VOL. 90

2001

NO. 2

ON MINIMAL GENERIC SUBMANIFOLDS IMMERSED IN S^{2m+1}

BҮ

MASAHIRO KON (Hirosaki)

Abstract. We give a pinching theorem for a compact minimal generic submanifold with flat normal connection immersed in an odd-dimensional sphere with standard Sasakian structure.

1. Introduction. Let M be an (n+1)-dimensional submanifold of the unit sphere S^{2m+1} with standard Sasakian structure (ϕ, ξ, η, g) . We assume that M is tangent to the structure vector field ξ . If the normal space of M is mapped by ϕ into the tangent space of M at each point, that is, $\phi T_x(M)^{\perp} \subset$ $T_x(M)$ for any point x of M, then M is called a generic submanifold of S^{2m+1} . Any hypersurface of S^{2m+1} is a generic submanifold. We denote by K_{ts} the sectional curvature of M spanned by e_t and e_s orthogonal to the structure vector ξ . The sectional curvature of a generic submanifold Mspanned by ξ and e_t is always zero. So, we consider the sectional curvatures K_{ts} only.

In [1] we proved that a compact minimal hypersurface of S^{2m+1} with $K_{ts} + 3g(Pe_t, e_s)^2 \geq 1/n$ is congruent to $S^{2m-1}(r_1) \times S^1(r_2)$, where P is defined by $\phi X = PX + FX$, PX and FX being the tangential and normal parts of ϕX . The purpose of the present paper is to prove that if the normal connection of a compact minimal generic submanifold M is flat and if $K_{ts} + 3g(Pe_t, e_s)^2 \geq 1/n$, then M is a hypersurface and, consequently, it is congruent to $S^{2m-1}(r_1) \times S^1(r_2)$.

2. Preliminaries. Let S^{2m+1} be the (2m+1)-dimensional unit sphere and let (ϕ, ξ, η, g) be the standard Sasakian structure on S^{2m+1} . Then we have

$$\begin{split} \phi^2 X &= -X + \eta(X)\xi, \quad \phi\xi = 0, \quad \eta(\xi) = 1, \quad \eta(\phi X) = 0, \\ g(\phi X, \phi Y) &= g(X, Y) - \eta(X)\eta(Y), \quad \eta(X) = g(X, \xi), \\ \overline{\nabla}_X \xi &= \phi X, \quad (\overline{\nabla}_X \phi)Y = -g(X, Y)\xi + \eta(Y)X \end{split}$$

for any vector fields X and Y on S^{2m+1} , where $\overline{\nabla}$ denotes the operator of covariant differentiation with respect to the Levi-Civita connection.

2000 Mathematics Subject Classification: Primary 53B25, 53C25, 53C40.

M. KON

Let M be an (n+1)-dimensional submanifold of S^{2m+1} . Throughout this paper, we assume that the submanifold M is tangent to the structure vector field ξ of S^{2m+1} . We denote by the same g the Riemannian metric tensor field induced on M from that of S^{2m+1} . The operator of covariant differentiation with respect to the induced connection on M will be denoted by ∇ . Then the Gauss and Weingarten formulas are respectively given by

$$\overline{\nabla}_X Y = \nabla_X Y + B(X, Y)$$
 and $\overline{\nabla}_X V = -A_V X + D_X V$

for any vector fields X, Y tangent to M and any vector field V normal to M, where D denotes the operator of covariant differentiation with respect to the linear connection induced in the normal bundle $T(M)^{\perp}$ of M. Both Aand B are called the second fundamental forms of M, and are related by $g(B(X,Y),V) = g(A_VX,Y)$. For the second fundamental form A we define its covariant derivative $\nabla_X A$ by

$$(\nabla_X A)_V Y = \nabla_X (A_V Y) - A_{D_X V} Y - A_V \nabla_X Y.$$

If Tr $A_V = 0$ for any vector field V normal to M, then M is said to be minimal, where Tr denotes the trace of an operator. If the second fundamental form of M vanishes, then M is said to be totally geodesic.

