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GENERALIZED HARDY SPACES ON TUBE DOMAINS OVER CONES

BY

GUSTAVO GARRIGOS (Orléans)

Abstract. We define a class of spaces Hff, 0 < p < oo, of holomorphic functions on
the tube, with a norm of Hardy type:

17117 = sup | | 1P+ ity +0) P dodpa(t).
ooye2
R
We allow p to be any quasi-invariant measure with respect to a group acting simply
transitively on the cone. We show the existence of boundary limits for functions in H f:,
and when p > 1, characterize the boundary values as the functions in L:Z satisfying the
tangential CR equations. A careful description of the measures p when their supports lie
on the boundary of the cone is also provided.

1. Introduction. Let {2 be an irreducible symmetric cone in R, and
let

To=R"+i2cCcC"

be the tube domain based on (2. As in [3], we shall write r = rank {2, and
G(£2) for the group of linear transformations of the cone.

In this paper we study a general family of spaces H}(Ty,;) of holomorphic
functions in Ty, satisfying an integrability condition of Hardy type:
]l/p

(L1) [Pl = sup “ [ 1F@+ iy + )P dedutt)| " < co.
yesn AR
2
In this definition we let 0 < p < oo, and p be any positive measure in R"
with the following two geometric assumptions:

1. p is locally finite in R™, with Supp u C £2;
2. p is quasi-invariant (or homogeneous) with respect to a subgroup H
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of G(£2), acting simply transitively on the cone; that is,
Vf(ty) duy) = x(W)\ f(y) duly),  Vf € L'(dp), h e H,

where x is a character of the group H.

Such measures appear in different contexts related to symmetric cones
and Siegel domains, and were completely characterized by Gindikin in [5],
[4] (see also §2.3 below).

The particular choice p = dy (the delta distribution at the origin) corre-
sponds to the classical Hardy space on the tube:

1/p
HP(Tp) = {F € H(Ta) : ||F||m» = sup [ | 1F@+iy)P d:v] < oo}.
ye? Fpn
On the other hand, the Lebesgue measure du(t) = xo(t) dt, quasi-invariant
with respect to G(£2) (with x(g) = |det g|), gives rise to the Bergman space

AP(Tp) = {F € H(Tq) : |FI% = | | [F(x+iy)P dudy < oo}.
QR
In this case, the “sup” in (1.1) plays no role by the monotonicity of the
integrals (see 3.9 below). The properties of these two spaces have been widely
studied, in particular those concerning the existence of boundary values (see,
e.g., Chapter III of [13], and [1] for the Bergman case).

Other choices of quasi-invariant measures p lead to less known holomor-
phic function spaces in the tube, which for p = 2 appear in the representation
theory of the semisimple Lie group G(Ty,;) (see [15], [10], [11]). These spaces
are “intermediate” between Bergman and Hardy spaces, in the sense that
they share many different properties with each of them. Our goal in this
paper is to provide a characterization of the boundary values of functions in
H}(Ty,), in the same spirit as for the classical Hardy spaces. The difference
is that, in the general situation of Hf (1), the boundary values lie naturally
on a “complex manifold”

T, =R" 4+ iSuppp C C",

rather than in the “distinguished boundary” R™ + i{0}. To state our first
theorem, let us establish the notation:

LY, = LP(R™ + i Supp ; dedu(t)) = LP(T,; dzdp).

THEOREM 1.2. Let 0 < p < oo and p be a measure as above. Then for
every F € HE(Tq) there exists F®®) € LE, such that

lim ||[F(- +iy) = FP| g =0,

y—0 "

IS
lin% F(z+iy)=F®)(2)  forae z€eT,,
y—)

IS
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for every proper subcone {2y of 2. When p > 1, the first limit holds as well
with 2y replaced by 2.

Observe that the function F®) in the theorem is defined in T, and
therefore, it is only a boundary value of F' when the measure p is singular
(i.e., supported on 942). In other words, the preceding theorem does not give
new information for Bergman type spaces: F(®) = F (see [1] for a different
treatment of this case).

We also remark that, if we exclude the classical Hardy space (i.e., u = do,
for which 7}, is purely real), the function F®) exhibits a holomorphic be-
havior in the “complex part” of the manifold T, = R" + iSupppu C C".
This is expressed in terms of the tangential Cauchy—Riemann equations in
T,: F®®) € CR(T),). Thus, one can interpret the boundary value F(*) as a
function belonging to a “Bergman space” on the manifold T),: AL(T),) =
LP(T,; dxdp) N CR(T),). The next theorem shows under what conditions
this property actually characterizes H}(Ty;). Below, we denote by o (E)
the closed convex envelope of a given E2 C R™.

THEOREM 1.3. Let 1 < p < 00, and u be a quasi-invariant measure as
above.

(1) If F € H(Tq), then its boundary value F(E) belongs to A}(T),).

(2) Suppose, in addition, that <o (Suppp) = 2. Then if G € AL(T),)
there exists a holomorphic function F € HM(Tg) such that G = F®). In
this case,

F € HY(Tg) — G = F® € AL(T),)

s an isometric isomorphism of Banach spaces.

The assumption on g in the second part of the theorem is made so that
every G € A}(T),) has a holomorphic extension to the whole tube Tj,. This
occurs when the support of i is “large enough” (e.g., when p is homogeneous
under G, see [10]). For general measures there is also a characterization
theorem where the extension property is obtained from a condition on the
Fourier transform of G; := G(- 4 it) € LP(R"):

THEOREM 1.4. Let 1 < p < 00, and i a quasi-invariant measure as

above. Consider the following closed subspace of A} (T),):
AV(Ty; 2) :=={G € A} (T,) : Supp G, C 2 for a.e. t € Supp p}.

Then the correspondence F — G = F(®) s an isometric isomorphism from
Hf(Tq) onto Apu(T; ). In particular, Aj(T,) = AJ(Ty; 2) if and only if
o (Supp p) = £2.

The previous theorems have been stated assuming only the general ho-
mogeneity property in the definition of u. The proofs we present, however,
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Fig. 1.1. The Wallach set = of a cone of rank 2

will eventually require an explicit expression of the measure, in order to
describe the manifold structure of 7}, and obtain the CR equations.

When (2 is an irreducible symmetric cone and H a simply transitive
group acting on it, a characterization of quasi-invariant measures was given
by Gindikin in [5]. Following the presentation in [3] (see §2 below for details),
these measures coincide precisely with the positive Riesz distributions in {2:

A, (t) dt
Here E denotes the Wallach set of {2, consisting of those indices v € C"
so that u, is a positive measure. The subset =7 = {1/ ’ v > %(% — 1)}
corresponds to absolutely continuous measures, while =\ Z; comprises those
with support in 942 (see Figure 1).
Our last result in this paper gives a complete description of the structure

of Supp ji, in terms of the orbits of H on 2.

[

v=(vi,...,un) €

THEOREM 1.6. There exists a partition of 2 = 21U ...U 2, with the
following properties:

(1) The sets §2; are orbits of H. Further, there is a subgroup Hj; of H
and a point t; € {2 such that £2; = H;t;.

(2) The sets £2; are regular submanifolds of R™, and the measures u,
are smooth volume forms.

(3) If v € B, there exists a unique j = j(v) such that

Supppy, = £2; and (1) =0 VI #j.

(4) Given v € B, we have o (Supp u,,) = 2 if and only if v, # 0.

We point out that the preceding result is not completely new, since parts
of it are contained in earlier work of Gindikin [5], [4], and more recent papers
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of H. Ishi [8], [9]. For the sake of completeness we shall present here a more
affordable proof, using the modern notation of [3].

The paper is structured as follows. In §2 we recall the basic notions of
symmetric cones and quasi-invariant measures. In §3 we study the spaces
HY(Tg) and give a proof of Theorem 1.2, and other related results. In §4
we characterize the special case p = 2 with a Paley—Wiener type theorem,
obtaining as well reproducing formulas for the spaces H,(T(,). In §5 we study
the boundary of the cone, and give a proof of Theorem 1.6. Finally, §6 is
devoted to the tangential CR equations in T},, and the proof of Theorems 1.3
and 1.4. Some technical matters on Jordan algebras and symmetric cones
are also postponed to the appendix.

2. Symmetric cones and homogeneous measures. We first set
some notation and recall well known properties from the theory of sym-
metric cones. We refer the reader to [3] for proofs and further results.

2.1. Generalities about symmetric cones. In this section (2 is an ir-
reducible symmetric cone of rank r in R™. It is well known that (2 in-
duces in V = R” the structure of a Fuclidean Jordan algebra, in which
2 = {2? : € V}. We denote by e the identity element in V and by
(z|y) = tr(xy) the canonical inner product ().

Let G(£2) be the group of transformations of {2, and G its identity com-
ponent. Since the cone is homogeneous, the group G acts transitively on 2.
We shall choose a natural subgroup H of G which acts simply transitively on
(2. That is, every y € {2 can be uniquely written as y = he with h € H. This
allows us to identify {2 with the quotient G/K, where K is the stabilizer
of e:

K={geG:ge=e}=GNO(V)
(see Chapter I of [3]).
To give a precise description of H we fix a Jordan frame {ci,...,c}
in V. That is, a system of primitive idempotents with the properties
ci1+...+c=e and c¢ic; =0, ©#].
This induces a Peirce decomposition:
(2.1) V= P Vi
1<i<j<r

which formally lets us regard V' as a space of symmetric matrices (with V; ;
as “(i,j)-entry”; see Chapter IV of [3]). More precisely, the subspaces in

(*) The reader less familiar with Jordan algebras can look at the example 2 =
Sym, (r,R). In this case, V = Sym(r,R), with the Jordan product defined as z oy =
(zy + yz)/2, from the usual matrix multiplication zy.
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(2.1) are given by V;; =R - ¢; and

Vij=V(e:,1/2)NV (e, 1/2) ={zx €V : iz = cjo = x/2} fori < j.
For each i < j, the dimension of V; ; is a constant integer
n/r—1

r—1-

We define H as the subgroup of matrices h € G which are lower trian-
gular with respect to Peirce decomposition of R™. That is, given a vector
T = Zigg‘ Tij € @igj Vi,j = R", we have

(hzga)ig =0 if (i,7) < (k,1),

(hxi,j)i,j = Ai,jxi,j for some )\i,j > 0,

d=2

where (i,7) < (k,l) denotes the lexicographic order. Then, by Theorem
VI1.3.6 in [3], H acts simply transitively on (2. Further, one can write H =
NA = AN, where N denotes the strict triangular subgroup of H (i.e.,
matrices with \; ; = 1), and A the diagonal subgroup (i.e., (hxy;)i; = 0 if
(k,1) # (i,7), and also A ; = AiAj).

