 , . . . , Den|it0 , Die1|it0 , . . . , Diem|it0}.
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Further, if p = x0 + iht0 ∈ TM for unique x0 ∈ R
n and h ∈ H, then the

group action gives:

Tp(TM ) = spanR{Dhe1|p, . . . , Dhen|p, Dihe1|p, . . . , Dihem|p}.
Consider now the following H-invariant vector fields:

Xj|p := Dhej |p and Yj|p := Dihej |p for p = x0 + iht0, j = 1, . . . , n.

The span of {Xj|p, Yj|p}mj=1 generates the largest “complex space” contained
in each Tp(TM ). Thus, a basis of antiholomorphic vector fields in T (TM )C is
given by

Zj :=
1
2(Xj + iYj), j = 1, . . . ,m.

In particular, f ∈ C1(TM ) satisfies the tangential Cauchy–Riemann equa-
tions if and only if

Zjf = 0 for all j = 1, . . . ,m.

These vector fields can also be written as

(Z1, . . . , Zn) = ∇ ·A,
where A is the matrix-valued function p = x0+ iht0 ∈ TM 7→ h ∈ H, and ∇
denotes the “antiholomorphic gradient”:

∇ =
(

∂

∂z1
, . . . ,

∂

∂zn

)
for

∂

∂zj
=
1

2
(Dej + iDiej ).

In particular, for every holomorphic function F in a neighborhood of TM ,
we must have ZjF = 0, j = 1, . . . , n.

Below, we shall apply the tangential Cauchy–Riemann equations to func-
tions in Lpµ = Lp(TM ; dxdµ(t)), and therefore, a definition of “weak deriva-
tive” is also needed (see §2.1 of [10]):
Definition 6.2. We say that f ∈ L1loc(TM ) satisfies weakly the tangen-

tial CR equations (in symbols f ∈ CR(TM )) when\
TM

f∂ω = 0 ∀ω ∈ Λ(n,m−1)c (Cn).(6.3)

In this definition Λ
(k,l)
c (Cn) denotes the set of all smooth compactly sup-

ported (k, l)-forms in C
n. That is,

ω =
∑

i1<...<ik
j1<...<jl

ϕi1,...,ikj1,...,jl
dzi1 ∧ . . . ∧ dzik ∧ dzj1 ∧ . . . ∧ dzjl ,

where ϕi1,...,ikj1,...,jl
∈ C∞c (Cn) and

dzj = dxj + idyj, dzj = dxj − idyj.
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Also, ∂ is the chain complex mapping of Λ(k,l) into Λ(k,l+1), defined on
smooth functions as

∂ϕ =

n∑

j=1

∂ϕ

∂zj
dzj , ϕ ∈ C1(Cn).

In our particular situation, (6.3) is equivalent to the simpler expression\
TM

fZjϕ = 0 ∀ j = 1, . . . ,m, ϕ ∈ C∞c (TM )(6.4)

(see 2.1.5 in [10]). The equivalence of Definitions 6.1 and 6.2 for C1(TM )
functions, as well as other properties of CR equations, can be found in
§§1, 2 of [10].
6.2. The spaces Apµ(TM ). We start by recalling the definition of the

spaces Apµ(TM ):

Definition 6.5. Let µ be a positive volume form in M and 1 ≤ p <∞.
We define Apµ(TM ) := L

p(TM ; dxdµ) ∩ CR(TM ).
It is immediate to verify that Lpµ = Lp(TM ; dxdµ(t)) ⊂ L1loc(TM ), and

Apµ(TM ) is a closed subspace of L
p
µ. In particular, A

p
µ(TM ) is a Banach space.

Next, we quote the following Paley–Wiener characterization of the Hil-
bert space A2µ(TM ). Below, we shall use the notation

Iµ(ξ) :=
\
M

e−2(ξ|t) dµ(t), ξ ∈ R
n.

