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n-FUNCTIONALITY OF GRAPHS

BY

KONRAD PIÓRO (Warszawa)

Abstract. We first characterize in a simple combinatorial way all finite graphs whose
edges can be directed to form an n-functional digraph, for a fixed positive integer n. Next,
we prove that the possibility of directing the edges of an infinite graph to form an n-
functional digraph depends on its finite subgraphs only. These results generalize Ore’s
result for functional digraphs.

It is a classical result due to O. Ore (see e.g. [1], Chapter 3, Theorem 17)
that all edges of an (undirected) graph can be directed to form a functional
digraph iff each of its connected components contains at most one undirected
cycle (a single loop is also a cycle here). In the present paper we generalize
this result to digraphs which can be decomposed into n functional digraphs,
where n is a given positive integer. We start with a simple combinatorial
characterization of finite graphs that can be directed to have such a form.
Next, we show that all the edges of an infinite graph can be directed in such
a way iff each of its finite subgraphs can be turned into such a digraph. Note
that we admit loops and multiple edges in the definition of a graph (such
graphs are often called “multigraphs with loops”).

If at most n edges start from each vertex of a digraph, then the digraph
can be clearly decomposed into n edge-disjoint functional digraphs, and
conversely. Therefore we introduce

Definition 1. (a) A digraph D is said to be n-functional , where n is a
positive integer, if for each vertex v, its outdegree d(v) is not greater than
n, where d(v) is the number of edges starting from v.

(b) An n-functional digraph D is total if d(v) = n for each vertex v.

The concept of n-functional digraph is quite natural. For example, such
digraphs are obtained from unary partial algebras. Moreover, for any positive
integer n, there are many graphs whose edges cannot be directed to form an
n-functional digraph, e.g. each graph containing a vertex with at least n+1
loops. Therefore it is interesting to know when the edges of a graph can
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be directed to form an n-functional digraph. In the next paper [2] we will
show, in particular, that any finite total n-functional digraph D is uniquely
determined (up to the orientation of some cycles) in the class of all n-
functional digraphs by its undirected graph.
The first aim of this paper is to prove the following result (for n = 1 this

is an easy consequence of Ore’s theorem).

Theorem 2. All the edges of a finite graph G can be directed to form
an n-functional digraph, for some positive integer n, iff for any subgraph H,

(∗) me ≤ nmv,

where mv and me are the numbers of vertices and edges of H, respectively.

Proof. ⇒ follows from the fact (see e.g. [3]) that for any finite digraphD,

(Eq) me =

mv
∑

i=1

d(vi),

where v1, . . . , vmv are all its vertices, and me is the number of its edges.

⇐. We induct on the number of regular edges of G (an edge is regular if
its endpoints are distinct). If G contains only loops, then G can be regarded
as a digraph. Obviously (∗) implies that there are at most n loops at each
vertex.
Assume that G has at least one regular edge f , and let u1, u2 be the

endpoints of f . The graph obtained from G by omitting f also satisfies (∗).
Thus, by the induction hypothesis, all edges different from f can be directed
to form an n-functional digraph D′.
If the outdegree of u1 (resp. u2) in D

′ is less than n, then we direct f
from u1 to u2 (resp. from u2 to u1). The digraph so obtained is n-functional,
so we can assume

(A) d(u1) = d(u2) = n.

It is sufficient to show that the orientation of some edges of D′ can be
inverted in such a way that the new digraph is still n-functional, but one of
these two outdegrees is less than n.
Take all (directed) chains in D′ starting from u1 or u2. Next, let V =

{v1, . . . , vm} and E = {e1, . . . , el} be the sets of vertices and of edges, re-
spectively, of all these chains.
By (A), u1, u2 ∈ V . Thus V and E ∪ {f} form a subgraph of G. Hence,

l + 1 ≤ nm,

since G satisfies (∗) and f does not belong to D′.
Now take the subdigraph K of D′ consisting of V and E. Then

dK(v1) + . . .+ d
K(vm) = l ≤ nm− 1,

where dK(vi) is the outdegree of vi in the digraph K.
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Since K is n-functional, this fact and (A) yield

(1) dK(w) ≤ n− 1 for some w ∈ V \ {u1, u2}.

Now we show

(2) dD
′

(v) = dK(v) for any v ∈ V.

Take an edge e starting from v. If v ∈ {u1, u2}, then the one-edge chain (e)
starts from u1 or u2. Thus e belongs to K. If v 6∈ {u1, u2}, then there is a
chain going from {u1, u2} to v. This chain together with e forms a new chain
starting from u1 or u2. Obviously the new chain, and thus in particular e,
belongs to K.
The above two facts (1) and (2) give

(3) dD
′

(w) ≤ n− 1 for some w ∈ V \ {u1, u2}.