A more explicit expression of all these groups can be given in terms of
the endomorphisms of left multiplication in the Jordan algebra V:

L(z):y—azy forxeV.

Each endomorphism L(z) is a symmetric operator (with respect to the inner
product (-|-)) belonging to the Lie algebra g of G (see Chapter III of [3]).
The main use of L is to define the following two important transformations
in a symmetric cone (see Chapters II and VI in [3]):

1. The quadratic representation:
z €V P(z) =2L(x)? — L(z?).
When x € 2 ={e¥:y € V}, P(x) can also be written as
x=¢€Y€ 2— P(x)=exp(2L(y)) € G.
2. The Frobenius transformation:
2 € V(ej,1/2) — 79 (2) = exp(L(2) + 2[L(2), L(¢;)]) € G.

With this notation, the statement of Theorem VI.3.6 in [3] can also be
read as:

T
AI{P(G)WZZ%% a; >0, 1§j§7“},
j=1

N = {7'(1)(z1)...7(r_1)(zr,1) 1zj € @ Vik, 1<j<r— 1},
k=j+1
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and every h € H can be uniquely written as
(2.2) h=7W(z)... 707D (z_1)P(a)

for a, z; as above. In addition, we have the equality NA = AN, which follows
from the identity
T
(2.3) P(a)79(2) = 79 (2)P(a) where %= Z —Zjk
k=j+1 7

and a = Z;Zl a;cj, 2 = Z;:jﬂ zj ) are as above (see Proposition VI.3.7 of
[3])-

In the particular case of {2 = Sym_ (r,R), (2.2) corresponds to the Gauss
factorization of a triangular r X r-matrix h. We point out that the theory just

described provides two classical decompositions of a semisimple Lie group:
G =NAK and G = KAK.

2.2. Determinants and integrals. Asin [3], we let A(z) = det(z), x € V.
Furthermore, we denote by Aq(x), ..., A,(x) the principal minorsof x € V,
with respect to the fixed Jordan frame {ci,...,c }. That is, Ag(x) is the
determinant of the projection P,z of z in the Jordan subalgebra V(%) =
D1 <i<j<r Vij- It is well known (see Chapter VI of [3]) that the action of N
leaves invariant each of these forms:

Ag(nz) = Ag(z), neN, zeV

Also, for a = ajc1 + ... + arc, we have Ag(P(a)z) = a?...a2Ax(z). In
particular, Ag(z) >0 forall k=1,...,r and z € £2.
The generalized power function on {2 is defined as

As(x) = AT 2(2) AP 3 (x) ... A)r(z),  s=(s1,82,...,8) €C", x € (.

In the particular case = ajc1 +...4+arc, € 2, one has Ag(z) = af' ...a;".

The next lemma characterizes the characters of H (see also [4]).

LEMMA 2.4. The characters of the group H are the functions
(2.5) h € H— Ag(he)  for everys = (s1,...,8,) € C".

Proof. 1t is easy to see that the functions in (2.5) are characters of H.
Indeed, this follows from the properties of principal minors: Ag(hh'e) =
Ai(he)Ag(h'e) for all h,h' € H (see Proposition VI.3.10 in [3]). Conversely,
if x is a character of H then we must have x(h) = x(khk~!) for all k,h € H.
Since H consists of triangular matrices, this implies that x(h) can only
depend on the diagonal entries of h € H. Thus, x(nP(a)) = x(P(a)), and
the lemma follows immediately, since the characters of the abelian group A
are precisely the powers aj'...a" for s1,...,s, € C. u
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Finally, we recall the definition of the generalized gamma function on {2:

Tals) = [ e 0A,(6) =
oo =) A

s=(s1,...,8) € C".

This integral converges if and only if
n/r—1
Res; > (j—1

es; > (- )"

and in this case it is equal to

FQ(S) = (27()("_7")/211[[‘<8j . (] _ 1)n/7’ — 1>

d
:(j_l)E forall j=1,...,7,

. r—1

J=1
(see Chapter VII of [3]). As usual, we shall denote I'(s) by I'n(s) when s =
(s,...,8). The main result concerns the Laplace transform of the generalized

power function, whose formula is not difficult to deduce from the invariance
properties of Ag (see Proposition VII.1.2 in [3]).

LEMMA 2.6. Let s = (s1,...,8,) € C" with Res; > (j —1)d/2, j =
1,...,r. Then for all y € {2 we have

dg
—(&ly) - -1
REMARK 2.7. The power function Ag(y~1) above can also be expressed
in terms of the rotated Jordan frame {c,,...,c1}. If we denote by A;, j=
1,...,r, the principal minors with respect to this new frame then
Ay H=[AN@)]Y,  Vs=(s1,...,s,) €CT,
where we have set s* := (s;,...,s1) (see Proposition VII.1.5 in [3]).

2.3. The quasi-invariant measures. Recall from (1.3) the definition of
the measures us. As we pointed out, by analytic continuation one extends
this definition to all s € C", obtaining a family of tempered distributions
(see Theorem VII.2.6 in [3]). The following result of Gindikin characterizes
the positive measures in the family {us}secr (see [5], or Theorem VII.3.2 in
[3]). Below, we denote by e(u) the signum function: e(u) = 1 if w > 0, and
£(0) =0.

PROPOSITION 2.8. Let s = (s1,...,87) € C". Then us is a positive mea-
sure if and only if s belongs to the Wallach set

d d
B = {<U1,U2+§E(U1),...,UT+§[E(U1)+...+€(U7«_1)]> PUL ey Uy > 0}.

Let now u be a positive measure in R™, locally finite, and with support
contained in {2. Suppose also that u is quasi-invariant with respect to the
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group H in §2.1. That is, for every h € H there exists x(h) € C so that

(2.9) VA ) duty) = x(W\ f(y) dp(y),  f € L' (dp).

The group composition implies that x is a character of H: x(hh') =
x(h)x(h'). Therefore, by Lemma 2.4 there must exist s € C" such that
Xx(h) = Ag(he). The next proposition tells us that, modulo a constant, u
must be equal to us (see also [5]).

PROPOSITION 2.10. Let p1 be a positive locally finite measure in R™ with
support in (2. Then u is quasi-invariant with respect to H if and only if
W= cus for some ¢ >0 and s € B.

Proof. 1t is clear from the results in §2.2 that each measure pug is quasi-
invariant. For the converse, let u be a measure with the above assumptions,
and with associated character x(h) = Ag(he). We shall show that necessarily
u = cus for some constant ¢ > 0. To do this we prove that p is a tempered
distribution, and (modulo a constant) p and ps have the same Fourier—
Laplace transform.

The first claim follows easily from the quasi-invariance. Indeed, one just
notices that the measure of a ball B(0, R) grows at most polynomially with
the radius R:

VxB0.m®) duw) = \xBo1 W/R) duly) = R+ 1u(B(0,1)).
For the second assertion, we first show that the integral defining the
Laplace transform Lu(§), & € §2, converges absolutely. Indeed, by Lemma

.15 in [3], there is a constant Ce > 0 so that (£[t) > Celt| for all ¢t € £2.
Thus, using the condition Supp i C {2, we see that the integral

cu(€) = e CWduy), ¢,
converges absolutely, and moreover, the Fourier—Laplace transform

Fu(z) = Sei(z\y) duy), z€Tq,

defines a holomorphic function on the tube Ty;. Since the measures ug are
also supported in {2, and a holomorphic function in T, is determined by its
values in 72, it suffices to show the equality Lu(§) = cLus(§) for all & € (2.

To do this, let £ = h*e, for h € H, be an arbitrary point in (2. Then,
choosing ¢(u) = Lu(e), we have

L&) = e W du(y) = [e= ") du(y)
&)=

= Ay(h™e)Lule) = c(p) As(€71) = (i) Lps(6),
where we have used the identity h~le = (h*e)~! (see p. 124 of [3]), and
Lemma 2.6. m

We conclude this section with a simple lemma, valid for all measures,
which will be useful later.
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LEMMA 2.11. Let p be a locally finite positive measure in R™, not null
in a neighborhood of the origin. Then there exist c,c’ > 0 so that

c | fway< | fy+tdydut)y < | fly)dy
B s(e) By4(0) By/4(e) Bia(e)
for all non-negative f.

Proof. The second inequality is obvious with ¢’ = (B;,4(0)). For the
first inequality, note that given ¢ € By /3(0) we have

| rway= | f+vdy< | fly+t)dy.
B s(e) Byg(e)—t B /a(e)
Integrating with respect to du(t) we obtain
w(Bis0) | fwdy< | fly+)dydu(r). =
Bys(e) B1/8(0) Byya(e)

3. The spaces H}(T). Throughout this section 0 < p < oo is fixed
and p is a quasi-invariant measure with respect to H. We assume that pu
has associated character x(h) = Ag(he) for some s € E. This implies that,
modulo a constant, p = pg, although on the formal level we shall not use
this fact.

3.1. Basic properties of the norm. Our first result tells us that the spaces
H}(Ty,) are invariant under transformations in H.

PROPOSITION 3.1. Let h € H. Then F € HY(Tq) if and only if Foh €
HY(Tg). In this case,

1F 7 = Asinse(he) P F o R .
Proof. The proof is an immediate consequence of the quasi-invariance
of u:
1F o b1t = sup§ | [F o h™ (a4 iy + ) d du(t)
yen R™
= (Deth)sup| | [F(a+ iy + 1 "t))|P do dp(t)
yeS? R™
= A" (he) Ay(he)||F |7y,
where we used the identity Det h = A(he)™" (see I11.4.3 of [3]). m
PROPOSITION 3.2. There exists a constant ¢ > 0 so that, for all F' €
Hy(To),
(3.3) |F(z +iy)| < cAene@) PIF g, Vo +iy € To.