Theorem 6.6 (see Th. 2.2.1 in [10]). For every F ∈ A2µ(TM ) there ex-
ists a function ϕ ∈ L2(Rn; Iµ(ξ)dξ) such that

Ft(x) = F (x+ it) =
1

(2π)n/2

\
Rn

ei(x+it|ξ)ϕ(ξ) dξ, x ∈ R
n,(6.7)

defined in the Fourier–Plancherel sense for µ-a.e. t ∈ M . Moreover , the
correspondence

F ∈ A2µ(TM ) 7→ ϕ = e(ξ|t)F̂t ∈ L2(Rn; Iµ(ξ)dξ)
is an isometric isomorphism of Hilbert spaces.

Observe that this theorem, together with our results in §4, provides a
characterization of the spaces H2µ(TΩ), at least when co (Suppµ) = Ω. To
see this, suppose that µ = µ

s
and M = Mε for some fixed s ∈ Ξ \ {0} and

ε = ε(s) ∈ I \ {0}. Then µ
s
is a positive volume form in Mε, and we can

identify Suppµ
s
≡ M , Tµs = R

n + iSuppµ
s
≡ TM . In this situation, and

using the results in §2.2, we have

Iµs(ξ) =

{
Lµ
s
(2ξ) = ∆∗−s∗(2ξ), ξ ∈ (M ♯)◦,

∞, ξ 6∈M ♯,(6.8)



242 G. GARRIGÓS

where

M ♯ := {x ∈ R
n : (x|y) ≥ 0, ∀y ∈M}

(see also 2.3.1 in [10]). Now, it is immediate to verify that

M ♯ = (Suppµ
s
)♯ = [co (Suppµ

s
)]♯ = Ω,

from which

L2(Rn; Iµs(ξ)dξ) = L
2(Ω;∆∗−s∗(2ξ)dξ) = L

2
−s∗(Ω).

Thus, using the results in §4.1 we easily conclude that
F ∈ H2µs(TΩ) ⇔ F (b) ∈ A2µs(TM ),(6.9)

with equality of norms: ‖F‖H2µ(TΩ) = ‖F (b)‖A2µ(TM ).
To extend this characterization to all values of p ≥ 1, as stated in The-

orem 1.3, we shall need some lemmas concerning the spaces Apµ(TM ). The
first is an elementary density property, which a priori only holds for p ≥ 2.
Lemma 6.10. Let 2 ≤ p < ∞ and µ be be a measure as above. Then

A2µ(TM ) ∩Apµ(TM ) is dense in Apµ(TM ).
Proof. Let F ∈ Apµ(TM ) and r = p/2 > 1. We choose a function G as in

(3.24) belonging to the space L2r
′

µ (TM ), and let

F ε(z) = G(εz)F (z), z ∈ TM .
Since G is holomorphic in a neighborhood of TΩ we have F

ε ∈ CR(TM ).
Further, since G is bounded in TΩ , we also have F

ε ∈ Apµ(TM ). Now, by
Hölder’s inequality,

‖F ε‖L2µ ≤ ‖F‖Lpµ‖G(ε ·)‖L2r′µ <∞,

and therefore F ε ∈ A2µ(TM ). Finally, the limit ‖F ε − F‖Lpµ → 0 as ε → 0
follows by the Dominated Convergence Theorem.

The second lemma is an extension of Theorem 6.6 to the range 1 ≤ p ≤ 2.
As usual, if G ∈ Apµ(TM ), we let Gt(x) = G(x+ it) as a function in R

n, and

Ĝt(ξ) :=
1

(2π)n/2

\
Rn

e−i(ξ|x)Gt(x) dx, ξ ∈ R
n.

Observe that Gt ∈ Lp(Rn) for a.e. t ∈ M , and therefore, Ĝt ∈ Lp
′

(Rn),
where 1/p+ 1/p′ = 1. The following lemma translates the CR condition in

G into an explicit form for Ĝt.

