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ON SEMI-INVARIANTS OF TILTED ALGEBRAS OF TYPE An

BY

WITOLD KRAŚKIEWICZ (Toruń)

Abstract. We prove that for algebras obtained by tilts from the path algebras of
equioriented Dynkin diagrams of type An, the rings of semi-invariants are polynomial.

Introduction. Let Q = (Q0, Q1) be a quiver with the set Q0 of ver-
tices and Q1 of arrows. For every arrow α ∈ Q1, we denote by t(α) and h(α)
the tail and head of α. Fix an algebraically closed field K of characteristic
zero. Let d = (dx)x∈Q0 be a dimension vector for Q and let Vx = K

dx for
every x ∈ Q0. The representation variety of the quiver Q in dimension d is
the affine variety R(Q, d) =

∏
α∈Q0
Hom(Vt(α), Vh(α)). The algebraic group

G(d) =
∏
x∈Q0
GL(dx) acts on the variety R(Q, d) in a natural way and the

classification problem for representations of Q in dimension d is equivalent
to the classification of orbits of that action. The first approximation to the
problem is to describe the invariants of G(d) on regular functions on R(Q, d),
since the ring of invariants describes closed orbits. But the ring of invariants
is trivial unless the quiverQ has oriented cycles. It turns out that one obtains
more subtle information by taking regular functions which are invariant with
respect to the subgroup G′(d) =

∏
x∈Q0
SL(dx) of G(d). The invariants of

G′(d) are called semi-invariants and we denote the ring of semi-invariants
by S(Q, d). In particular it was proven in [12] that one can read off the rep-
resentation type of a quiver from the algebraic structure of the rings of its
semi-invariants. Namely, a quiverQ is of tame representation type if and only
if the ring S(Q, d) is a complete intersection for every dimension vector d.

For quivers with relations one can repeat the same construction but the
situation gets more complicated, since the varieties of representations are
no more affine spaces. In that case the research seems to be on the stage of
collecting examples. In [5], [11] some rings of semi-invariants were calculated
for representation varieties of canonical algebras.

The purpose of this paper is to describe the rings of semi-invariants for
tilted algebras of type An. Let Q be a quiver of type An, let V1, . . . , Vn be
the indecomposable pairwise nonisomorphic representations of Q, and let
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T = V1 ⊕ . . . ⊕ Vn. If Ext(T, T ) = 0, then the algebra End(T ) is a tilted
algebra of type An (see [1], [3], [6]).
In the first two sections we consider the semi-invariants of tilted algebras

of type An obtained from equioriented quivers. It is convenient to view rep-
resentations of all such algebras as representations of some infinite quiver Y .
In Section 1 we define the quiver Y and describe varieties of its representa-
tions. Using Kempf’s technique of vector bundle collapsing [9], we describe
the coordinate rings of irreducible components of R(Y, d) as representations
of the algebraic group G(d). This information is used in Section 2 to show
that for every irreducible component in R(Y, d) its ring of semi-invariants is
a polynomial algebra.
In Section 3 we give two examples of algebras obtained by the tilting

process from nonequioriented quivers of type An. They show that in general
the ring of semi-invariants of such an algebra is much more complicated.

1. The quiver Y and its representations. Let Y = (Y0, Y1) be an
oriented quiver with zero relations obtained from an infinite binary tree in
the following way. The set Y0 of vertices is an infinite countable set and
we identify it with {x1, x2, . . .}. Every vertex xi ∈ Y0 is a parent for two
children: left x2i and right x2i+1. The edges from parents to children are
oriented in the following way. The left edge goes from a child to the parent,
the right one from the parent to the other child, and the two arrows are
subject to a zero relation.
We denote the arrow going from x2i to xi by α2i and the one from xi to

x2i+1 by α2i+1. We have Y1 = {α2, α3, . . .}. For a vertex x = xi, we will also
write α2i = α1(x) and α2i+1 = α2(x).: : : : : : : : : : : : : : : : : : : : : : : :x8 x9 x10 x11 x12 x13 x14 x15AAA�8 U�����9� AAA�10 U�����11� AAA�12 U�����13� AAA�14 U�����15�x4 x5 x6 x7@@@�4 R ^ ����5� @@@�6 R ^ ����7�x2 x3HHHHHHH�2 j^ ��������3 *

x1
Locally in the neighborhood of every vertex x ∈ Y0 (except the root x1 of

the tree), the quiver Y looks like the central point in the letter Y with arms
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oriented compatibly from left to right and the zero relation. Orientation of
the leg depends on whether x is a left or right child of its parent.