Proof. Since H},(Ty) is invariant under translation by z € R" we may
assume = = 0. Next, we show (3.3) for y = e. The mean value property
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applied to the subharmonic function |F'|P, together with Lemma 2.11, gives
us

FliolP <e | | [Pty dedy
Big(e) B1(0)

<d | § | @it )P dodutt)dy < FI.
B /4(e) By4(0) B1(0)

In general, if y = he for some h € H, we apply the previous inequality
to ' o h and use Proposition 3.1:

) . -1
|E(iy)lP = [F o h(ie)|” < "||[F ol =" Agpnr(y) [ Fll- =
The previous proposition tells us that the pointwise evaluation is a con-

tinuous linear functional in H},(Ty;). A standard argument, using conver-
gence on compact sets, gives the following corollary.

COROLLARY 3.4. HY(Tg) is a complete metric space.

A slight refinement in the proof of Proposition 3.2 provides a result which
will be of crucial importance to us.

PropPOSITION 3.5. There exists a constant ¢ > 0 so that, for all F' €
HY(Tg) and y € 2,
(3.6) IF (- + i)l Lo@ny < cAs(y)™ P Fll -

Proof. We first show (3.6) for y = e. Now, the first part of the proof of
Proposition 3.2 applied to F(- + x) gives

|F(z+ie)]P <c S S S |F(z+ 2" +i(y +t))|P da’ du(t) dy.

B /4(e) By4(0) B1(0)

Integrating on = € R™ we obtain

1P+ i) 2 g

<d § I i ) gy da®) dy < I EI,.
Bia(e) B1/4(0)

For a general y = he € {2, we apply the previous inequality to F' o h and
obtain

IF(- + iy)| o(rny = (Det h)YP||F o h(- + i€)| o (n)
< c(Det ) /P|[F o hllfy = cAs(y) /7| F| gy m
COROLLARY 3.7. If F € Hf(Tq) and y € (2, then F, := F(- +1iy) €
HP(Tq) and there is a constant ¢ > 0 so that
1Ey Nl < eAs(y) ™ PIF | -



224 G. GARRIGOS

The proof is an immediate consequence of Proposition 3.5 and the next
general lemma on symmetric cones, whose proof is postponed to the ap-
pendix.

LEMMA 3.8. Let $1,...,8- >0 and s = (s1,...,8.). Then
Ay +y) = Asy) Yy, 9 € 2.
A second corollary of Proposition 3.5 gives us the monotonicity of the
integrals defining the norm || F'[| ». Recall that L, = LP(R™ + i82; dzdu(t)).
COROLLARY 3.9. Let F € H!(Tg) and y,y' € 2. Then
IFC+i(y +y Dz < 1FC+iy)ll e
Furthermore,

IF Ly = i [§§ 1P+ iy + ) dedu)]

yen R7

Proof. The first inequality follows directly from the previous corollary
and the properties of Hardy spaces, since these imply

IFC+i(y +y +O)lp@ny < IFC+ily +0))lr@ny  Vy,y € 2, t€ .
As a consequence we have

Hm |[[F(- + iyn)l s = sup [|F'(- + iy)|| 2z = [ F'l| a2
Yn—0 yGQ

for any decreasing sequence y,, \, 0 in {2 (i.e., decreasing with respect to the
partial order of the cone: y < y iff ¢/ —y € 2). To establish the convergence
of the limit within all the cone, it suffices to see that every sequence y,, — 0 in
{2 has a decreasing subsequence. But this is easy to construct by induction,
since y > Ae if A is smaller than all the eigenvalues of y. »

Finally, as a scholium of the previous corollary we obtain the following:
COROLLARY 3.10. If F € Hl(Tq) and y € §2, then F, = F(-+ iy) €
HE(Tq) and |Fy |y = | Fylyy. Further,
7y = Dimoy Ly [ -
yes?

3.2. Boundary values in H},(T). With the background in the previous
subsection we are now in a position to prove the following:

THEOREM 3.11. Let 0 < p < oo and i be a measure as above. Let (g
be a proper subcone of §2 and define, for F € H}(Tp),

(3.12) F*(z) = sup |F(z+1iy)|, z€R"+iSuppp.
IS
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Then F* € LI, and there is a constant ¢ = c(£20) > 0 such that
[E gz < NF Nz < cllFllgp  for all F e HE(Tq).

Proof. Let ¢ > 0, t € Suppu and write n = t + ce € (2. Then, by
Corollary 3.7, we have F,, = F(-+in) € H}, N HP. Now, properties of Hardy
spaces (see 5.13 in Chapter 3 of [12]) imply that

(3.13) (Fp)*(z) := sup |Fy(z +1y)| € LP(R),
SN

and there exists a constant ¢ = ¢(£2p) > 0 so that
V I(F) @) de < e | |(Fy) ()] da.
R™ R"

We can write the last inequality as

| sup [Flz+i(y+t+ee)Pdo<c| |Flz+i(t+ee))lf da,
R IS R™
and therefore, after integrating with respect to du(t) we obtain
S S sup |Fee(z +i(y + 1)) [P dedp(t) < CS S | Free(z +it) [P da du(t).
Rn yeQO Rn
We may now let € — 0. Using Corollary 3.10 on the right hand side and the
Monotone Convergence Theorem on the left hand side, we obtain
IF|5, = § lim  sup  |F(z+i(y + )" dvdp(t) < ol P,
. gn 0 yER0+ee o

The reverse inequality is clear since for any yg € {2y we have

1El| gz = Um [| Foyo ||, < [ F[| - m
W e—0 W w

For simplicity, we have stated the previous theorem using the wvertical
(restricted) maximal function

F*(z) := sup |F(x +1iy)|, =eR"
yES

But we could have as well taken a non-tangential (restricted) mazximal func-
tion:

(3.14) F*(%) := sup |F(z+iy)|, 2°€R", a=(a,...,a),
(2,y)€7a(a?)
SN
where

0 2 0 .
’Ya(l' ) = {(xvy) € R : ’x] _33]’ < Y5, J = 1,...,7’L}
is a cartesian product of conical regions with apertures ai,...,a, > 0.
Indeed, in the case of classical Hardy spaces it is known that

F e H)(Ty) = F* € LP(R")
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with equivalence of norms (see, e.g., Chapter III of [13]). Therefore, replac-
ing F* by F** in the previous proof we obtain the following refinement of
Theorem 3.11:

THEOREM 3.15. Let 29 be a proper subcone of 2 and o = (aq,...,qn)
> 0. Let F € H,(Tq,) and
F*+it):=  sup |F(z+i(t+y))|, z°+it €R"+iSupppu.
(2,y)€7a(20)
yESp

Then F** € LL, and there is a constant ¢ = ¢(§2y, ) > 0 such that
1y < NEMlzp < el Fllg-

We now have all the tools to prove the existence of boundary limits for
functions in HY(Ty;). We state the result separately as a slightly different
version of Theorem 1.2.

THEOREM 3.16. Let {2y be a proper subcone of §2 and o = (..., ap)
> 0. If F € Hi(Ty), then there exists F®) € L}, so that
(3.17) lim Flz+i(y+1t)) = F® " +it)

(2,y)—(°,0)
(mvy)e'ya(l’o)v yEfo

for a.e. 29 + it € R™ + i Supp p.

Proof. By Theorem 3.15 we may find a p-null set F so that for every
t € Supppu\ E,
F*(z+it) <oo fora.e. zeR"

Here F** denotes the non-tangential maximal function restricted to a proper
subcone (2. Therefore, F; = F(- + it) will be a holomorphic (hence har-
monic) function in the smaller tube Ty, and non-tangentially bounded in
each variable at almost every x € R™. Thus, we can invoke the Theorem of
Calderén (%) (Theorem 3.24 in Chapter II of [13]) which asserts that F} has

a non-tangential limit Ft(b) in each set of variables at almost every z € R".

Note that we cannot say in principle that Ft(b)(x) is jointly measurable
in (z,t) € R™ 4 iSupp p, and consequently, that the limit in (3.17) exists
almost everywhere. To bridge this problem we define the measurable set

A={(%t): Tim ReF(z+it)> lim ReF(z+it)},
z—(2,0) z—(29,0)
where the limits are in the same non-tangential sense as in the statement
of the theorem. Note that if we can show that A has dzdu(t)-measure zero,

(?) Calderén’s Theorem is originally stated for harmonic functions in the tube R™ +
1(0,00)™ (i.e., in the cartesian product of upper half-planes). An appropriate change of
variables makes it valid for tubes R"™ + {2y, where (2 is any proper subcone of {2 (see
Chapter III of [13]).
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then (after a parallel argument with Im F') we obtain the existence of non-
tangential limits a.e., and the measurability of the limit function F(®). The
L¥-integrability will follow from the pointwise estimate: |F®)| < F*,
Let us therefore show that meas(A) = 0. We define
Ay ={z eR": (z,t) € A}, t € Supppu.
These are Lebesgue measurable sets in R™ and by Fubini’s theorem
meas(A) = S | Ag| dp(t).

Therefore, it suffices to see that |A;] = 0 for ¢ € Suppp \ E. But A; is
contained in the set of points 2 € R™ for which F;(x+iy) does not converge

(non-tangentially) to Ft(b)(;ro). By Calderén’s Theorem, this last set has
Lebesgue measure zero, and therefore also |A;| = 0. This completes the
proof of Theorem 3.16. u

The following immediate corollary gives non-tangential restricted con-
vergence in norm, a bit less than was stated in Theorem 1.2.

COROLLARY 3.18. If F € HE(Tq) and F®) is its boundary value, then
1 = 1 E® 1z

Furthermore, for every proper subcone 29 of £2 and o« = (a1,..., ) > 0
we have
(3.19) lim |F(- 4z +iy) — F®)||» = 0.

(z,y)—0 .

(z,y) €Y (0)7 yEQO

Proof. By Corollary 3.9 it suffices to show the second equality. But this is
a consequence of Theorem 3.16 and the Dominated Convergence Theorem. m

With not much more effort we can also show a converse of Theorem 3.16,
which will have an interesting consequence.