Lemma 6.11. Let 1 ≤ p ≤ 2. For every G ∈ Apµ(TM ) there exists a
function ϕ in R

n such that Iµ(pξ)
1/pϕ(ξ) ∈ Lp′(Rn), and

Ĝt(ξ) = e
−(ξ|t)ϕ(ξ) a.e. ξ + it ∈ TM .(6.12)

In particular , if co (Suppµ) = Ω, the function ϕ is supported in Ω.
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Proof. The identity in (6.12) can be obtained following essentially the
same steps as in the proof of Theorem 6.6 (see [10]). More precisely, one

just needs to show that the function ϕ(ξ, t) := e(ξ|t)Ĝt(ξ) is independent of
the variable t. Then, one proceeds as in Théorème 2.2.1 in [10], except that

the assumption Ĝt ∈ L2µ(TM ) has to be replaced by Ĝt ∈ Lp
′

µ (TM ). A brief
sketch, adapted to this situation, is the following:

1. By a Weyl type lemma for the manifold TM , a locally integrable func-
tion ϕ(ξ, t) is independent of t if and only if\\

TM

ϕ(ξ, t) (Yjψ)(ξ, t) = 0 ∀j = 1, . . . ,m, ψ ∈ C∞c (TM )(6.13)

(see Lemma 2.2.2 in [10]).

2. Consider the identity

Yj(e
(ξ|t)ψ(ξ, t)) = e(ξ|t) (Yjψ) + (hej|ξ) e(ξ|t)ψ,

where we have written t = ht0, h ∈ H. Then, calling θ(ξ, t) := ψ(ξ, t)e(ξ|t),
(6.13) is equivalent to\\

TM

Ĝt(ξ)Yj[θ(ξ, t)] =
\\
TM

Ĝt(ξ)(hej|ξ)θ(ξ, t).(6.14)

Further, using integration by parts we can write

i(hej|ξ) θ(ξ, t) =
i(hej|ξ)
(2π)n/2

\
Rn

e−i(x|ξ) θ̌t(x) dx

=
1

(2π)n/2

\
Rn

e−i(x|ξ)Xj[θ̌t(x)] dx.

Thus, by applying the Plancherel Theorem in R
n, (6.14) becomes equivalent

to \
M

\
Rn

Gt(x)Yj[θ̌t(x)] =
\
M

\
Rn

Gt(x) iXj[θ̌t(x)].(6.15)

3. Finally, observe that (6.15) is precisely the CR condition on G (see
(6.4)). Note, however, that θ̌t(x) is not compactly supported in R

n, so one
shows (6.15) with a limiting argument involving cut-off functions (see p. 46
of [10]).

Thus, assuming (6.12), we may turn to the last claim of the lemma. From
(6.12) and Young’s inequality, it follows that

( \
Rn

|e−(t|ξ)ϕ(ξ)|p′ dξ
)1/p′

≤
( \

Rn

|Gt(x)|p dx
)1/p

a.e. t ∈M.

Using this and Minkowski’s inequality (p′/p ≥ 1) we obtain
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‖Iµ(p ·)ϕ‖p′ =
( \

Rn

∣∣∣
\
M

e−p(t|ξ) dµ(t)
∣∣∣
p′/p
|ϕ(ξ)|p′ dξ

)1/p′

≤
[ \
M

( \
Rn

e−p
′(t|ξ) |ϕ(ξ)|p′ dξ

)p/p′
dµ(t)
]1/p
≤ ‖G‖Lpµ .

This clearly implies Iµ(pξ)
1/p ϕ(ξ) ∈ Lp′(Rn), concluding the proof of the

lemma.

