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THE NORM OF THE POLYNOMIAL TRUNCATION OPERATOR

ON THE UNIT DISK AND ON [−1, 1]
BY

TAMÁS ERDÉLYI (College Station, TX)

Abstract. Let D and ∂D denote the open unit disk and the unit circle of the complex
plane, respectively. We denote by Pn (resp. Pcn) the set of all polynomials of degree at
most n with real (resp. complex) coefficients. We define the truncation operators Sn for
polynomials Pn ∈ Pcn of the form Pn(z) :=

∑n
j=0 ajz

j , aj ∈ C, by

Sn(Pn)(z) :=

n∑

j=0

ãjz
j , ãj :=

aj
|aj |
min{|aj |, 1}

(here 0/0 is interpreted as 1). We define the norms of the truncation operators by

‖Sn‖real∞,∂D := sup
Pn∈Pn

maxz∈∂D |Sn(Pn)(z)|
maxz∈∂D |Pn(z)|

,

‖Sn‖comp∞,∂D := sup
Pn∈Pcn

maxz∈∂D |Sn(Pn)(z)|
maxz∈∂D |Pn(z)|

.

Our main theorem establishes the right order of magnitude of the above norms: there is
an absolute constant c1 > 0 such that

c1
√
2n+ 1 ≤ ‖Sn‖real∞,∂D ≤ ‖Sn‖comp∞,∂D ≤

√
2n+ 1.

This settles a question asked by S. Kwapień. Moreover, an analogous result in Lp(∂D) for
p ∈ [2,∞] is established and the case when the unit circle ∂D is replaced by the interval
[−1, 1] is studied.

1. New result. Let D and ∂D denote the open unit disk and the unit
circle of the complex plane, respectively. We denote by Pn (resp. Pcn) the set
of all polynomials of degree at most n with real (resp. complex) coefficients.
We define the truncation operators Sn for polynomials Pn ∈ Pcn of the form

Pn(z) :=
n∑

j=0

ajz
j , aj ∈ C,
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by

(1.1) Sn(Pn)(z) :=
n∑

j=0

ãjz
j , ãj :=

aj
|aj |
min{|aj |, 1}

(here 0/0 is interpreted as 1). In other words, we leave a coefficient aj
unchanged if |aj | < 1, while we replace it by aj/|aj | if |aj | ≥ 1. We define
the norms of the truncation operators by

‖Sn‖real∞,∂D := sup
Pn∈Pn

maxz∈∂D |Sn(Pn)(z)|
maxz∈∂D |Pn(z)|

,

‖Sn‖comp∞,∂D := sup
Pn∈Pcn

maxz∈∂D |Sn(Pn)(z)|
maxz∈∂D |Pn(z)|

.

Our main theorem establishes the right order of magnitude of the above
norms. This settles a question asked by S. Kwapień.

Theorem 1.1. There is an absolute constant c1 > 0 such that

c1
√
2n+ 1 ≤ ‖Sn‖real∞,∂D ≤ ‖Sn‖comp∞,∂D ≤

√
2n+ 1.

In fact, we are able to establish an Lp(∂D) analogue of this as follows.
For p ∈ (0,∞), let

‖Sn‖realp,∂D := sup
Pn∈Pn

‖Sn(Pn)‖Lp(∂D)
‖Pn‖Lp(∂D)

,

‖Sn‖compp,∂D := sup
Pn∈Pcn

‖Sn(Pn)‖Lp(∂D)
‖Pn‖Lp(∂D)

.

Theorem 1.2. There is an absolute constant c1 > 0 such that

c1(2n+ 1)
1/2−1/p ≤ ‖Sn‖realp,∂D ≤ ‖Sn‖compp,∂D ≤ (2n+ 1)1/2−1/p

for every p ∈ [2,∞).
Note that it remains open what is the right order of magnitude of

‖Sn‖realp,∂D and ‖Sn‖
comp
p,∂D when 0 < p < 2. In particular, it would be in-

teresting to see if ‖Sn‖compp,∂D ≤ c is possible for any 0 < p < 2 with an
absolute constant c. We record the following observation in this direction,
due to S. Kwapień.

Theorem 1.3. There is an absolute constant c > 0 such that

‖Sn‖real1,∂D ≥ c
√
logn.