THEOREM 3.20. Let F' be holomorphic in T and such that, for every
proper subcone (2 of 2 and some o > 0, we have F** € LI,. Then F €
HY(Tgo) and

[E Ny < I1F* |z

Proof. Exactly the same proof as in Theorem 3.16 gives us the existence

of a function F() e L¥, which is the non-tangential limit of F' in the same

sense as in (3.17). Consequently, by the Dominated Convergence Theorem
we will also have

%’ig(l) S S |F(z+i(y + )P de dp(t) :S S |F®) (2 4 it)|P doe dpu(t).
veo R7 R"



228 G. GARRIGOS

Let us fix for the moment a proper subcone 2y of (2. Then
sup S |Fi(x +iy)|P dx < S |F**(z +it)|Pdx  Vt € Supp p.
yer R” R”

Now, except for a set E = F({2) of u-measure zero we know that the integral
on the right hand side is finite. Thus, we conclude that F; € HP(Tyq,), and
therefore

(3.21) sup S |Fi(x 4 1y)|P do = hm S |Fy(x + iy)|P do
yEQO R"
yEQO
= S |F®) (2 + it)|P du.
R’ﬂ

Taking an increasing sequence of proper subcones {{2;}7% covering {2, we
deduce that, except for ¢ in a set £ = (J;Z, E(f2;) of p-measure zero, the
following equality holds:

sup | |Fy(z +iy)Pdz = | [FO) (2 +it)|P da.
yEQRn R™
Thus, F; € HP(Ty). Further,

VIE o gy dis() = [ EO2,

We now claim that F must belong to HY(T(;). Indeed, using (3.21), the fact
that y — || F;(- +4y)|| r(rn) is decreasing (in the partial order of the cone),
and the Monotone Convergence Theorem we obtain

. . b
sup | | 1Fy(@ + i)l dzdu(t) = tim ||, = [FOP,
yENo B y—0 w K©
IS
Since this holds for any arbitrary subcone the claim follows, completing the
proof of the theorem. m
A corollary of the previous proof is the following “vector-valued” result:

COROLLARY 3.22. If F € H},(Tq), then F, = F(- + it) € HP(Tq) for
a.e. t € Supp i, and

/
[N dn()] " = 1l

We conclude this section by proving a very general density result for the
spaces HI(Tq). First of all note that, as a consequence of (3.19),
liny || Feo — Fll 5 = 0.
Thus, by Corollary 3.7 the space H},(Ty) N HP(T() is dense in Hj,(Ty,). The
next result shows that a much smaller space is also dense.

THEOREM 3.23. Let 0 < p,q < oo and u, i’ be a pair of quasi-invariant
measures with respect to H. Then Hj; N H}, is dense in Hj;(Tp).
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Proof. 1t will suffice to show that for NV large we have

i(z|e)
(3.24) G(z) = —° v € H,(Tp).

A((z +ie)/1)
Indeed, in this case
Fe(2) == G(ez)F(z + ice) € HI N HZ,,

since both F., and G are bounded (). Further, the pointwise limit of F*(2)
is F(z) when ¢ — 0. Since F* € LI, we may use the Dominated Convergence
Theorem and our previous results to obtain

; _ — (b) _ p(b) —
lim | F* — | = lim [|(F9)®) — F)|, = 0.

Our claim in (3.24) will be a consequence of the following lemma, which
we prove in a more general setting in the appendix.

LEMMA 3.25. If a > 2n/r —1, then there is a constant ¢(a) > 0 so that
(3.26) | 1A +iz)|[ " do = c(a)A(y) ™" Wy e .
RTL

Indeed, assume for a moment that the lemma holds. Then taking any
integer N so that Ng > 2n/r — 1 we obtain

VV G + i) dedi' (1) = (em @19 | |A(e + ¢ + iz)| N9 da dpd ()
R™ R™
c(Nq) [e 1) A(e 4 1)~ Nat/m ay(¢)

< c(Nq)Se_q(”e) dp'(t) = Ly (e) < oo,

where in the inequality we have used Lemma 3.8. This shows (3.24) and
establishes the theorem. m

4. Reproducing kernels on H},(Ty). In this section we give some
reconstruction formulas from the boundary values of functions in Hp(Ty,),
p > 1. These will be obtained from positive kernels of Poisson—Szegé type.
Among the consequences, we shall prove unrestricted L} -convergence of F,
to F(®) as stated in Theorem 1.2. We start with the case p = 2, which has
a simpler characterization in terms of a Paley—Wiener theorem.

4.1. A characterization of Hi(Tg) In this section we shall assume that
1 = ps for some fixed s € 2. We also let

L2.(92) = L*(92; AL (26)d€) = L*(2; A((2¢) 1)~ de).
(®) That G(z) is holomorphic and bounded follows directly from the definition and an

elementary estimation on A(z) for complex z. We present these facts in some more detail
in the appendix.
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The following theorem gives a Paley—Wiener characterization for the space
H 3 (T;). We point out that this type of result, for some of the spaces men-
tioned in the introduction, has been previously obtained by different authors
[4], [10], [2], ... Here we include an elementary proof that covers the whole
range of spaces.

THEOREM 4.1. For every F € H2(Tq) there exists f € L2.(£2) such that

1
(271-)71/2

(4.2) F(z) = | GO AL(2)de, 2 € T

2

Conversely, if f € L2 (£2) then the integral above converges absolutely to a
function F € HE(TQ) In this case,

1F iz = £,

Proof. Suppose first that F' € Hﬁ(TQ) N H?(Tg). Then, by classical
results on Hardy spaces, there exists a function g € L?(2) such that

1 :
_ i(=l¢)
(4.3) F(2) = Gy !§2e g(€)de, z€ Ty
(see Chapter III of [13]). Thus, for f(&) = g(&) A* .. (2€) the identity in (4.2)
holds. We shall show that f € L2.. Using the Plancherel theorem in (4.3)
we get

V1P +i(y + )P de = | |e”@H0g()? e

]R’VL

e 20| £ ()P AL (26)% de.

D= Q=

Integrating with respect to du(t), using Fubini’s Theorem, and the identity
Lu(€) = A% (€)7! in Lemma 2.6, we conclude that

VVIF@+ity+0) P dedu(t) = | |£(€)%e 20 AL (2¢) dg.
OR" Q
Thus, by Corollary 3.9 and the Monotone Convergence Theorem,
1l = Yiuny [LE(- + ay)llzg = [1F ] 2z, -
The density result in Theorem 3.23 extends this isometry to all functions

F € H.(Tg), establishing the direct part of the theorem.

To see that the isometry is surjective, we take an arbitrary f € L2 (£2),
and show that the integral in (4.2) converges absolutely to a holomorphic
function F(z) in Typ. This will suffice for our assertion, since exactly the
same computations as above will give F' € Hi (To).
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To prove the absolute convergence of the integral, it is enough to look
at z = ie. Now, using Holder’s inequality and Lemma 2.6, we get

e~ 910142 26) de < 7z, ((§ 29 25,. 26) ) "
2

0
= Ifllz2, 27" Fo(28" +n/r)"/?,
which is a finite quantity because s; >0, j=1,...,7. =
In the next corollary we show the relation between the boundary limit
F®)and the function f in (4.2).

COROLLARY 4.4. Let F € Hz(T_Q), and denote by F®) its boundary
limit and f the function in (4.2). Then for a.e. t € Supp p we have

L 1§ el p() A% (26) de
(27r)”/2§2 ®

where the equality is interpreted in the Fourier—Plancherel sense. Moreover,
lim ||F(- +iy) — F®|2 = 0.
y—0 "
yes?
Proof. From (4.2) we know that

S 19 =W o= (E) £ () A¥, (2€) d

9]

for all x 4+ it € R™ + Suppp and y € §2. Now, as we saw in the previous
proof, the function (&, t) — e~ &) £(€) A% (2€) belongs to L?(dédu(t)). Thus,
by the Dominated Convergence Theorem we have

Jim (e W19 —1)e 10 £(€) AL (26) 1] 2 ag dacryy = O

for any sequence y; — 0 contained in {2. We conclude that the limit as
y — 0 (y € £2) of the right hand side of (4.6) exists (in Li), and equals the
right hand side of (4.5). On the other hand, by Theorem 1.2 the left hand
side of (4.6) converges to F®)(x 4 it), giving us the identity in (4.5) and
completing the proof of the corollary. m

(4.5) FO) (x4 it) =

(46) F(z+ily+t) = CORE

A direct application of the isometric isomorphism in Theorem 4.1 pro-
vides an explicit formula for the reproducing kernel of the spaces Hz(T ).
We shall write, with some abuse of notation, du(w) = dudu(t) whenever
w=u+it € R" 4+ iSupp p.

COROLLARY 4.7. Let s € E and p = us. Then the reproducing kernel
for Hﬁ(TQ) s given by

Z—W

-1
2—)} , z€ T, we R™+iSupp u,
i

(48 Kyew) = f9)| Aere
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where c(s) = (4m)""I'o(s* + n/r). That is, if F € HEL(T_Q) and F(®) js its
boundary value, then
F(z)= S S K, (z,w)F® (w)du(w), 2z € To.
R’ﬂ
Proof. The isometry in Theorem 4.1 gives an abstract formula for the
reproducing kernel of Hz(T_Q):

Ku(2,w) = | 19 Az (2¢) de

@ )
(see Proposition IX.3.4 in [3]). The final expression for K, in (4.8) follows
by computing the integral above, which can be done explicitly using Lemma

2.6 (see also (7.7) in the appendix). =

4.2. Poisson—Szegd kernels in HY(Tg). In this subsection we use well
known techniques to construct a positive kernel that reproduces functions
in HY(T), for every 1 < p < oco. We let

= B0
(19)  Sulew) = SECEL

Then the following properties are not difficult to verify:

z2€To, weR"+1iSupp .

(i) Su(z,w) >0 for all z € T, w € R™ + i Supp p.
(i) §§Su(z, w) du(w) =1 for all z € T,.
(iii) If 1 < p < oo and z =z + iy € Ty, then S, (z,-) € L}, and

c(s) >l/p/ 1 1
Sz, ) £ | ————— ,  where -+ — =1.
I8z )l <A5+n/r(y/4) p 7

(To check the last inequality, one can interpolate between the simpler cases
p = 1 and p = oo. These follow from (ii), and elementary estimates in A;
see Lemmas 3.8 and 7.5.)