It has been shown in [7] that the class of basic tilted algebras obtained
from equioriented quivers of type An coincides with the class of the quiver
algebras for connected subquivers of Y containing x1 and having n vertices.

A dimension vector for Y is an infinite sequence d = (d(x))x∈Y0 of non-
negative integers such that its support

supp(d) = {x ∈ Y0 | d(x) 6= 0}

is finite and connected. LetK be an algebraically closed field of characteristic
zero. A representation of Y over K with dimension vector d is a collection
(Vx)x∈Y0 of vector spaces, where dimVx = d(x) for every vertex x, together
with a collection f of linear maps f(α) : Vt(α) → Vh(α), α ∈ Y1, such that the
composition f(α2i+1) ◦ f(α2i) is zero for every i. In this way one can view
a representation of Y as a collection of short complexes indexed by vertices
of Y . It is obvious that every representation of Y is in fact a representation
of a finite subquiver of Y but regarding it as a representation of Y relieves
us of describing exceptions on the boundary of finite quivers.

Let d be a dimension vector for Y and let R(d) be the representation
variety of Y . It is a closed algebraic subvariety in

⊕
α∈Y1
Hom(Vt(α), Vh(α)).

The algebraic group G(d) =
∏
x∈Y0
GL(Vx) acts on R(d) in the standard

way: if g = (gx)x∈Y0 is an element of G(d) and f = (f(α))α∈Y1 is an element
of R(d) then g · f = (gt(α) ◦ f(α) ◦ g

−1
h(α))α∈Y1 .

In general, the representation varieties R(d) are reducible. To describe
their irreducible components we introduce more notation. Let d be a di-
mension vector for Y and let r = (r(α))α∈Y1 be a sequence of nonnegative
integers. We define subsets of R(d) by imposing conditions on the ranks of
the maps f(α) in the following way:

C(d, r) = {(f(α)) ∈ R(d) | rk(f(α)) = r(α) for every α ∈ Y1},

C(d, r) = {(f(α)) ∈ R(d) | rk(f(α)) ≤ r(α) for every α ∈ Y1}.

The subset C(d, r) is nonempty if and only if the following two conditions
are satisfied:

1. r(αi) ≤ min{d(xi), d(x[i/2])} for every i ≥ 2.

2. r(α2i) + r(α2i+1) ≤ d(xi) for every i ≥ 1.

We will say that r is an admissible rank vector for d if it satisfies the above
two conditions. If r is admissible then C(d, r) is the closure of C(d, r). For
admissible rank vectors r and r′, we have C(d, r) ⊂ C(d, r′) if and only if
r(α) ≤ r′(α) for every α ∈ Y1. In this case we will say that r

′ majorizes r
and we will write r ≤ r′.
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We describe the varieties C(d, r) in more detail. Recall that for a linear
space V of dimension n over K, the rational irreducible representations of
the group G = GL(V ) are parameterized by the dominant weights λ for G.
A dominant weight λ = (λ1, . . . , λn) is a nonincreasing sequence of integers
of length n; let Sλ(V ) denote the corresponding irreducible representation
of GL(V ). If all λi’s are nonnegative, then λ is called a partition and the
number of nonzero λi’s is the length of λ.

Proposition 1. Let d be a dimension vector for Y and let r be an
admissible rank vector for d. Then C(d, r) is a G(d)-invariant irreducible
normal affine variety of dimension

(1)
∑

i≥2

d(xi)r(αi) +
∑

i≥1

(r(α2i) + r(α2i+i))d(xi)

−
∑

i≥1

r(α2i)r(α2i+i)−
∑

i≥2

r(αi)
2.

As a G(d)-module, the coordinate ring of C(d, r) is isomorphic to

K[C(d, r)] =
⊗

i≥1

⊕

κ,µ

Sκ(Vx2i)⊗ S(µ|κ∗)(Vxi)⊗ Sµ(V
∗
x2i+1),(2)

where for given i the summation runs over all partitions κ and µ of length
not greater than r(α2i) and r(α2i+1), respectively, and

(µ |κ∗) = (µ1, µ2, . . . , µr(α2i+1), 0, . . . , 0,−κr(α2i), . . . ,−κ2,−κ1)

is a sequence of length d(xi).