6.3. The proof of Theorems 1.3 and 1.4. We now turn to the proof
of Theorem 1.3. The first part is actually a straightforward consequence
of our results in §3, and the definition of CR equations. More precisely,
suppose F ∈ Hpµ(TΩ). Then, for all y ∈ Ω, Fy = F (· + iy) is holomorphic
in a neighborhood of TΩ, and in particular belongs to CR(TM ). Also, by
Theorem 1.2 we know that Fy → F (b) in Lpµ as y → 0. Therefore, we also
have convergence in L1loc(TM ) (since p ≥ 1), and hence

0 =
\
TM

FyZjϕ→
\
TM

F (b)Zjϕ ∀j = 1, . . . ,m, ϕ ∈ C∞c (TM ).

This shows that F (b) belongs to CR(TM ), and gives us F
(b) ∈ Apµ(TM ).

Note that we actually have F (b) ∈ Apµ(TM ;Ω). Indeed, this is true for F ∈
H2µ(TΩ) ∩Hpµ(TΩ) (see §4), and extends to all F ∈ Hpµ(TΩ) by density.
For the converse, we shall distinguish two cases: p ≤ 2 and p ≥ 2, and

indicate where the crucial hypothesis co (Suppµ) = Ω is used. The simplest
one is the latter, which can be reduced to the case p = 2 from the following
elementary lemma:

Lemma 6.16. Let 1 ≤ p < ∞. Suppose F ∈ H2µ(TΩ) and F
(b) is its

boundary limit. Then F ∈ Hpµ(TΩ) if and only if F (b) ∈ Lpµ.
Proof. Since F ∈ H2µ(TΩ), we may reconstruct it from its boundary value

using the classical Poisson–Szegő kernel (see (4.14)):

Ft(x+ iy) =
\

Rn

F
(b)
t (x− u)Py(u) du, x+ iy ∈ TΩ

(except perhaps for t in a set of µ-measure 0). Then, taking Lpµ-norms for
each y ∈ Ω, we obtain

‖Fy‖Lpµ ≤ ‖F (b)‖Lpµ
\

Rn

Py(u) du = ‖F (b)‖Lpµ ,

from which the result follows.

The proof of the second part of Theorem 1.5 for p ≥ 2 is now a simple
consequence of the case p = 2 in (6.9). Indeed, by Corollary 3.18 and the
first part of the theorem, the correspondence

F ∈ Hpµ(TΩ) 7→ F (b) ∈ Apµ(TM )
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is an isometry of Banach spaces. Also, by the case p = 2 and Lemma
6.16, every function G in A2µ(TM ) ∩Apµ(TM ) is the boundary value of some
F ∈ Hpµ(TΩ). Thus, the density result in Lemma 6.10 immediately implies
surjectivity, establishing our claim. Observe that in order to use the case
p = 2, we are assuming co (Suppµ) = Ω.

Consider now the case 1 ≤ p ≤ 2. The simple argument used above
cannot be applied now, because we do not know (a priori) a density result
as in Lemma 6.10. We proceed instead with classical Hardy space theory,
for which we need the following proposition:

Proposition 6.17. Let 1 ≤ p <∞ and
LpΩ(R

n) = {f ∈ Lp(Rn) : Supp f̂ ⊂ Ω}.
Then

F ∈ Hp(TΩ) 7→ F (b) ∈ LpΩ(Rn)
is an isometric isomorphism of Banach spaces. When 1 ≤ p ≤ 2, the inverse
mapping is given by

f ∈ LpΩ(Rn) 7→ F (z) =
\
Ω

ei(z|ξ)f̂(ξ) dξ,(6.18)

where the integral converges absolutely for every z ∈ TΩ.
Proof. For p = 2 the result is well known (see IX.4 in [3]). For general

p the proof is a simple modification of the ideas presented here. Indeed, by
the classical theory, the correspondence

F ∈ Hp(TΩ) 7→ F (b) ∈ Lp(Rn)
is an isometry of Banach spaces. By density of H2∩Hp in Hp, this mapping
takes values in LpΩ(R

n). To show surjectivity it suffices to see that L2 ∩ LpΩ
is dense in LpΩ. When p < 2 one uses a standard approximation argument.
Namely, given g ∈ LpΩ(Rn) and a smooth approximation of the identity {ϕε},
we have limε→0 ‖g∗ϕε−g‖p = 0, while by Young’s inequality g∗ϕε ∈ L2∩LpΩ.
When p > 2, one should approach instead with G(ε·)(g ∗ ϕε), where G is
a function as in the proof of Lemma 6.10 (note that ĝ is now a tempered
distribution).