PROPOSITION 4.10. Let 1 < p < oco. If F € HiL(Tq) and F®) is its
boundary limit, then

(4.11) F(z) =\ | Su(z,w)F®)(w) du(w),  z € Tp.
RTL
Proof. Let € > 0. Then, for every fixed z € Ty, we have K, (w, ) F.o(w)
€ HX(Tp) (since Fr is bounded). Thus, from the previous corollary we see
that
K, (w,z

Feol2) = §| Kl w) 22 Feol) dp(w)
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Now, since S, (z,-) € Lﬁ/ and F., — F®) in LT, as € — 0, the identity in
(4.11) follows. m

Observe that, when p = &g, Su(z,w) is the Poisson-Szeg6 kernel of the
tube domain. In this case we use the classical notation:

Py(x —u) = S5, (x +iy,u), x+iyeTo, ueR".

Now, P, is known to be an approximation of the identity. That is, in addition
to (i)—(iii) above it has the crucial property

)

1v

—~

lir% S Py(x)dx =0 for every 6 > 0.
yen lof>s
Using this, we obtain the following unrestricted limit in norm when p > 1,
which establishes the last part of Theorem 1.2.
THEOREM 4.12. Let 1 < p < oo and F € HY(Tq), with boundary limit
F®) . Then
(4.13) lim, ||F(- +iy) — F® . =0.
ves
Proof. We use Corollary 3.22 so that, except for ¢ in a set of y-measure 0,
F,=F(-+1it) € HP(T), and hence
(4.14) Fi(z +1iy) = S Ft(b) (x —u) Py(u)du, z+1iyeTp.
Rn
In particular, we can write
. b b b
Fi(w +iy) — FV(x) = | (B (v —u) = F” () Py(u) du.
RTL
Thus, taking L}-norms in the above expression, for every § > 0 we have

|F(+iy) = PO
< | IFOC =)= FOp Py du+ | 2 F®)) By (u) du.

lul<é |u|>6

Now, using the continuity of the LL-norm and (iv) above, one can easily
show (4.13) by an (g, §)-argument. m

5. The boundary of a symmetric cone. In this section we go back to
the geometry of the cone. We prove Theorem 1.6 in detail, and set the basis
to study the tangential CR equations in the next section. We also provide
an explicit expression for the measures p, in terms of Gauss coordinates.

Let {c1,...,¢;} be a fixed Jordan frame in V, and H the triangular
subgroup of G from §2.1. We begin by describing the orbits of H on 2.

Since the group acts simply transitively on the cone, one can write
{2 = He as a single orbit. However, the action of H on the boundary is
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no longer transitive, and consequently, {2 will consist of many disjoint or-
bits. In the next proposition we show that these are determined by the action
on the following idempotents:

Ce =€161+ ... +¢&rc., where e = (e1,...,&,) € {0,1}".
PROPOSITION 5.1. Define I ={0,1}" and I* =1\ {(1,...,1)}. Then
(5.2) 2= U He. and 002 = U He,,
eel eel*

where the unions are pairwise disjoint.

For the proof of this proposition, and other results in this section, we
proceed by induction on the rank r of £2. The usual technique goes as follows:
write each x € V as

Tr =2 +$1/2 + 2o,

in terms of the Peirce decomposition V(ci, 1) & V(e1,1/2) & V(c1,0). Then
consider V) := V(c1,0) as a Jordan algebra of rank r — 1, with Jordan frame
{e2,..., ¢} and associated cone 2y. The restriction of H to Vp, denoted by
Hy, consists of lower triangular matrices with 1 in their first entry and zeros
in the rest of the first column. That is, in the notation of (2.2), we can write
every hg € Hy as

T T
ho = 7'(2)(22) .. .T(T_l)(zr_l)P(Cl + Zajcj), a; >0, z; € @ Vng.
=2 k=j+1
Then one uses the following lemma, which gives the Gauss decomposition of
x € 2 with respect to the idempotent c;.

LEMMA 5.3 (see Proposition VI.3.2 in [3]). If ® = o1 + 21/ + w0 € (2
and x1 # 0, then there exist unique v € V(c1,1/2) and v > 0 so that

=7 w/u)(ude +y)  for somey € Ve, 0).
In this case, y € £2y and
z1 = ucy, Tijp =uv and o= (v?)o + ¥.

Proof of Proposition 5.1. It suffices to show the statement about 2,
since the only orbit which intersects the open cone {2 is He. The proof is
by induction on the rank r of the cone. The case r = 1 is obvious (since
082 = {0}). We now assume the result holds for cones of rank < r — 1.

Take any x = x1 + 21/ + 70 € 0. Since x1 = (z|c1)cy, if this term is
zero we have x = xo € V(c1,0) = Vp. Further, 2 € £2 implies x € 2y, so the
induction hypothesis applies.

Assume now x1 # 0, and consider the decomposition in Lemma 5.3.
Since y € 29, by the induction hypothesis there exists hg € Hy so that
y = hocer for some € = (0,eq), €9 € {0,1}"~1. Using hoc1 = ¢1, we can
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write 2 = 7 (v/u) (u?e; + hocer) = he(i ey for some h € H. This establishes
the equality in (5.2).

It remains to prove that Hc.NHcer = () when € # €’. That is, if ¢ = hee
for some h € H, we want to show € = &’. Using the decomposition in (2.2),
we shall write h as

(5.4) h=7W(w/u)Pluci + o + ...+ ¢, )ho

for some u > 0, v € V(c1,1/2) and hg € Hy. Now, set € = (¢1,€¢) and &' =
(¢),€(), and observe that necessarily e; = ¢/, since H is lower triangular.

In the case 1 = &} =0, ¢ = hcer is equivalent to ¢, = h0056 (the terms
of h involving ¢; play no role). Thus, the induction hypothesis gives g9 = &j,.
In the other case, i.e. £ = €| = 1, the uniqueness in Lemma 5.3 applied
to # = c. implies u = 1, v = 0 and ¢, = y = hocey. Again, the induction
hypothesis gives g9 = &), establishing the proposition. =

Next we define a differentiable structure on each orbit M. := He. for
€ € I. This is done by identifying M, with the homogeneous space H/H,_,
where H.. = {h € H : hc. = c.} is the stabilizer of c.. Since H is a Lie
group acting analytically on R™, M. becomes a submanifold of R™ (see, e.g.,
Theorem 2.9.7 of [14]). In fact, from the following proposition we see that
M, is actually a reqular submanifold of R™.

PROPOSITION 5.5. Let ¢c = ¢j, +...+¢j, for 1 < ji <...<js <,
and Mg = Hce. Then every x € M can be written uniquely as

(5.6) x=7U(z;)...79)(z;,) Plaj,c, + ... + aj,c5, + (e — ce))ee,

where zU) @Z:jiﬂ Viik and aj, > 0,1 =1,...,5. Moreover, M is a
reqular submanifold of R™ of dimension me = s+dY :_,(r — ji).

Proof. The proof is again by induction on r. Let z € M., and write it
as © = hce, where h € H has been decomposed as in (5.4). If j; # 1, then
we may take v = 1 and v = 0 in (5.4), and therefore apply the induction
hypothesis to z = hgc. € V).

Suppose j; = 1 instead, and let ¢/ = ¢j, + ...+ ¢;,. Then, using (5.4),
we can write

= 7W(v/u) (e + y),

where y = hgcer € Hopcer C Vj. One more application of the induction
hypothesis gives

y =1 (2,) ... 7U) (25 ) Plajyes, + ...+ ajoes, + (e — c))eer

for appropriate z; and a;. Hence, combining the last two formulas, and using
the commutativity relation in (2.3), we obtain an expression like in (5.6).
The uniqueness of the decomposition is also a consequence of the induction
hypothesis, and the uniqueness in Lemma 5.3.
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Finally, we show that M, is a regular submanifold of R™. First note that
the correspondence in (5.4),

Ry xV(c,1/2)x Hy — H, (u,v,ho) — h =70 (v/u)P(uci + (e — 1)) ho,

is actually a diffeomorphism (use again the induction hypothesis and Lemma
5.3). Therefore, it suffices to show that the mapping

(5.7)  (u,v,y) € Ry xV(c1,1/2) x Hycer — x = T(l)(v/u)(u201 +y) € M,

is open when the image space M, has the relative topology of R™. One more
time, the induction hypothesis gives us the openness of the inclusion map

y € Hocer —my € Mo C Wy
when the image space has the topology of Vj = R™. Thus, the openness of
(5.7) follows by writing
x =21+ 219 + 20 = uler +uv + (V7)o + y),
and looking at the projection in each variable separately. m
A consequence of the preceding proposition is that each M, is a Borel

set in R™. To continue the proof of Theorem 1.6, we shall obtain an explicit
expression for the measures ps, and compute ug(M,) for each s € E, € € I.

PROPOSITION 5.8. Let s € B. Then there exists a unique € = g(s) € I
so that

IU’S(ME) >0 and ,U/s(‘(_z\Me) =0.
Proof. The proof is again by induction on r. The case r = 1 is simple,
since the only manifolds are M; = 2 = (0,00) and My = {0}, and the
measures [is are given by

o0

x5 dr |
S_f(fc) dus(z) = (SJ fla)— — ifs>0,
¢ f(0) if s =0.

Suppose now the result holds for cones of rank < r — 1, and let {2 be a
cone of rank r. Given s = (s1,s8') € B, we write ps using the coordinates of
the Peirce decomposition

T =1+ 219+ To =u?c; +uv + (y + (v?)o)

with u > 0, v € V(c1,1/2), and y € 2g. After an appropriate substitution
of the variables one obtains

n 29
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(5.10) S f(z)dps(x) = cs S S S f(u?er,uv, y + (v*)o)
7} 20V(ce1,1/2) 0

xu 21 du dv dug,_d/Q(y) it 51 >0,
u

with the constant ¢; = 2(27)~("/"=1) /'(s1). These formulas are proved, e.g.,
in Lemma VII.3.3 of [3].