Proof. It is clear from definition that C(d, r) is closed andG(d)-invariant.
To prove the proposition we use the technique of homogeneous vector bundle
collapsing [9]. Kempf used this technique to prove the normality of varieties
of complexes [8], which implies normality of C(d, r); but to prove the re-
maining results we have to present Kempf’s construction.

We will construct some vector bundle over an irreducible projective vari-
ety and a projection from it onto C(d, r) which is a birational isomorphism.
The existence of such a projection proves the irreducibility of C(d, r) and
allows us to determine its dimension and the coordinate ring.

Fix a dimension vector d and let r be an admissible rank vector for d. For
every vertex x = xi ∈ Y0, denote by r1(x) and r2(x) the ranks r(α2i) and
r(α2i+1), respectively. Let Fx(d, r) be the variety of flags of linear spaces
0 ⊂ V ′x ⊂ V

′′
x ⊂ Vx with dimV

′
x = r1(x) and dimVx/V

′′
x = r2(x). A flag

0 ⊂ V ′x ⊂ V
′′
x ⊂ Vx in Fx(d, r) is said to be compatible with a representation

f ∈ C(d, r) if

Im f(α1(x)) ⊂ V
′
x and V

′′
x ⊂ Ker f(α2(x)).(3)
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We need several bundles on Fx(d, r). Let Vx be the trivial bundle Vx ×
Fx(d, r). The bundle Rx is a tautological subbundle in Vx whose fiber over
a flag 0 ⊂ V ′x ⊂ V

′′
x ⊂ Vx is V

′
x. The bundle Qx is a quotient bundle of

Vx with fiber Vx/V
′′
x . Now let F(d, r) =

∏
xFx(d, r). Since almost all flag

varieties consist of a single point, F(d, r) is a projective variety. We use the
same symbols Vx, Rx or Qx for the pullbacks of the respective bundles from
Fx(d, r) to F(d, r).

Let C̃(r, d) be the subset of all pairs (f, (0 ⊂ V ′x ⊂ V
′′
x ⊂ Vx)x∈Y0) in

C(r, d)×F(r, d) for which every flag is compatible with f . Obviously C̃(r, d)
is a vector bundle over F(r, d) and it is isomorphic to

⊕

i≥1

(V∗x2i ⊗Rxi ⊕Q
∗
xi ⊗ Vx2i+1).(4)

Moreover, its rank equals
∑
i≥2 d(xi)r(αi).

The natural projection q from C̃(d, r) onto C(d, r) is invertible over
C(d, r), so it is a birational isomorphism. Due to normality of C(d, r), it
follows from the Kempf theorem that the structure sheaf OC(d,r) is iso-

morphic to the direct image q∗OC̃(d,r), and in particular we have K[X] =

H0(C̃(d, r),OC̃(d,r)). Let q be the projection of C̃(d, r) onto F(r, d). It is an

affine morphism, so the global sections of OC̃(d,r) and of q∗OC̃(d,r) are the

same and as a consequence we have

(5) K[C(d, r)] = H0
(
F(r, d),

⊗

i≥1

Sym(Vx2i ⊗R
∗
xi)⊗ Sym(Qxi ⊗ V

∗
x2i+1)

)
.

Now the result on the structure of the coordinate ring K[C(d, r)] follows
from the Cauchy formula for symmetric powers of the tensor product and
the Bott theorem.

As a corollary of Proposition 1 we obtain the following description of
irreducible components of the representation variety R(d).

Proposition 2. The varieties C(d, r), with r maximal with respect to
majorizing order, are the irreducible components of R(d). In particular,
R(d) is irreducible if and only if for every vertex xi ∈ Y0 one of the following
conditions holds: (a) d(xi) ≥ d(x2i) + d(x2i+1) or (b) at least one of the
dimensions d(x2i) or d(x2i+1) is zero.

Proof. The first statement is clear since the varieties C(d, r) are irre-
ducible and C(d, r′) ⊂ C(d, r) for r′ ≤ r. Now assume that, for some xi ∈ Y0,
we have d(xi) < d(x2i) + d(x2i+1), d(x2i) > 0 and d(x2i+1) > 0. Let r be
a maximal admissible rank vector for d. Then r(α2i) + r(α2i+1) = d(xi),
and therefore either d(x2i) > r(α2i) or d(x2i+1) > r(α2i+1). In any case we
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can obtain another maximal rank vector by increasing by 1 one of the ranks
r(α2i) or r(α2i+1) and decreasing the other one by 1.