Finally, the equality in (6.18) also follows by density, together with the
simple estimate\

Ω

e−(y|ξ)|f̂(ξ)| dξ ≤ ‖f̂‖p′
( \
Ω

e−p(y|ξ)dξ
)1/p

≤ ‖f‖p∆(py)−n/r <∞, y ∈ Ω.
Remark 6.19. When 2 < p < ∞, there is a similar formula for the

inverse mapping in (6.18): Fy = F−1(e−(y|·)f̂), y ∈ Ω, which now has to be
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interpreted as a distributional Fourier–Laplace transform (see Chapter VII
of [7]).

The proof of Theorem 1.5 now continues as follows. Let G ∈ Apµ(TM )
and E ⊂ M be a set such that µ(M \ E) = 0 and Gt ∈ Lp(Rn) for all
t ∈ E. By Lemma 6.11, there is a function ϕ so that Suppϕ ⊂ Ω (under the
assumption co (M) = Ω), and Ĝt(ξ) = e−(ξ|t)ϕ(ξ). Further, the properties
of ϕ imply that the integral

F (z) :=
\
Ω

ei(z|ξ)ϕ(ξ) dξ(6.20)

converges absolutely for every z ∈ TΩ. Indeed:\
Ω

e−(y|ξ)|ϕ(ξ)| dξ ≤
( \
Ω

|ϕ(ξ) Iµs(ξ)1/p|p
′

dξ
)1/p′( \

Ω

e−p(y|ξ)∆∗
s
∗(2ξ) dξ

)1/p

= c‖ϕI1/pµ ‖Lp′ (Rn)∆s+n/r(y)−1/p <∞, y ∈ Ω,
where we have used the expression for Iµ = Iµs in (6.8). Therefore, F is a
holomorphic function in TΩ .
It remains to show that F ∈ Hpµ(TΩ), and its boundary limit in TM

equals G. But this is an immediate consequence of Proposition 6.17. Indeed,
from equalities (6.12) and (6.20), we see that

Ft(z) := F (z + it) =
\
Ω

ei(z|ξ) Ĝt(ξ) dξ

is a function in Hp(TΩ) for every t ∈ E. In particular,
lim
y→0
‖Ft(·+ iy)−Gt‖Lp(Rn) = 0.

Furthermore,\
Rn

|Ft(x+ iy)|p dx ≤ ‖Ft‖pHp(TΩ) = ‖Gt‖
p
Lp(Rn), y ∈ Ω.

Integrating with respect to dµ(t) we immediately see that F ∈ Hpµ(TΩ)
and ‖F‖Hpµ ≤ ‖G‖Lpµ . Finally, to show that limy→0 ‖Fy − G‖Lpµ = 0, one
uses Theorem 3.11 and dominated convergence. This completes the proof of
Theorem 1.3.

To conclude this section, we indicate the very minor modifications re-
quired to establish as well Theorem 1.4.

Proof of Theorem 1.4. The fact that F (b) ∈ Apµ(TM ;Ω) for every F ∈
Hpµ(TΩ) was already pointed out during the proof of the previous theorem.
For the converse, if 1 ≤ p ≤ 2, and if we assume G ∈ Apµ(TM ;Ω), again the
same proof as above is valid. Indeed, we only used the assumption co (M) =

Ω to guarantee that Supp Ĝt ⊂ Ω, and properly define the holomorphic
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function F in (6.20). Thus, the same argument gives F ∈ Hpµ(TΩ) and
F (b) = G.