Since w is neither u1 nor u2, there is a chain p going from {u1, u2} to w. We
can assume that this chain contains pairwise different vertices (in particular,
pairwise different regular edges, too). Next, we can assume that p starts from
u1, since the second case is analogous.
Let D′′ be the digraph obtained from D′ by inverting the orientation of

p (i.e. of all its edges). Then by (3), D′′ is also n-functional. Further,

dD
′′

(u1) = d
D′(u1)− 1 = n− 1.

Thus we can add to D′′ the edge f so that u1 becomes its initial vertex and
u2 becomes its final vertex. This completes the proof of the induction step,
and consequently, the proof of the second implication.

With this result and the equation (Eq) we obtain the following charac-
terization of total n-functional digraphs.

Corollary 3. Let a finite graph G have mV vertices and mE edges.
Then all the edges of G can be directed to form a total n-functional digraph iff

mE = nmV,

and each subgraph of G satisfies (∗) of Theorem 2.

Note also that (∗) in Theorem 2 can be replaced by a weaker condition.

Corollary 4. All the edges of a finite graph G can be directed to form
an n-functional digraph iff for any subset W = {v1, . . . , vm} of vertices, the
number of edges with endpoints in W is not greater than nm.

Proof. The implication ⇒ follows from the equation (Eq). To prove the
converse implication it is sufficient to observe that for any subgraph H, the
number of edges of H is not greater than the number of edges of G with
endpoints in H.

Obviously the second condition in Corollary 3 can also be replaced by
the right hand side of the equivalence in Corollary 4.
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We illustrate our results by the following example. Take a positive integer
n and a simple and complete graphG (i.e.G has no loops and there is exactly
one edge between any two different vertices) with k vertices, where k is not
less than 2n + 2. Then the number l of edges of G is k(k − 1)/2. Hence,
l ≥ k(2n+ 1)/2 > 2nk/2 = nk. Thus by Theorem 2, the edges of G cannot
be directed to form an n-functional digraph.

Now take a simple complete graph G with exactly 2n+2 vertices. Then
the edges of G cannot be directed to form an n-functional digraph, but the
edges of each of its proper subgraphs can. Indeed, take a subgraph H with
at most 2n+1 vertices. Let k and l be the numbers of vertices and edges of
H, respectively. Then l ≤ k(k − 1)/2, because H is a simple graph. Hence,
l ≤ k(2n+ 1− 1)/2 = nk. Analogously, any subgraph K of H also satisfies
such an inequality. Thus by Theorem 2, the edges of H can be directed to
form an n-functional digraph.

Now, in the case of infinite graphs this difference between the graph and
its subgraphs disappears.

Theorem 5. Let G be an infinite graph, and n a positive integer. Then
the following conditions are equivalent :

(a) The edges of G can be directed to form an n-functional digraph.

(b) For any finite subgraph of G, its edges can be directed to form a finite
n-functional digraph.

(c) For any finite set W of vertices, all the edges with endpoints in W
can be directed to form a finite n-functional digraph.

Acknowledgements. I would like to thank the referee for the sugges-
tion to use the concept of ultraproduct to simplify the proof of the implica-
tion (c)⇒(a). The original proof required transfinite induction, and therefore
was longer.

Proof. The implications (a)⇒(b) and (b)⇒(c) are obvious.

(c)⇒(a). Let I be the family of all finite non-empty subsets of the vertex
set of G. For I ∈ I, let FI = {J ∈ I : I ⊆ J}. Then the family {FI : I ∈ I}
has the finite intersection property and therefore can be extended to an
ultrafilter U on P(I).

For each I ∈ I, let GI be the subgraph of G spanned on I. Since GI is
finite, all edges of GI can be directed to form an n-functional digraph DI . It
is easy to see that DI can be regarded as a finite partial unary algebra with
n functions. Next, since DI is non-empty, it can be extended to a (total)
unary algebra AI with n (total) functions f

I
1 , . . . , f

I
n. Conversely, with any

partial (total) unary algebra with n functions we can associate, in a natural
way, a (total) n-functional digraph.
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Given the family {AI = 〈I, f
I
1 , . . . , f

I
n〉 : I ∈ I} of unary algebras of the

same type (f1, . . . , fn), we take the product A =
∏

I∈I AI , and next the
ultraproduct A/U . Obviously A, and consequently A/U , is a unary algebra
with n functions. Thus to complete the proof of the implication (c)⇒(a), it
is sufficient to show that G can be embedded in A/U .