If the unit circle ∂D is replaced by the interval [−1, 1], we get a com-
pletely different order of magnitude of the polynomial truncation projector.
In this case the norms of Sn are defined as before with [−1, 1] in place of
∂D.
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Theorem 1.4. We have

2n/2−4 ≤ ‖Sn‖real∞,[−1,1] ≤ ‖Sn‖
comp
∞,[−1,1] ≤

√
2n+ 1 · 8n/2.

2. Lemmas. To prove the lower bound of Theorem 1.1 we need two
lemmas. The first one is from [LSV].

Lemma 2.1 (Lovász, Spencer, Vesztergombi). Let aj,k, j = 1, . . . , n1,
k = 1, . . . , n2, be such that |aj,k| ≤ 1. Let also p1, . . . , pn2 ∈ [0, 1]. Then
there are choices

εk ∈ {−pk, 1− pk}, k = 1, . . . , n2,

such that for all j,
∣∣∣
n2∑

k=1

εkaj,k

∣∣∣ ≤ C√n1

with an absolute constant C.

Our second lemma is a direct consequence of the well known Bernstein
inequality (see Theorem 1.1 on p. 97 of [DL]) and the Mean Value Theorem.

Lemma 2.2. Suppose Qn is a polynomial of degree n (with complex co-
efficients) and

θn := exp

(
2π

14n

)
,

zj := exp(ijθn), |Qn(zj)| ≤M, j = 1, . . . , 3n.

Then

max
z∈∂D

|Qn(z)| ≤ 2M.

The inequalities below (see Theorem 2.6 on p. 102 of [DL]) will be needed
to prove the upper bound of Theorem 1.1.

Lemma 2.3 (Nikol’skĭı Inequality). Let 0 < q ≤ p ≤ ∞. If Pn is a
polynomial of degree at most n with complex coefficients then

‖Pn‖Lp(∂D) ≤
(
2nr + 1

2π

)1/q−1/p
‖Pn‖Lq(∂D),

where r = r(q) is the smallest integer not less than q/4.

The next lemma may be found in [Ri] or [Er].

Lemma 2.4 (Erdős). Suppose that z0 ∈ C and |z0| ≥ 1. Then
|Pn(z0)| ≤ |T2n(z0)|1/2 max

x∈[−1,1]
|Pn(x)|, Pn ∈ Pcn,

where T2n ∈ P2n defined by
T2n(x) := cos(2n arccosx), x ∈ [−1, 1],
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is the Chebyshev polynomial of degree 2n. As a consequence, writing

T2n(z) = 2
2n−1

n∏

j=1

(z2 − x2j ), xj ∈ (0, 1),

we have

max
z∈∂D

|Pn(z)| ≤ 8n/2 max
x∈[−1,1]

|Pn(x)|.

3. Proofs

Proof of Theorem 1.1. We apply Lemma 2.1 with n1 = 3n, n2 = n,

θn := exp(2π/(3n)), aj,k := exp(ijkθn),

and p1 = . . . = pn = 1/3; with the choices

εk ∈ {−1/3, 2/3}, k = 1, . . . , n,

coming from Lemma 2.1, we define

Qn(z) = 3

n∑

j=1

εkz
k.

Then Qn is a polynomial of degree n with each coefficient in {−1, 2}, and
with the notation

zj := exp(ijθn), j = 1, . . . , 3n,

we have
|Qn(zj)| ≤ 3C

√
3n, j = 1, . . . , 3n.

Hence Lemma 2.2 yields

(3.1) max
z∈∂D
|Qn(z)| ≤ 12C

√
n.

In particular, if we denote by m the number of indices k for which εk = 2/3,
then

|3m− n| = |2m− (n−m)| = |Qn(1)| ≤ 12C
√
n,

hence

(3.2) |Sn(Qn)(1)| = |m− (n−m)| = |2m− n| ≥ n/3− 8C
√
n.

Now (3.1) and (3.2) give the lower bound of the theorem.
To see the upper bound, observe that Lemma 2.3 implies

max
z∈∂D
|Sn(Pn)(z)| ≤

√
2n+ 1√
2π
‖Sn(Pn)‖L2(∂D) ≤

√
2n+ 1√
2π
‖Pn‖L2(∂D)

≤
√
2n+ 1 max

z∈∂D
|Pn(z)|

for all polynomials Pn of degree at most n with complex coefficients. This
proves the upper bound of the theorem.
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Proof of Theorem 1.2. Let p ∈ [2,∞). Using (3.2) and the Nikol’skĭı-type
inequality of Lemma 2.3, we obtain