Now, given € = (g1,€’) € I, we can write the manifold M, in Gauss
coordinates as

Mo,y = {(0,0,9) :y € MY = Hycar),

Mg ey = {(w,v,9) 1 u >0, v e V(e,1/2), y e MD}.
Suppose first s; = 0. Then it is clear from (5.9) and (5.11) that
ps(M1 7)) =0 whenever 7 € {0, 1t

(5.11)

Also, by the induction hypothesis, there exists a unique €’ € {0,1}"~! such
that ug,(Mg,O)) > 0. Thus, if n = (0,n’) we have
ps(Mp) = & (M) >0 iff n' =€,
Suppose now s; > 0. Again from (5.10) and (5.11) it follows that
pis(My) =0 for all ;' € {0,1} 1.

Also, by the induction hypothesis, there exists a unique €’ € {0,1}"~! such
that ug,_d/Q(Mé,O)) > 0. Thus, if n = (1,17") we have

N du
(M) = e lim ( ) SS § l/gN wn dv) 1o g (M),
which is non-zero if and only if p0, /2(M 7(79)) > 0, or equivalently, n’ = ¢’. u
For the last statement of Theorem 1.6, we need the following result.
LEMMA 5.12. In the conditions of this section, o (Hcy) = 2.
Proof. Tt suffices to show that
(5.13) cj€Hey, j=2,...,m
Indeed, in this case U;ZQ He; C Hecy, and therefore,
¢ (Hcy))=7co(Hey + Heg+ ...+ He,) =co (He) = 0.

To see (5.13), let v € V; ; with |v| = V2, and u, \, 0. Then, by Proposition

5.3,

Ty = 7—(1) (v/un)(uicl) — ’U,?LCI —|— Unv + (’U2)0 c Hcl.
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Thus, lim, e 2, = (v?)g € Hey. But v? € Viq @ Vj;, and therefore,
(v*)o = (V°[ej)ej = 5lvfPej = cj. m

The last statement of Theorem 1.6 follows immediately from the previous
lemma. Indeed, if cc = ¢;; +...+¢;, with 1 < j; < ... < js < r, then
co(Hee) = !_Z(jl), which is the cone of squares associated with the Jordan
algebra V{;,) = @,, <j<k<, Vjk- Thus, our claim follows from a fact we saw
above: for s € B, s; = 0 if and only if e(s) = (0,¢&’) for some &’ € I'.

With the preceding propositions we have essentially completed the proof
of Theorem 1.6. The fact that the measures ps are smooth volume forms
in M. is contained in the proofs presented above. Indeed, it follows from
the parametrization of both, manifold and measure, in terms of the Gauss
coordinates (see (5.9)—(5.11)).

To conclude completely the proof of Theorem 1.6 it only remains to show
that the orbits M, = Hc. can actually be written as M, = H.c. for a Lie

subgroup H. of H. In view of Proposition 5.5, if ¢ = ¢;, + ...+ ¢;j,, we let
H, be the set of h € H of the form

(5.14)  h=7U(z). .. 7Y (z) Plajiej + ..+ ajoej, + (e = ce))

for zj,, aj, as in (5.6). Then H, is a closed subset of H acting simply tran-
sitively on M.. We further claim that H. is a subgroup of H. To see this,
recall from §2.2 that

70(2) =exp(220¢), ze€ V(e 1/2),
where z Ow = L(zw) + [L(2), L(w)] (see also Chapter VI of [3]). Let
gij ={X=20c¢:2€V;} Cg.
Then our claim follows from the next lemma;:

LEMMA 5.15. Let 1 <i< k<r,1<j<Il<r, and suppose i < j.
Then, if z € V; ), and w € Vj;, we have
(5.16) [z 0ci,wO¢;] = =6 k(2w) O¢; = —38; 1 L(zw).

Indeed, as V; jV;; C Vi, (see Chapter IV of [3]), the lemma implies that
Z};:Hl ik D Z;:jﬂ g;, is a Lie subalgebra of g for every ¢ < j. Thus, by
the Baker—Campbell formula (see, e.g., Theorem 2.15.4 of [14]), the set

{T(i)(z)T(j)(w) = é Vik, w € é V}l}

k=it+1 I=j+1

is a closed subgroup of H. After iteration, and by (2.3), it follows that H,
is also a closed subgroup of H. Note that the inverse of h € H, in (5.14) is
given by

hl =P e; +...+ajcj, + (e —co))rV)(—z,) .. .70 (—z;).
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The proof of Lemma 5.15 is elementary, and will be presented in the
appendix.

6. The characterization of the spaces H},(Ty;). In this section we
present a proof for the last two theorems of the paper: 1.3 and 1.4. This
requires the use of results developed in previous sections, but also some new
techniques involving CR equations in complex manifolds. For the last part
we shall follow the presentation in [10], where, as we pointed out, the spaces
Hi (T) were already characterized.

6.1. The tangential Cauchy—Riemann equations. Throughout this sub-
section, M will be a regular submanifold of R™, and H a Lie group acting
simply transitively on M. That is, there exists a fixed tg € M such that ev-
ery x € M can be written uniquely as x = hty for some h € H. We suppose
m = dim M > 0. A particular case of this situation are the orbits described
in §5: M, = Hcc. for e € I\ {0}.

Consider the (real) manifold Ths = R® +i¢M C R"™ 4+ iR"™. We denote by
7,(Tw) the tangent space of Ty at p, and by 7,(Ta)c its complexification.
A tangential CR vector field in Ty is a smooth vector field Z : p — Z, €
T,(Thr)c which is antiholomorphic in C" = R™ + iR". That is,

9 9 where 2| _L1( 92
071 ""’82np’ 82j 2 a.%'j

DEFINITION 6.1. We say that a function f € C(T)) satisfies the tan-
gential Cauchy—Riemann (CR) equations if Z f = 0 for every tangential CR
vector field Z in Tyy.

.0

Zp € a
p € spangc { + Zayj

p p p

A careful description of these equations related to manifolds of the form
Ty (and even more general Siegel domains) can be found in [10]. For com-
pleteness, we give a more explicit form here, in terms of the action of the
group H.

Suppose {eq,...,ey} is a fixed basis of R", for which the tangent plane
at tg of M is given by

TZO(M) = SpanR{Del|t07 o 7Dem|t()}7
and where D,, v € R" \ {0}, denotes the directional derivative vector field:

fp+ev)— f(p)

. . 1
Dypp[f] = lim . if feC (p).
Let {e1,...,en,tie1,...,ie,} be the corresponding basis of the complex-

ification R™ + iR™ = R?™. Then the tangent space of Ty = R" + M at it
has the form

Tty (Tnr) = SpanR{Del\itov ) Den|it07 Diel|z’t07 cee Diem\ito}‘
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Further, if p = zg + ihtg € Ty for unique zg € R™ and h € H, then the
group action gives:

%(TM) = SpanR{Dhel\m ) Dhen|p7 Dihel\pv B Dihem\p}‘
Consider now the following H-invariant vector fields:

Xjip = Dhejlp  and  Yj, := Dipeypp  for p =g +ihto, j=1,...,n.
The span of { X}, Yj‘p}gnzl generates the largest “complex space” contained
in each 7,(Ths). Thus, a basis of antiholomorphic vector fields in 7 (T/)c is
given by

Zj=3(X;4+1Y;), j=1,...,m.

In particular, f € C'(Ty) satisfies the tangential Cauchy-Riemann equa-
tions if and only if

Zif=0 foralj=1,...,m.
These vector fields can also be written as
(Ziyer Zn) =V - A,

where A is the matrix-valued function p = z¢ +ihtg € Tay — h € H, and V
denotes the “antiholomorphic gradient”:
= 0 0 0 1
V==—,....— | f — = (D, +1Dyg,).
(azl azn> oz 5(De; +iDic;)
In particular, for every holomorphic function F' in a neighborhood of T}y,
we must have Z;FF =0, j =1,...,n.
Below, we shall apply the tangential Cauchy—-Riemann equations to func-

tions in L}, = LP(Tys; dzdu(t)), and therefore, a definition of “weak deriva-
tive” is also needed (see §2.1 of [10]):

DEFINITION 6.2. We say that f € L{ (Ty) satisfies weakly the tangen-

loc
tial CR equations (in symbols f € CR(T)s)) when
(6.3) | fow=0 vwealrm=(cm).
T

In this definition A((;k’l)((C”) denotes the set of all smooth compactly sup-
ported (k,l)-forms in C". That is,

T _ _
w= Z iz NN dzy NdZg NN dZ,

i< <ig
J1<---<Jy

where 90;11?; € C(C™) and

dz; = dz; +idy;, dzj; = dx; — idy;.
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Also, 9 is the chain complex mapping of A®) into A¥H1D defined on

smooth functions as
n

5 do _
j=1 "7
In our particular situation, (6.3) is equivalent to the simpler expression

(6.4) | fZjp=0 Vji=1,...,m, ¢eCX(Ty)
Tm
(see 2.1.5 in [10]). The equivalence of Definitions 6.1 and 6.2 for C1(Ty)

functions, as well as other properties of CR equations, can be found in
§51,2 of [10].

6.2. The spaces Al(Tyr). We start by recalling the definition of the
spaces AL (Tyy):

DEFINITION 6.5. Let p be a positive volume form in M and 1 < p < oo.
We define AY(Ta) := LP(Ths; dzdp) N CR(Thy).

It is immediate to verify that L, = LP(Tys;dadu(t)) C Li . (Ta), and
AL/(Tyy) is a closed subspace of Lf,. In particular, AL (7)) is a Banach space.
Next, we quote the following Paley—Wiener characterization of the Hil-

bert space Ai (Thr). Below, we shall use the notation
L) = | e 2@ du(e), ¢ err.
M

THEOREM 6.6 (see Th. 2.2.1 in [10]). For every F € A%(Ty) there ea-
ists a function ¢ € L*(R™; 1,(£)d€) such that

(6.7) Fi(z)=F(z+it) = | e@ritlp¢)dg,  zeR"

1
2
2m? ]
defined in the Fourier—Plancherel sense for p-a.e. t € M. Moreover, the
correspondence

F € A5(Tar) = ¢ = € F, € L (R 1,(§)d€)
s an isometric isomorphism of Hilbert spaces.