Recall that the canonical embedding ϕ = (ϕI)I∈I of the vertex set of G
into the universe

(
∏

I∈I I
)/

U of A/U is the composition π ◦ ϕ, where π is
the natural homomorphism from A onto A/U , and ϕ = (ϕ)I∈I is defined by

ϕI(v) =

{

v if v ∈ I,

xI otherwise,

where for each I ∈ I, xI is an arbitrary fixed vertex in I.

Let v and w be vertices of G. Let e1, . . . , ek be all the (undirected) edges
of G between v and w (finitely many by (c)). Note that

U(v, w) = {I ∈ I : v, w ∈ I} ∈ U .

For each I ∈ U(v, w), e1, . . . , ek are also edges of GI between v and w. Hence,
DI , and thus also AI , contains their directed versions. More precisely, there
are two subsets F Ivw, F

I
wv (not necessarily disjoint) of {f1, . . . , fn} such that

|F Ivw|+ |F
I
wv| = k and f

I(v) = w, gI(w) = v for any f ∈ F Ivw, g ∈ F
I
wv.

In particular, to any I ∈ U(v, w) we assign a pair 〈F Ivw, F
I
wv〉 of subsets

of {f1, . . . , fn}. There are only finitely many such pairs. Thus this assign-
ment divides U(v, w) into pairwise disjoint subfamilies U1, . . . , Ul (one such
subfamily contains all the elements of U(v, w) with the same pair of sets).
Since U1 ∪ . . . ∪ Ul = U(v, w) ∈ U , for some 1 ≤ i ≤ l we have

U = Ui ∈ U .

Let 〈Fvw, Fwv〉 be the pair of sets corresponding to U . Then for f ∈ Fvw
and g ∈ Fwv,

U ⊆ {I ∈ I : v, w ∈ I and f I(v) = w}

and

U ⊆ {I ∈ I : v, w ∈ I and gI(w) = v}.

Thus these sets belong to U . Hence, for each f ∈ Fvw and g ∈ Fwv,

fA(ϕ(v)) ≡U ϕ(w) and g
A(ϕ(w)) ≡U ϕ(v).

Summarizing, since v and w were arbitrarily chosen vertices of G, we embed
G into the unary algebra A/U with n functions, or equivalently, in the
n-functional digraph. Now, transporting the orientation of edges from A/U ,
we get some orientation of edges of G, forming an n-functional digraph.
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Using Theorems 2 and 5, and also Corollary 4, we immediately get

Corollary 6. Let G be an infinite graph, and n a positive integer. Then
the following conditions are equivalent :

(a) The edges of G can be directed to form an n-functional digraph.

(b) For any finite subgraph H, me ≤ nmv, where mv and me are the
numbers of vertices and edges of H, respectively.

(c) For any finite set W of vertices, there are at most n|W | edges with
endpoints in W .

Finally, we construct a graph G whose edges cannot be directed to form
an ℵ0-functional digraph (analogously to Definition 1, a digraph is said to be
ℵ0-functional if for each vertex v, the cardinality of the set of edges starting
from v is not greater than ℵ0). However, each subgraph with vertex set of
cardinality less than the cardinality of G can be directed to form such a
digraph. This shows that the assumption of the finiteness of n is essential
in Theorem 5.

Take a set X of cardinality ℵ2, and a simple complete graph G with X
as vertex set.

Take any subgraph H of G such that the cardinality of the vertex set of
H is less than ℵ2. Then all the vertices of H can be arranged in an injective
sequence (vα)α<ξ of order type ξ, where ξ = ℵ0 or ξ = ℵ1. For any edge e,
we take its endpoint with greater index to be the initial vertex of e, and,
of course, the other to be the final vertex of e. Observe that the resulting
digraph is ℵ0-functional.

Now we show that the edges of G cannot be directed to form an ℵ0-
functional digraph. Assume otherwise, and let D be such an ℵ0-functional
digraph.

Take a subset Y0 ofX with cardinality ℵ1. Define Ym+1 = Ym∪Y m, where
Y m is the set of target vertices of the edges in D that have the source in Ym.
Clearly |Ym| = ℵ1 for all m and consequently for the set Y = Y1 ∪ Y2 ∪ . . .
we have |Y | = ℵ1. Now, for any vertex u in the obviously non-empty set
X \ Y , we know that the edge connecting u with an arbitrary vertex v in
Y has to start at u, as otherwise the definition of Y would give u ∈ Y , a
contradiction. Consequently dD(u) ≥ |Y | = ℵ1.
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