We have proved, in particular, the case p = 2. The cases p > 2 are ob-
tained from this one, and the density of A2µ(TM )∩Apµ(TM ;Ω) in Apµ(TM ;Ω),
exactly as we did above. This last density result can also be established with
minor modifications of our proofs (see the proof of Proposition 6.17).

7. Appendix. We present here some general facts on symmetric cones
that were used at different stages of the paper, but whose proofs were post-
poned for the reader’s convenience. As in §2, we use the notation and stan-
dard results from [3]. We begin with the proof of Lemma 3.8, whose idea
will come again in subsequent lemmas.

Proof of Lemma 3.8. By the action of H it suffices to verify the lemma
for y = e. Now,

∆
s
(y + e) = ∆1(y + e)

s1

(
∆2(y + e)

∆1(y + e)

)s2
. . .

(
∆r(y + e)

∆r−1(y + e)

)sr
.

Since by hypothesis s1, . . . , sr ≥ 0, it suffices to see that
∆k(y + e)

∆k−1(y + e)
≥ 1 y ∈ Ω, k = 1, . . . , r.(7.1)

Now, ∆1(y+ e) = (y+ e|c1) = (y|c1) + 1 ≥ 1, so (7.1) follows for k = 1. For
k = r we may use the identity

∆r(ξ)

∆r−1(ξ)
=

1

∆∗1(ξ
−1)

∀ξ ∈ Ω,(7.2)

where∆∗1 denotes the first principal minor with respect to the rotated Jordan
frame {cr, . . . , c1} (see Chapter VII of [3]). But if ξ = y+e, then the spectral
theorem tells us that there is a Jordan frame {d1, . . . , dr} and real numbers
λ1, . . . , λr ≥ 1 so that ξ = λ1d1+ . . .+λrdr. Thus, ξ−1 = λ−11 d1+ . . .+λ

−1
r dr

and

∆∗1(ξ
−1) = (ξ−1|cr) =

r∑

j=1

λ−1j (dj|cr) ≤ (e|cr) = 1.

This shows (7.1) for k = r.

The other cases follow by induction on r, since

∆k(y + e)

∆k−1(y + e)
=

∆
(k)
k (Pky + ek)

∆
(k)
k−1(Pky + ek)

,

where now Pky, ek = c1 + . . . + ck, and ∆
(k)
j , j = 1, . . . , k, are objects

associated with the Jordan algebra V (k) of rank k.
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We now briefly recall how to extend the definition of ∆j(z), j = 1, . . . , r,
to values of z in the complexification V + iV = V C. Since V C is a com-
plex Jordan algebra (of the same rank as V ), there is a natural definition
of determinant, detV C(z). This extends the original determinant of V in the
sense that ∆(x) = detV C(x+ i0), x ∈ V . In fact, detV C(z) can be obtained
from ∆(x) by just replacing the real coordinates of x ∈ V by the complex
coordinates of z ∈ V + iV . Indeed, since the determinant is always a poly-
nomial in the coordinates of the vector space (see Chapter II of [3]), if we
write ∆(x) = a0(X1, . . . , Xn) for x = (X1 . . . , Xn) ∈ V ≡ R

n, then we will
have

detV C(z) = a0(Z1, . . . , Zn) for z = (Z1, . . . , Zn) ∈ V + iV ≡ C
n.

Thus, with no further comment we shall write ∆(z) = detV C(z), obtaining
in this case a holomorphic function in z ∈ V C ≡ C

n (in fact, a homogeneous
polynomial of degree r). Exactly the same reasoning applies to the principal
minors ∆j(z), which are now determinants of the Jordan algebras (V

(j))C,
j = 1, . . . , r.
We are now interested in giving a sense to the generalized power ∆

s
(z),

s ∈ C
r, but only when z ∈ Ω + iV . The next lemma solves the problem of

choosing an appropriate determination of the argument.