2. Semi-invariants of C(d, r). Let d be a dimension vector for Y and
let r be an admissible rank vector for d. The group G(d) acts on C(d, r)
and hence on regular functions on this variety. Let S(d, r) be the ring of
semi-invariants of this action. Our goal is to prove that S(d, r) is a poly-
nomial ring. To state the result more precisely let us recall the description
of the semi-invariants for quivers of type An. Let Q be a quiver of type
An with vertices 0, 1, . . . , n and arrows αi,i+1 joining i and i + 1 (we make
no assumption on the directions of the arrows). Let d be a dimension vec-
tor for Q and let r be an admissible rank vector for d. Then the ring of
semi-invariants of representations of Q in dimension d with ranks bounded
by r is a polynomial ring with generators which can be described as follows.
Let δ be an unoriented path in Q. We divide δ into maximal compatibly

oriented subpaths: δ = (δ1, , . . . , δk), where each δj joins ij−1 and ij . We call
δ an elementary path with respect to dimension d and rank r if the following
conditions are satisfied:

k∑

j=0

(−1)jd(ij) = 0;(6)

k′∑

j=0

(−1)k
′−jd(ij) > 0(7)

for every k′ < k;

d(s)−

k′∑

j=0

(−1)k
′−jd(ij) > 0(8)

for every intermediate vertex s on the path δk′+1; and

r(α) ≥

k′∑

j=0

(−1)k
′−jd(ij)(9)

for every arrow α in the path δk′+1.
Let δ = (δ1, . . . , δk) be an elementary path and let f be a representation

of Q. Define δi(f), i = 1, . . . , k, to be the composition of the maps f(α)
for all the arrows α along the path δi. The maps δi(f) define the map
δ(f) = δ1⊕ . . .⊕ δk from Vi0 ⊕Vi2 ⊕ . . . to Vi1 ⊕Vi3 ⊕ . . . (or in the opposite
direction). Then the determinant of δ(f) is a semi-invariant. We denote it
by det(δ).
Let us remark that to define det(δ) the condition (6) is only needed. But

if (9) does not hold for some arrow α then det(δ) vanishes on representations
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of rank r′ ≤ r. On the other hand if (8) is not satisfied by an intermediate
vertex s, then s divides δ into two subpaths δ′ and δ′′ and det(δ) = det(δ′) ·
det(δ′′).

An elementary path in Y is an elementary path in any subquiver of Y
of type An without relations.

Theorem 1. Let d be a dimension vector for the quiver Y and let r be an
admissible rank vector for d. The ring S(d, r) of semi-invariants is a poly-
nomial ring in the algebraically independent determinantal semi-invariants

det(δ), where δ runs over all paths in Y which are elementary with respect
to dimension d and rank r.

Proof. In order to find the semi-invariants, we reformulate the descrip-
tion of the coordinate ring of C(d, r) given in Proposition 1. We can exchange
the order of ⊗ and ⊕ in the formula (2) of the proposition in the following
way. Denote by Λ the set of all sequences λ = (λ(α))α∈Y1 where every λ(α) is
a partition of length not greater than r(α). Then, as a G(d)-representation,
the coordinate ring of C(d, r) is isomorphic to

⊕

λ∈Λ

⊗

i≥1

Sλ(α2i)Vx2i ⊗ S(λ(α2i+1)|λ(α2i)∗)Vxi ⊗ Sλ(α2i+1)V
∗
x2i+1 .(10)

If λ = (λ(α)) is an element of Λ, then for every arrow αi we can treat λ(αi)
as a dominant weight of GL(Vxi). In this way, Λ is a semigroup contained
in the group of dominant weights of G(d).