(3.3) ‖Sn(Qn)‖Lp(∂D) ≥ c1n1−1/p

with an absolute constant c1 > 0. On the other hand, (3.1) implies

(3.4) ‖Qn‖Lp(∂D) ≤ c2n1/2

with an absolute constant c2 > 0, and the lower bound of the theorem
follows.
To see the upper bound, observe that Lemma 2.3 implies

‖Sn(Pn)‖Lp(∂D) ≤
(
2n+ 1

2π

)1/2−1/p
‖Sn(Pn)‖L2(∂D)

≤
(
2n+ 1

2π

)1/2−1/p
‖Pn‖L2(∂D)

≤ (2n+ 1)1/2−1/p‖Pn‖Lp(∂D)
for all polynomials Pn of degree at most n with complex coefficients. This
proves the upper bound of the theorem.

Proof of Theorem 1.3. Let n = 2m+2 − 2. Consider the polynomial

Pn(z) = 4z
2m+1−1

m∏

k=0

(
1 +
z2
k

+ z−2
k

2

)
.

Then, for z ∈ ∂D,

|Pn(z)| = 4
m∏

k=0

(
1 +
z2
k

+ z−2
k

2

)
,

and hence ‖Pn‖L1(∂D) = 4. Also,

Pn(z)− Sn(Pn)(z) = z2
m+1
−1
(
3 +

m∑

k=0

(z2
k

+ z−2
k

)
)
.

Let

Rn(z) := 3 +
m∑

k=0

(z2
k

+ z−2
k

).

Then

‖Sn(Pn)‖L1(∂D) ≥ ‖Sn(Pn)− Pn‖L1(∂D) − ‖Pn‖L1(∂D) = ‖Rn‖L1(∂D) − 4.
We will prove that ‖Rn‖L1(∂D) ≥ c

√
m for some absolute constant c > 0.

It is easy to see that if b, a0, a1, . . . , am are complex numbers and

F (z) = b+

m∑

k=0

ak(z
2k + z−2

k

),
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then

‖F‖L4(∂D) ≤
4
√
3
(
|b|2 +

m∑

k=0

|2ak|2
)1/2
.

Therefore

‖Rn‖L4(∂D) ≤
4
√
3
√
9 + 4(m+ 1).

Moreover,

‖Rn‖L2(∂D) =
√
9 + 2(m+ 1).

By Hölder’s inequality,

‖Rn‖2/3L4(∂D) ‖Rn‖
1/3
L1(∂D)

≥ ‖Rn‖L2(∂D).

Hence we obtain

(
4
√
3
√
9 + 4(m+ 1))2/3‖Rn‖1/3L1(∂D) ≥

√
9 + 2(m+ 1),

and thus ‖Rn‖L1(∂D) ≥ c
√
m. This gives

‖Sn(Pn)‖L1(∂D)
‖Pn‖L1(∂D)

≥ c′
√
m ≥ c′′

√
logn

with absolute constants c′ > 0 and c′′ > 0.

Proof of Theorem 1.4. First we prove the upper bound. Using Lemma
2.4 we obtain

max
x∈[−1,1]

|Sn(Pn)(x)| ≤ max
z∈∂D
|Sn(Pn)(z)|

≤
(
2n+ 1

2π

)1/2
‖Sn(Pn)‖L2(∂D)

≤
(
2n+ 1

2π

)1/2
‖Pn‖L2(∂D)

≤
(
2n+ 1

2π

)1/2
8n/2
√
2π max
x∈[−1,1]

|Pn(x)|,

which proves the upper bound of the theorem.

Now we turn to the lower bound. We define Qn ∈ P4n by

Qn(z) := z
2n(1− z2)n = z2n

n∑

j=0

(−1)j
(
n

j

)
z2j .

Then

(3.5) max
x∈[−1,1]

|Qn(x)| =
(
1

4

)n
.
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Also,

Sn(Qn)(z) = z
2n
n∑

j=0

(−1)jz2j ,

hence for every positive even n,

(3.6) |Sn(Qn)(1)| = 1.
Now we deduce the lower bound of the theorem by combining (3.5) and
(3.6).
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the questions settled here, and for several discussions about the topic. His
method based on the Salem–Zygmund Theorem gave the c(n/logn)1/2 lower
bound rather than the right cn1/2 one in Theorem 1.1. In addition, Theo-
rem 1.3 is due to Kwapień.
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