Lemma 7.3. Let x ∈ V and y ∈ Ω. Then ∆j(y + ix) 6= 0 and
∆j(y + ix)

∆j−1(y + ix)
∈ Π+ = {λ ∈ C : Reλ > 0}, j = 1, . . . , r.(7.4)

Proof. It suffices to show (7.4) for y = e. When j = 1 this is almost
immediate:

∆1(e+ ix) = (e+ ix|c1) = 1 + i(x|c1) ∈ Π+.
Suppose now j = r. On the one hand, every z ∈ TΩ is invertible in

V C, and −z−1 ∈ TΩ (see Theorem X.1.1 in [3]). In particular, we have
∆∗1((e + ix)

−1)∆r(e + ix) 6= 0 for all x ∈ V . Thus, we may extend the
identity in (7.2) to the complex algebra V C:

∆∗1((e+ ix)
−1)∆r(e+ ix) = ∆r−1(e+ ix) ∀x ∈ V,

and we obtain ∆r−1(e + ix) 6= 0 as well. Now, by the spectral theorem
there is a Jordan frame {d1, . . . , dr} and real numbers λ1, . . . , λr so that
x = λ1d1 + . . .+ λrdr. Thus,

(e+ ix)−1 = (1 + iλ1)
−1d1 + . . .+ (1 + iλr)

−1dr,

and therefore,

∆∗1((e+ ix)
−1) =

(
cr

∣∣∣
r∑

j=1

(1 + iλj)
−1dj

)
=

r∑

j=1

1− iλj
1 + λ2j

(cr|dj).

Since
∑r
j=1(cr|dj) = (cr|e) = 1, there must exist some j so that (cr|dj) 6= 0.

Hence, we conclude that [∆∗1((e+ ix)
−1)]−1 has positive real part, establish-
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ing our claim. The remaining cases j = 2, . . . , r−1 follow from an induction
process on the rank, as was described at the end of the proof of Lemma
3.8.

Using the previous lemma we shall define

∆
s
(z) = ∆1(z)

s1

(
∆2(z)

∆1(z)

)s2
. . .

(
∆r(z)

∆r−1(z)

)sr
, z ∈ Ω + iV,

whenever s = (s1, . . . , sr) ∈ C
r, and where the determination of the root

is positive in the positive real axis. Note that z 7→ ∆
s
(z) is a holomorphic

function inΩ+iV . We now show some general estimates that were previously
used in the paper.

Lemma 7.5. If x ∈ V , y ∈ Ω and s ∈ C
r, then

|∆
s
(y + ix)| ≥ ∆Re s(y).

Proof. As usual, it suffices to prove that∣∣∣∣
∆j(e+ ix)

∆j−1(e+ ix)

∣∣∣∣ ≥ 1, j = 1, r.(7.6)

Using the same computations as in the proof of the previous lemma we see
that (7.6) holds trivially for j = 1, while for j = r matters reduce to showing

|∆∗1((e+ ix)−1)| ≤ 1.
But by using again the spectral decomposition of x this follows from

|∆∗1((e+ ix)−1)| ≤
r∑

j=1

(cr|dj)
1 + λ2j

|1− iλj | ≤ 1.

The generalized powers∆
s
(z) can also be defined via the Fourier–Laplace

transform, at least for certain values of the parameter s. Indeed, let us denote
by µ∗

ν
the same distribution as in (1.3), but with ∆j replaced by ∆

∗
j (i.e.,

µ∗
ν
is the composition of µν with a rotation k ∈ K such that kcj = cr−j+1).

Then, in view of Proposition 2.8, µ∗
ν
is a positive measure if and only if

ν ∈ Ξ. In this case, the following integral is absolutely convergent and
defines a holomorphic function on the tube TΩ :

Fν(z) =
\
Ω

ei(z|ξ) dµ∗
ν
(ξ), z ∈ TΩ .

Now, for ν = s∗, Lemma 2.6 tells us that F
s
∗(iy) = [∆

s
(y)]−1 for all y ∈ Ω.