Now we fix λ and assume that the tensor product in (10) contains a
semi-invariant. In this product, the space Vx1 appears only once as a Schur
module S(λ(α3)|λ(α2)∗)Vx1 . It follows immediately that at most one of the
partitions λ(α2) or λ(α3) can be nonzero and if λ(αi), where i is 2 or 3, is
nonzero then r(αi) = d(x1) and

λ(αi) = (a, . . . , a)︸ ︷︷ ︸
r(αi) times

for some positive integer a. For any other vertex x, the tensor product in
(10) contains exactly two Schur modules of Vx. Recall that if V is a vector
space of dimension t, then the tensor product S(µ1,...,µt)(V ) ⊗ S(ν1,...,νt)(V )
contains a semi-invariant of GL(V ) if and only if

µ1 + νt = µ2 + νt−1 = . . . = µt + ν1(11)

and, if this is the case, it contains a one-dimensional space of semi-invariants
of weight µ1 + νt. Fix a vertex x = xi ∈ Y0, i > 1, and let t = dimVxi ,
r1 = r(α2i), r2 = r(α2i+1), ν = λ(αi), κ = λ(α2i), µ = λ(α2i+1). Then
the condition (11) for the existence of a semi-invariant reads as follows. If
t > r1 + r2, then
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µ1 − µ2 = νt−1 − νt, µ1 − µ2 = ν1 − ν2,
...

...

µr2−1 − µr2 = νt−r2+1 − νt−r2+2, µr2−1 − µr2 = νr2−1 − νr2 ,

µr2 = νt−r2 − νt−r2+1, µr2 = νr2 − νr2+1,

0 = νt−r2−1 − νt−r2, 0 = νr2+1 − νr2+2,
... or

...

0 = νr1+1 − νr1+2, 0 = νt−r1−1 − νt−r1,

κr1 = νr1 − νr1+1, κr1 = νt−r1 − νt−r1+1,

κr1−1 − κr1 = νr1−1 − νr1 , κr1−1 − κr1 = νt−r1+1 − νt−r1+2,
...

...

κ1 − κ2 = ν1 − ν2, κ1 − κ2 = νt−1 − νt,

(12)

depending on the direction of αx (or equivalently on the parity of i): the left

system corresponds to the case of
ց ր
·
↓
while the right system corresponds

to the case of
ց ր
·
↑
.

Similarly, for t = r1 + r2 we have

µ1 − µ2 = νt−1 − νt, µ1 − µ2 = ν1 − ν2,
...

...

µr2−1 − µr2 = νr1+1 − νr1+2, µr2−1 − µr2 = νr2−1 − νr2 ,

µr2 + κr1 = νr1 − νr1+1, or µr2 + κr1 = νr2 − νr2+1,

κr1−1 − κr1 = νr1−1 − νr1 , κr1−1 − κr1 = νr2+1 − νr2+2,
...

...

κ1 − κ2 = ν1 − ν2, κ1 − κ2 = νt−1 − νt.

(13)

In this way, the characters of semi-invariants are in one-to-one correspon-
dence with the sequences λ = (λ(α))α∈Y1 ∈ Λ satisfying for every arrow α
an appropriate system of equations of type (12) or (13). Denote by Λ0 the
set of all such λ’s.

We want to treat (12) and (13) as equations for κ and µ. If for given ν
a system of equations of the form (12) has a solution then the solution is
unique. On the contrary, a system of type (13) always has a + 1 solutions,
where a = νr1−νr1+1 for the left system and a = νr2−νr2+1 for the right one.
Every such solution is uniquely determined by possible choices of µr2 and
κr1 , and if there are nonzero solutions, then they are linear combinations of
two basic solutions obtained for µr2 = 0 and κr1 = 0, respectively.
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In any case, if ν = ν ′ + ν ′′ is a componentwise sum of two (possibly
empty) partitions, then the system has a solution for ν if and only if the
corresponding systems for ν ′ and ν ′′ have solutions, and every solution for
ν is a sum of solutions for ν ′ and ν ′′. So we can restrict our discussion to
the case when ν = (1, . . . , 1, 0, . . . , 0) is a fundamental weight and denote by
̺ the number of 1’s in it. Then it is easy to see that the empty partitions
κ = (0, . . . , 0) and µ = (0, . . . , 0) are solutions if and only if ̺ = t, and if a
nonzero solution exists, then one of the partitions κ or µ is empty, while the
other one is a fundamental weight. In the last case, the nonempty partition
has either ̺ ones (when the arrows corresponding to ν and the nonempty
partition are compatibly oriented) or t− ̺ ones (for the arrows oriented in
a noncompatible way).