Observe that this theorem, together with our results in §4, provides a
characterization of the spaces H(Tp), at least when ©o (Supp p) = 2. To
see this, suppose that pu = us and M = M, for some fixed s € E\ {0} and
e = €(s) € I\ {0}. Then ps is a positive volume form in M., and we can
identify Supppus = M, T,,, = R" + ¢ Supp s = Ty. In this situation, and
using the results in §2.2, we have

(6.8) L.(8) = {fous(%) = A% .(2€), 2‘ ;%ﬁ)o’
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where
M* = {z eR": (z|y) >0, Vy € M}
(see also 2.3.1 in [10]). Now, it is immediate to verify that
MF = (Supp pie)* = [c0 (Supp )] = 2,
from which
L (R™; 1,,,(§)d6) = L*(12; A" . (2€)d€) = L2 - (£2).
Thus, using the results in §4.1 we easily conclude that
(6.9) FeH. (To) & F® e A2 (Ty),
with equality of norms: HFHHEL(TQ) = |F®) HAEL(Tm)'
To extend this characterization to all values of p > 1, as stated in The-

orem 1.3, we shall need some lemmas concerning the spaces AL (Ths). The
first is an elementary density property, which a priori only holds for p > 2.

LEMMA 6.10. Let 2 < p < oo and p be be a measure as above. Then
Ai(TM) N AL(Th) is dense in AL(Tyy).
Proof. Let F € Al(Ty) and r = p/2 > 1. We choose a function G as in
(3.24) belonging to the space LZT/(TM), and let
Fe(2) =G(ez) F(z2), z€Tnm.
Since G is holomorphic in a neighborhood of Ty, we have F* € CR(Ty).

Further, since G is bounded in Ty, we also have F € A}(Ty). Now, by
Holder’s inequality,

5] < [1F g G )z < 00,
and therefore F© € Ai(TM). Finally, the limit |[F° — F|;z — 0ase — 0
follows by the Dominated Convergence Theorem. m
The second lemma is an extension of Theorem 6.6 to the range 1 < p < 2.

As usual, if G € AL(Tw), we let Gi(z) = G(x +it) as a function in R", and

~ 1
Gt(&) = (27‘(‘)”/2

S e Gy (2) dx, € e R,
]Rn

Observe that Gy € LP(R"™) for a.e. t € M, and therefore, G, € LY (R™),
where 1/p 4+ 1/p" = 1. The following lemma translates the CR condition in
G into an explicit form for Gs.

LEMMA 6.11. Let 1 < p < 2. For every G € AlL(Tw) there exists a
function ¢ in R"™ such that I,(p€)"/Po(€) € LY (R™), and

(6.12) Gi(&) = e Cp(&)  ae & +it € Ty
In particular, if ©o (Supp ) = £2, the function ¢ is supported in §2.
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Proof. The identity in (6.12) can be obtained following essentially the
same steps as in the proof of Theorem 6.6 (see [10]). More precisely, one
just needs to show that the function p(¢,t) := e(f‘t)@t(g) is independent of
the variable ¢. Then, one proceeds as in Théoréme 2.2.1 in [10], except that

the assumption G € Li(TM) has to be replaced by G; € Lﬁl (Tar). A brief
sketch, adapted to this situation, is the following:

1. By a Weyl type lemma for the manifold Ty, a locally integrable func-
tion (&, t) is independent of ¢ if and only if

6.13) || et (Y)Et)=0 Vi=1,....m ¢ e CX(Tu)
T
(see Lemma 2.2.2 in [10]).
2. Consider the identity
V(€ (g, 1)) = € (Vi) + (he;|6) ey,

where we have written ¢t = hto, h € H. Then, calling (¢, t) := (&, t)el),
(6.13) is equivalent to

(6.14) | | Gueyviioe. 01 =\ § Gi(€)(hejlO)o(e, 1).
Ty T

Further, using integration by parts we can write

i(he; , .
i(he;[€) 0(¢,1) = ((2@’53 IERCLE

1
~ G

Rn

e~ 10 X;[0,(x)) da.

Thus, by applying the Plancherel Theorem in R™, (6.14) becomes equivalent
to
(6.15) | § G vl = § | Guw)ix; o))

M R™ M R?

3. Finally, observe that (6.15) is precisely the CR condition on G (see
(6.4)). Note, however, that 6;(z) is not compactly supported in R™, so one
shows (6.15) with a limiting argument involving cut-off functions (see p. 46
of [10]).

Thus, assuming (6.12), we may turn to the last claim of the lemma. From
(6.12) and Young’s inequality, it follows that

(11 @n@r a)™ < (§lGuwlrar)” aetenm
R™ Rn

Using this and Minkowski’s inequality (p’/p > 1) we obtain
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el = (§ | § 79 auo] "ot a)
R M
<[V (§ e 1 )" aun)]”’ <16y
M R™

This clearly implies I u(pf)l/ Pp(€) € LF(R™), concluding the proof of the
lemma. =

6.3. The proof of Theorems 1.8 and 1.4. We now turn to the proof
of Theorem 1.3. The first part is actually a straightforward consequence
of our results in §3, and the definition of CR equations. More precisely,
suppose F' € H}(Ty,). Then, for all y € 2, F, = F(- + iy) is holomorphic
in a neighborhood of T, and in particular belongs to CR(T)y). Also, by
Theorem 1.2 we know that F, — F(®) in L}, as y — 0. Therefore, we also

have convergence in Ll (Ths) (since p > 1), and hence

0= S F,Zjp — S F(b)ngo Vi=1,....m, ¢ € C*(Tm).
Tnm T
This shows that F() belongs to CR(T}s), and gives us F®) € AD(Ty).
Note that we actually have F(®) e AL(Tar; £2). Indeed, this is true for F €
H2(Tq) N Hjj(Tg) (see §4), and extends to all F € Hjj(Tp) by density.

For the converse, we shall distinguish two cases: p < 2 and p > 2, and
indicate where the crucial hypothesis ¢ (Supp i) = £2 is used. The simplest
one is the latter, which can be reduced to the case p = 2 from the following
elementary lemma:

LEMMA 6.16. Let 1 < p < oo. Suppose F € Hﬁ(Tg) and F®) is its
boundary limit. Then F € HY(Tq) if and only if F® € L.

Proof. Since F' € Hz(T ), we may reconstruct it from its boundary value
using the classical Poisson—Szeg6 kernel (see (4.14)):

Fiz+iy) = | K" (@ —w) Pyu)du, x+iyeTy
Rn
(except perhaps for ¢ in a set of y-measure 0). Then, taking LI-norms for
each y € (2, we obtain
1F Ny < IFP gy § Py(w) du = [F® g,
RTL

from which the result follows. =

The proof of the second part of Theorem 1.5 for p > 2 is now a simple

consequence of the case p = 2 in (6.9). Indeed, by Corollary 3.18 and the
first part of the theorem, the correspondence

F € H5(Tg) — F®) € AP (Ty)
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is an isometry of Banach spaces. Also, by the case p = 2 and Lemma
6.16, every function G in Ai(TM) N Al(Th) is the boundary value of some
F € H!(Tg). Thus, the density result in Lemma 6.10 immediately implies
surjectivity, establishing our claim. Observe that in order to use the case
p = 2, we are assuming co (Supp u) = £2.

Consider now the case 1 < p < 2. The simple argument used above
cannot be applied now, because we do not know (a priori) a density result
as in Lemma 6.10. We proceed instead with classical Hardy space theory,
for which we need the following proposition:

PROPOSITION 6.17. Let 1 < p < o0 and
L2(R™) = {f € LP(R") : Supp f C 2}.
Then
F € HP(Tq) — F®) ¢ L2(R™)

s an isometric isomorphism of Banach spaces. When 1 < p < 2, the inverse
mapping is given by

(6.18) feLBRY) — F(z) = | O f(6) de,
2

where the integral converges absolutely for every z € T,.

Proof. For p = 2 the result is well known (see IX.4 in [3]). For general
p the proof is a simple modification of the ideas presented here. Indeed, by
the classical theory, the correspondence

F € H?(Tg) — F® e LP(R")

is an isometry of Banach spaces. By density of H?>N HP in HP, this mapping
takes values in LY, (R™). To show surjectivity it suffices to see that L? N L¥,
is dense in L?z. When p < 2 one uses a standard approximation argument.
Namely, given g € L¥,(R™) and a smooth approximation of the identity {¢.},
we have lim._.¢ [|g*p-—gl|, = 0, while by Young’s inequality g*p. € L*NLE,.
When p > 2, one should approach instead with G(e-)(g * ¢¢), where G is
a function as in the proof of Lemma 6.10 (note that g is now a tempered
distribution).

Finally, the equality in (6.18) also follows by density, together with the
simple estimate

S e~ WO F(6)| de < || flly ( S e—p(ylf)d§> 1/p
2 [0
<|flpAlpy) ™" <00, yeR. m

REMARK 6.19. When 2 < p < oo, there is a similar formula for the
inverse mapping in (6.18): F, = F~'(e~ Wl f), y € €2, which now has to be
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interpreted as a distributional Fourier—Laplace transform (see Chapter VII
of [7]).

The proof of Theorem 1.5 now continues as follows. Let G € Al(T)
and E C M be a set such that (M \ E) = 0 and G¢ € LP(R") for all
t € E. By Lemma 6.11, there is a function ¢ so that Supp ¢ C £2 (under the
assumption ¢o (M) = §2), and ét(f) = ¢~ EWp(¢). Further, the properties
of ¢ imply that the integral
(6.20) F(2) = | () d¢

9]
converges absolutely for every z € T(,. Indeed:

§ e 091pe) d < ( § () ()71 dg) " (§ 77010 A7 (26) )
2 2

Q
= CH(PI;i/pHLp’(]Rn) As—i—n/r(y)_l/p < 0, ) S “(27
where we have used the expression for I, = I,,, in (6.8). Therefore, F'is a
holomorphic function in T,.
It remains to show that F' € H}(Tp), and its boundary limit in Ty,

equals G. But this is an immediate consequence of Proposition 6.17. Indeed,
from equalities (6.12) and (6.20), we see that

Fi(z) == F(z+it) = S eC1O Gy (¢) de
2
is a function in HP(Ty) for every t € E. In particular,

limmy | (- + iy) — Gl Lo@n) = 0.
Furthermore,

| IFa + i) de < Bl = 1Gilpan v € 2

RTL
Integrating with respect to du(t) we immediately see that F' € HE(Tq)
and [|[F||gr < |G|z Finally, to show that limy o [|Fy — G[[z» = 0, one
uses Theorem 3.11 and dominated convergence. This completes the proof of
Theorem 1.3. u

To conclude this section, we indicate the very minor modifications re-
quired to establish as well Theorem 1.4.