Therefore, by analytic continuation it follows that

[∆
s
(z/i)]−1 =

\
Ω

ei(z|ξ) dµ∗
s
∗(ξ), z ∈ TΩ,(7.7)

at least when s∗ ∈ Ξ. With this formulation we can easily compute integrals
involving ∆

s
(z), as we illustrate in the next lemma (whose particular case

is Lemma 3.25).
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Lemma 7.8. Let y ∈ Ω and s = (s1, . . . , sr) ∈ R
r. Then the integral

J
s
(y) =

\
Rn

dx

|∆
s
(y + ix)|

converges if and only if sj > (r − j)d/2 + n/r, j = 1, . . . , r. In this case,
J
s
(y) = c(s)∆n/r−s(y),

where the constant equals c(s) = (4π)n2−|s|ΓΩ(s
∗/2)−2ΓΩ(s

∗ − n/r).
Proof. By using the invariance of ∆

s
under H it suffices to show the

lemma for y = e. Then from (7.7) and the Plancherel Theorem we obtain\
Rn

dx

|∆
s
(e+ ix)| = ‖∆−s/2(e+ i·)‖

2
L2(Rn)

=
(2π)n

ΓΩ(s∗/2)2

\
Ω

e−2(ξ|e)∆∗
s
∗(ξ)

dξ

∆(ξ)2n/r

=
(4π)n

ΓΩ(s∗/2)2
2−(s1+...+sr)ΓΩ

(
s∗ − n

r

)
,

where the last integral is finite (and equal to the constant above) iff sj −
n/r > (r − j)d/2, j = 1, . . . , r.
We conclude the paper with the proof of Lemma 5.15. We recall from

Chapter IV of [3] the multiplicative relation between different entries of the
Peirce decomposition:

Vi,k · Vj,k ⊂ Vi,j and Vi,k · Vj,l = {0} if {i, k} ∩ {j, l} = ∅.(7.9)

Proof of Lemma 5.15. Let

P (x, y) = L(x)L(y) + L(y)L(x)− L(xy), x, y ∈ V,
so that (x2y)z = P (x, z)y (see Chapter VI in [3]). We shall use the following
equality:

[X, a2 b] = (Xa)2 b− a2 (X∗b), X ∈ g, a, b ∈ V(7.10)

(see Lemma VI.3.4 in [3]). Thus, from (7.10) and (x2 y)∗ = y2x, it follows
that

[z 2 ci, w 2 cj ] = (P (z, w)ci) 2 cj − w 2 (P (ci, cj)z).

Suppose first that i < j. Now, using (7.9) we can write

P (z, w)ci = L(z)L(w)ci + L(w)L(z)ci − L(zw)ci
= 0 + zw/2− (δk,j + δk,l)zw/2 = 0.

For the second term we have

P (ci, cj)z = L(ci)L(cj)z + L(cj)L(ci)z − 0 = δj,kz/2.
Thus,

[z 2 ci, w 2 cj ] = −12 δj,k w 2 z.
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Assume now j = k. Then we must have [L(w), L(z)] = 0. Indeed, this follows
from the equality

[L(w), L(z)] = 2[L(w), L(ciz)] = 2[L(zw), L(ci)] = . . . = [L(z), L(w)],

for which one uses standard properties of L (see Proposition II.1.1 of [3]).
The identity in (5.16) is then immediate. The case i = j is similar, and left
to the reader.
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[3] J. Faraut and A. Korányi, Analysis on Symmetric Cones, Clarendon Press, Oxford,
1994.

[4] S. G. Gindikin, Analysis on homogeneous domains, Russian Math. Surveys 19
(1964), no. 4, 1–89.

[5] —, Invariant generalized functions in homogeneous domains, Functional Anal. Appl.
9 (1975), no. 1, 50–52.

[6] I. M. Guelfand and G. E. Chilov, Les distributions I, Dunod, Paris, 1962.
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