Now let λ be an indecomposable element of the semigroup Λ0. Denote
by i′1 the smallest i such that λ(αi) is nonempty. The arrow αi′1 joins the
vertex xi′1 to its parent xi0 , and applying to xi0 the same arguments used
above for x1, we see that λ(αi′1) = (1

̺) (sequence of ̺ ones), where ̺ =
r(αi′1) = d(xi0). We will analyze λ upwards using the fact that in each step
a system of equations of the type (12) or (13) must be satisfied. In particular,
it follows that the partition associated to at most one arrow joining a given
vertex to its children can be nonempty, and the nonempty one is still a
fundamental weight. In this way all arrows α such that λ(α) is nonempty
form an unoriented path δ starting at xi0 . Let xik be the ending point of δ
and let ii < . . . < ik−1 be the indices of those vertices along δ at which the
arrows forming δ are noncompatibly oriented. As long as we move along a
compatible segment of the path, the partition λ(α) remains constant while
at every noncompatibility point the number of 1’s changes, and on successive
segments it is equal to

d(xi0), d(xi1)− d(xi0), d(xi2)− d(xi1) + d(xi0), . . . ;

in particular the inequality (9) is satisfied for every k′ = 0, 1, . . . , k − 1 and
every arrow α in the path δk′+1. The system for the end point xik has a zero
solution so we have

d(xik) = d(xik−1)− d(xik−2) + . . .± d(xi0).

It follows from the indecomposability of λ that an inequality of the form
(8) holds for every intermediate vertex xs of δ, which proves that δ is an
elementary path.

It remains to prove that the generators det(δ) are algebraically inde-
pendent or, equivalently, that the semigroup Λ0 is freely generated by the
sequences of partitions corresponding to the semi-invariants det(δ).

Let δ = (δ1, . . . , δk) be an elementary path joining xi0 and xik and let xi1 ,
xi2 , . . . , xik−1 be the vertices at which the arrows of δ are noncompatible.
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Denote by λδ the sequence of partitions corresponding to det(δ). Recall that
λδ(α) is empty for every arrow α not in δ and λδ(α) = (1

̺j ) for every arrow
α from the segment δj of δ joining xij−1 and xij , where

̺j = d(xij−1)− d(xij−2) + . . .± d(xi0).(14)

Let
∑
δ nδλδ = λ =

∑
δ n
′
δλδ be a relation among λδ. We can assume

that the relation is minimal in the sense that if nδ > 0 then n
′
δ = 0 and

vice versa. Let i′0 be the smallest index i for which λ(αi) is nonempty. Then
there exist two different paths δ and δ′, both starting with αi′0 , and such that
nδ > 0 and n

′
δ′ > 0. Let xi0 be the starting point of δ and δ

′, and let xs be a
common vertex of both paths with highest index. We may choose δ and δ′

in such a way that s is maximal possible. It follows from the local structure
of the quiver Y that xs is a compatibility point for exactly one of the paths
δ or δ′. Assume that xs is a compatibility vertex in δ. Let xi1 , . . . , xij be all
the noncompatibility vertices of δ (and of δ′) lying between xi0 and xs. Let
α be the last common arrow of δ and δ′ and let α′ be the first arrow of δ′

which does not belong to δ. Then λδ(α) = λδ′(α) = (1
̺j ), where ̺j is given

by (14), while λδ′(α
′) = (1d(xs)−̺j ). Therefore, there exists an elementary

path δ′′ containing α′ such that nδ′′ > 0 and λδ′′ = (1
d(xs)−̺j ). The starting

point xs′ of δ
′′ lies somewhere on the common beginning of δ and δ′. If xs′

lies on the segment joining xij′−1 and xij′ and is different from xij′−1 , then

applying the formula (14) to the path δ′′ we obtain

d(xs)− ̺j = d(xs)− d(xij) + d(xij−1)− . . .± d(xij′ )∓ d(xs′).

Since ̺j is given by (14), we obtain

d(xi0)− d(xi1) + . . .± d(xij′−1)∓ d(xs) = 0,

which contradicts the fact that δ is elementary. The only possibility left is
s′ = i0. But then the paths δ

′′ and δ′ have a longer common initial subpath
than that of δ and δ′, which contradicts the choice of the latter.

Remark. For a quiver without relations, Schofield [10] defined a family
of semi-invariants cV . One can easily interpret the semi-invariants det(δ) as
restrictions of some special semi-invariants of Schofield.