Proof of Theorem 1.4. The fact that F(®) € AF(Ty; 2) for every F €
HY(Tg) was already pointed out during the proof of the previous theorem.
For the converse, if 1 < p < 2, and if we assume G € AL(T)y; §2), again the
same proof as above is valid. Indeed, we only used the assumption 6 (M) =
2 to guarantee that Supp ét C 2, and properly define the holomorphic
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function F in (6.20). Thus, the same argument gives F € H}(Ty) and
F®) =gG.

We have proved, in particular, the case p = 2. The cases p > 2 are ob-
tained from this one, and the density of A2 (Tar) N AL (Tar; £2) in AY(Tas; 2),
exactly as we did above. This last density result can also be established with
minor modifications of our proofs (see the proof of Proposition 6.17). =

7. Appendix. We present here some general facts on symmetric cones
that were used at different stages of the paper, but whose proofs were post-
poned for the reader’s convenience. As in §2, we use the notation and stan-
dard results from [3]. We begin with the proof of Lemma 3.8, whose idea
will come again in subsequent lemmas.

Proof of Lemma 3.8. By the action of H it suffices to verify the lemma
for y = e. Now,

Ay +e) = Ay(y +e) <M> » (L“)O

Ai(y+e) A_1(y+e
Since by hypothesis s1,...,s, > 0, it suffices to see that
Ar(y +e)
7.1 RO TE S ye, k=1,....r
(7.1) Agio ! Y

Now, Ai(y+e) = (y+e|c1) = (yler) +1 > 1, so (7.1) follows for k = 1. For
k = r we may use the identity

A(§) 1
Ara(§)  ANE)
where A} denotes the first principal minor with respect to the rotated Jordan
frame {c,,...,c1} (see Chapter VII of [3]). But if £ = y+e, then the spectral
theorem tells us that there is a Jordan frame {d, ..., d,} and real numbers
Aoy A > 1sothat € = \ydy+...+\ed,. Thus, €1 = ANy 4. ..+ 21,
and

(7.2) V¢ € 12,

ANEY = (€ Ye) = ZA (djler) < (eley) = 1.

This shows (7.1) for k = r.
The other cases follow by induction on 7, since
Aly+e) _ AP (Pyten)
Ap-1(y +e) A;(g]i)l(Pky +ey)

where now Pyy, e, = ¢1 + ... + ¢, and A§k), j = 1,...,k, are objects
associated with the Jordan algebra V%) of rank k. m
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We now briefly recall how to extend the definition of Aj(z), j =1,...,r,
to values of z in the complexification V 4 iV = VC. Since VC is a com-
plex Jordan algebra (of the same rank as V'), there is a natural definition
of determinant, dety-c(z). This extends the original determinant of V in the
sense that A(z) = detyc(x 4 40), x € V. In fact, detyc(z) can be obtained
from A(x) by just replacing the real coordinates of z € V' by the complex
coordinates of z € V + ¢V. Indeed, since the determinant is always a poly-
nomial in the coordinates of the vector space (see Chapter II of [3]), if we
write A(x) = ag(X1,...,X,) for z = (X;1...,X,) € V=R", then we will
have

detye(z) =ao(Z1,...,2Zy) for z=(Z1,...,2,) € V4+iV =C".
Thus, with no further comment we shall write A(z) = detyc(z), obtaining
in this case a holomorphic function in z € V€ = C” (in fact, a homogeneous
polynomial of degree ). Exactly the same reasoning applies to the principal
minors A;(z), which are now determinants of the Jordan algebras (V))C,
j=1...,r

We are now interested in giving a sense to the generalized power Ag(z2),
s € C", but only when z € 2 4+ iV. The next lemma solves the problem of
choosing an appropriate determination of the argument.

LEMMA 7.3. Let x € V and y € 2. Then Aj(y+iz) # 0 and
Aj(y + i)
Aja(y +ix)

Proof. 1t suffices to show (7.4) for y = e. When j = 1 this is almost
immediate:

(7.4) el ={AeC:ReXx>0}, j=1,...,m

Ai(e+ir) = (e +ix|e;) =1 +i(z|cr) € I
Suppose now j = r. On the one hand, every z € Ty, is invertible in
VE and —z7! € Ty, (see Theorem X.1.1 in [3]). In particular, we have
Ai((e +iz) N A (e +ix) # 0 for all x € V. Thus, we may extend the
identity in (7.2) to the complex algebra VC:

Al((e+iz) DA (e +ix) = A,_1(e+iz) Vr eV,
and we obtain A,_j(e + iz) # 0 as well. Now, by the spectral theorem
there is a Jordan frame {dj,...,d,} and real numbers \j,..., A, so that
r = Mdy+ ...+ Ard,. Thus,
(e4iz)™ = (1 4+ix) My +... + (1 +iN\) " d,,
and therefore,

Af((e+iz)™) = (e

- 11— i)
-1 J
Z(lJr@)\j) dj> ZZW(CH%‘)'
Jj=1 j=1 J

Since 3 %_;(cr|dj) = (cr|e) = 1, there must exist some j so that (c;|d;) # 0.

Hence, we conclude that [A%((e + iz)~1)]~! has positive real part, establish-
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ing our claim. The remaining cases j = 2,...,r — 1 follow from an induction
process on the rank, as was described at the end of the proof of Lemma
3.8. m

Using the previous lemma we shall define
_ o ((A2(2)\* Ar(z) \7 .

Ag(z) = Ai(2) <A1(z)> <AT_1(2)> ,  zE€NH1V,
whenever s = (s1,...,s,) € C", and where the determination of the root
is positive in the positive real axis. Note that z — Ag(z) is a holomorphic
function in 247V . We now show some general estimates that were previously
used in the paper.

LEMMA 75. If x eV, ye 2 and s € C", then
|As(y + i2)| = Ages(y)-
Proof. As usual, it suffices to prove that
Aj (e + ZCC)
Using the same computations as in the proof of the previous lemma we see
that (7.6) holds trivially for j = 1, while for j = r matters reduce to showing

|AT((e + ix)_1)| <1
But by using again the spectral decomposition of = this follows from

Ai((e+in <Y D)
J

j=1

(76) 1, Jj=1r

|1—’i>\j| <l =

The generalized powers Aq(z) can also be defined via the Fourier-Laplace
transform, at least for certain values of the parameter s. Indeed, let us denote
by p;, the same distribution as in (1.3), but with A; replaced by A} (i.e.,
(;, is the composition of p, with a rotation k& € K such that kc; = ¢,—j11).
Then, in view of Proposition 2.8, u}, is a positive measure if and only if

v € E. In this case, the following integral is absolutely convergent and
defines a holomorphic function on the tube T:
Fy(z) =\ "0 du(e), z€To.
0
Now, for v = s*, Lemma 2.6 tells us that F.-(iy) = [As(y)] ! for all y € £2.
Therefore, by analytic continuation it follows that
(7.7) [As(z/i)) 7" = [ D dpz (), z€To,
9]
at least when s* € 2. With this formulation we can easily compute integrals

involving Ag(z), as we illustrate in the next lemma (whose particular case
is Lemma 3.25).
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LEMMA 7.8. Let y € 2 and s = (s1,...,8.) € R". Then the integral
dx
20 =) A )
converges if and only if s; > (r — j)d/2+n/r, j=1,...,r. In this case,
Js(y) = c(8)Anjr—s(y),
where the constant equals c(s) = (4m)"27 181 Io(s*/2) 2o (s* — n/r).
Proof. By using the invariance of Ay under H it suffices to show the
lemma for y = e. Then from (7.7) and the Plancherel Theorem we obtain
dx

) Mo iy~ 14+ ey
Rn 78

e oo e
Tl )¢ A O S
e

N7 (31+ +3r) _ﬁ
= Tols/2)? fo ( >

where the last integral is finite (and equal to the constant above) iff s; —
n/r>r—4)d/2,j=1,...;r. =

We conclude the paper with the proof of Lemma 5.15. We recall from
Chapter IV of [3] the multiplicative relation between different entries of the
Peirce decomposition:

(7.9)  Vip-Vixg CViy and Vip- Vi ={0} if{i,k}n{j1}=0.
Proof of Lemma 5.15. Let
P(z,y) = L(x)L(y) + L(y) L(z) — L(zy), =z,y€V,

so that (z0y)z = P(xz, 2)y (see Chapter VIin [3]). We shall use the following
equality:

(7.10) [X,a0b] = (Xa)Ob—aO (X)), Xe€g,abeV

(see Lemma VI.3.4 in [3]). Thus, from (7.10) and (zrOy)* = y Oz, it follows
that

[z0c¢,wO¢] = (P(z,w)e) Oc; —wO (P(e, ¢)z).

Suppose first that i < j. Now, using (7.9) we can write
P(z,w)c; = L(z)L(w)e; + L(w)L(2)e; — L(zw)e;
=04 2w/2 — (Op,j + Ok1)2w/2 = 0.

For the second term we have

P(ci,cj)z = L(ci)L(cj)z 4+ L(cj)L(ci)z — 0 = 65 1.2/2.
Thus,

[z0c,wOc]=—-36,w0z
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Assume now j = k. Then we must have [L(w), L(z)] = 0. Indeed, this follows
from the equality

[L(w), L(2)] = 2[L(w), L(¢iz)] = 2[L(zw), L(ci)] = ... = [L(2), L(w)],
for which one uses standard properties of L (see Proposition II.1.1 of [3]).
The identity in (5.16) is then immediate. The case i = j is similar, and left
to the reader. m
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