Let d be a dimension vector for Y . Denote by Y ′ a quiver without re-
lations whose set of vertices is equal to supp(d). The set of arrows in Y ′

consists of all arrows in Y joining points in supp(d). In general the quiver
Y ′ is wild. The variety of representations of Y in dimension d and rank r is
a closed subset of the variety of representations of Y ′. Let δ = (δ1, . . . , δk)
be a path in Y elementary with respect to d and r. Assume for simplicity
that δj goes from xij−1 to xij for j odd and from xij+1 to xij for j even.
Let V be a string module corresponding to the path δ. It is an indecompos-
able representation of the quiver Y ′ obtained in the following way. We put
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one-dimensional spaces at all the vertices along the path δ and identity on
all arrows in δ, and put zero spaces at all other vertices and zero maps on
all other arrows. Then det(δ) is a restriction of cV .
In fact, the module V has a projective resolution of the form

0 → P ′ → P → V → 0,

where P = P0 ⊕ P2 ⊕ . . . , P
′ = P1 ⊕ P3 ⊕ . . . , and Pj is a projective

cover of a simple module with support in xij . Then for a representation W

of Y in dimension d, the value of cV at W equals the determinant of the
induced map from Hom(P,W ) to Hom(P ′,W ) and therefore det(δ) and cV

are proportional.

3. Tilted algebras for An with any orientation. The rings of semi-
invariants for algebras obtained by tilts of nonequioriented An quivers are
no more polynomial rings. We present two examples.

Example 1. Let X be a quiver with vertices X0 = {1, 2, 3, 4, 5}, arrows
X1 = {α1, α2, α3, α4}, and relations α3α1 = α4α2 = 0, as in the picture
below.

���1 ���4@@@�1 R ^ ����3����3����2 � _ @@@�4R���2 ���5
The path algebra of X can be realized as a tilted algebra for a suitably
oriented A5 quiver (see [1]). Let d be a dimension vector for X of the form
d = (n, n, 2n, n, n). The variety R(X, d) of representations of X in dimen-
sion d is a product of two complex varieties and hence it is irreducible. It
follows from the collapsing technique that the coordinate ring of R(X, d) is
isomorphic, as a G(d)-module, to
⊕
Sλ(V1)⊗ S(µ|λ∗)(V3)⊗ Sµ(V

∗
4 )⊗ Sν(V2)⊗ S(ξ|ν∗)(V3)⊗ Sξ(V

∗
5 ),

where the summation runs over all partitions λ, µ, ν, ξ with no more than
n parts. If there exists a semi-invariant in such a summand then each of the
partitions λ, µ, ν, ξ must consist of n equal parts. Assume that λ = (ln),
µ = (mn), ν = (pn), ξ = (kn). Then the corresponding summand contains
a semi-invariant if and only if m + l = k + p, and then it contains a one-
dimensional space of semi-invariants. The ring of semi-invariants S(X, d) =
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∑
s S(X, d)s is graded by the total degree with respect to matrix elements of
linear maps corresponding to the arrows. It follows that the Hilbert function
P (t) =

∑
s dim(S(X, d)s)t

s is of the form P (t) =
∑
s(s+ 1)

2t2ns.
Moreover, looking at the finer grading of S(X, d) given by the charac-

ters of G(d), we can identify its generators. Let δ1, δ2, δ3, δ4 be the semi-
invariants which take the following values at a representation V ∈ R(X, d):

δ1(V ) = det(V (α1) + V (α2) : V (1)⊕ V (2)→ V (3)),

δ2(V ) = det(V (α3) + V (α4) : V (3)→ V (4)⊕ V (5)),

δ3(V ) = det(V (α4) ◦ V (α1) : V (1)→ V (5)),

δ4(V ) = det(V (α3) ◦ V (α2) : V (2)→ V (3)).

Now look at the linear map V (α4)◦V (α1)⊕V (α3)◦V (α2) : V (1)⊕V (2)→
V (4) ⊕ V (5). Its determinant is δ3(V )δ4(V ) but factoring the morphism
through V (3) one can see that the determinant is equal to δ1(V )δ2(V ) as
well. Hence the semi-invariants δi satisfy the relation δ1δ2 − δ3δ4 = 0. A
simple calculation shows that

P (t) =
1− t4n

(1− t2n)4
,

which coincides with the Hilbert function of an algebra generated by four
elements of degree 2n with one relation of degree 4n, and we conclude that
S(X, d) is the hypersurface K[δ1, δ2, δ3, δ4]/(δ1δ2 − δ3δ4).

Example 2. Let X ′ be the following quiver with zero relations:

���1 ���4@@@�1 R ^ ����3����3 ���7����2 � _ @@@�4R ^ ����6����2 ���6����5 � _ @@@�7R���5 ���8
Then the path algebra of X ′ is an iterated tilted algebra of type A5 (see
[2]).
Let d be a dimension vector forX ′ of the form d = (n, n, 2n, n, n, 2n, n, n)

and let r = (n, n, n, n, n, n, n). The variety R(X ′, d, r) of representations of
X ′ in dimension d with ranks bounded by r is a product of three varieties
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of complexes, and it is an irreducible component of the variety of all repre-
sentations in dimension d.

To calculate the ring S(X ′, d, r) of semi-invariants we adopt the same
method as in the previous example. First, by the collapsing method we
find that, as a G(d)-module, the ring S(X ′, d, r) is a direct sum of one-
dimensional spaces

(
∧nV1)a ⊗ (

∧nV2)c ⊗ (
∧2nV3)b−c ⊗ (

∧nV4)−b

⊗ (
∧nV5)f ⊗ (

∧2nV6)e−f ⊗ (
∧nV7)−e ⊗ (

∧nV8)−g

parameterized by the sequences (a, b, c, d, e, f, g) of natural numbers such
that {

a+ b = d+ c,

d+ e = f + g.

We can find generators of S(X ′, d, r) by identifying the semi-invariants cor-
responding to indecomposable solutions of the above system of equations.
They are as follows:

δ1(V ) = det(V1 ⊕ V2 → V3), δ5(V ) = det(V1 ⊕ V5 → V6),

δ2(V ) = det(V2 → V4), δ6(V ) = det(V1 → V8),

δ3(V ) = det(V5 → V7), δ7(V ) = det(V3 ⊕ V5 → V4 ⊕ V6),

δ4(V ) = det(V6 → V7 ⊕ V8), δ8(V ) = det(V3 → V4 ⊕ V8).

(15)

If we choose a grading in such a way that the matrix elements corre-
sponding to α4 have degree zero and all other matrix elements have degree
one, then the semi-invariants δ1, . . . , δ8 have degree 2n and the Hilbert func-
tion of S(X ′, d, r) equals

P ′(t) =
∑

c,d,e

(d+ c+ 1)(d+ e+ 1)t2n(c+d+e).(16)

It is easy to see that the δi’s satisfy the following relations:

δ4δ5 − δ3δ6 = 0, δ1δ7 − δ2δ5 = 0, δ2δ6 − δ1δ8 = 0,
(17)

δ5δ8 − δ6δ7 = 0, δ4δ7 − δ3δ8 = 0.

Let δ1, . . . , δ8 be independent variables of degree 2n and define S =
K[δ1, . . . , δ8]. Denote by ̺1, . . . , ̺5 the expressions in δi corresponding to
the left-hand sides of equations (17). We claim that the algebra S(X ′, d, r)
is generated by the δi’s with relations (17), i.e. it is isomorphic to S =
S/(̺1, . . . , ̺5)S.
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To see this we interpret ̺1, . . . , ̺5 as 4×4 Pfaffians of the antisymmetric
matrix

A =




0 −δ8 −δ7 −δ2 0

δ8 0 0 −δ4 −δ6

δ7 0 0 −δ3 −δ5

δ2 δ4 δ3 0 −δ1

0 δ6 δ5 δ1 0



.

Then the complex

0 −→ S
̺t
−→ S

5 A
−→ S

5 ̺
−→ S −→ 0,(18)

where ̺ = [̺1, . . . , ̺5], is a minimal free resolution of S over S. Since the
differentials in (18) are homogeneous of degree 4n, 2n and 4n respectively,
we can calculate the Hilbert function PS(t) of S to be

PS(t) =
1− 5t4n + 5t6n − t10n

(1− t2n)8
=
1 + 3t2n + t4n

(1− t2n)5
.

By an elementary calculation, we see that the Hilbert functions P ′(t) and
PS(t) coincide, which proves our claim.

In particular, it follows that the algebra of semi-invariants S(X ′, d, r)
is not a complete intersection. This means that the theorem of Skowroński
and Weyman [12] on the rings of semi-invariants for tame quivers without
relations is no longer valid for quivers with relations.
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