For any vector field X tangent to M, we put

$$\phi X = PX + FX,$$

where PX is the tangential part of ϕX and FX the normal part of ϕX . Then P is an endomorphism of the tangent bundle T(M), and F is a normal bundle valued 1-form on the tangent bundle T(M). Let R be the Riemannian curvature tensor of M. Then the Gauss equation is given by

$$R(X,Y)Z = g(Y,Z)X - g(X,Z)Y + g(PY,Z)PX - g(PX,Z)PY + 2g(X,PY)PZ + A_{B(Y,Z)}X - A_{B(X,Z)}Y.$$

The Codazzi equation of M is given by

$$g((\nabla_X A)_V Y, Z) - g((\nabla_Y A)_V X, Z) = 0$$

for any vector fields X, Y tangent to M and any vector field V normal to M. We now define the curvature tensor R^{\perp} of the normal bundle of M by

$$R^{\perp}(X,Y) = D_X D_Y - D_Y D_X - D_{[X,Y]}.$$

Then we have the equation of Ricci

$$g(R^{\perp}(X,Y)U,V) = g([A_U,A_V]X,Y),$$

where $[A_U, A_V] = A_U A_V - A_V A_U$. If $R^{\perp} = 0$, the normal connection of M is said to be *flat*. The normal connection of M is flat if and only if $A_U A_V = A_V A_U$.

If $\phi T_x(M)^{\perp} \subset T_x(M)$ for any point x of M, then M is called a *generic* submanifold of S^{2m+1} . Let M be a generic submanifold of S^{2m+1} . For any vector field V normal to M we put

$$\phi V = tV,$$

where tV is a tangent vector and t is a tangent bundle valued 1-form on the normal bundle. Since ξ is tangent to M, for any vector field X tangent to M, we have

$$\nabla_X \xi = \phi X = \nabla_X \xi + B(X,\xi),$$

from which it follows that

$$PX = \nabla_X \xi, \quad B(X,\xi) = FX, \quad A_V \xi = -tV.$$

Moreover, we obtain

$$\nabla_X tV = -PA_V X + tD_X V.$$

We also have

$$A_V t U = A_U t V.$$

We define the covariant derivatives of P, F and t by

$$(\nabla_X P)Y = \nabla_X (PY) - P\nabla_X Y, \quad (\nabla_X F)Y = D_X (FY) - F\nabla_X Y, (\nabla_X t)V = \nabla_X (tV) - tD_X V.$$

We then have

$$(\nabla_X P)Y = A_{FY}X + tB(X,Y), \quad (\nabla_X F)Y = -B(X,PY),$$
$$(\nabla_X t)V = -PA_VX.$$

3. Pinching theorem. Let M be an (n+1)-dimensional minimal generic submanifold of S^{2m+1} . We take an orthonormal basis $e_0 = \xi, e_1, \ldots, e_n$ of the tangent bundle of M. We use the convention that the ranges of indices are

$$i, j, k = 0, 1, \dots, n;$$
 $r, s, t = 1, \dots, n.$

In what follows we assume that the normal connection of M is flat. Then we can choose an orthonormal basis v_1, \ldots, v_p in the normal bundle of Msuch that $Dv_a = 0, a = 1, \ldots, p, p = 2m - n$. Hence

$$\nabla_X t v_a = -P A_a X$$

for all a, where we have put $A_a = A_{v_a}$ to simplify the notation. We also have

$$\sum_{i} (\nabla_i P) e_i = -n\xi - \sum_{b} A_b t v_b, \quad (\nabla_i t) v_a = -P A_a e_i,$$

where we have put $\nabla_i = \nabla_{e_i}$. From these equations we get

$$\begin{aligned} -\operatorname{div}(PA_a t v_a) &= -\sum_i g(\nabla_{ei}(PA_a t v_a), e_i) \\ &= -\sum_i [g((\nabla_i P)A_a t v_a, e_i) \\ &+ g(P(\nabla_i A)_a t v_a, e_i) + g(PA_a(\nabla_i t) v_a, e_i)] \\ &= \sum_i [g(A_a t v_a, (\nabla_i P)e_i) + g((\nabla_i t) v_a, A_a Pe_i)] \\ &= -ng(A_a t v_a, \xi) \\ &- \sum_b g(A_a t v_a, A_b t v_a) - \sum_i g(PA_a e_i, A_a Pe_i) \\ &= (n+1) - \operatorname{Tr} A_a^2 + \frac{1}{2} |[P, A_a]|^2. \end{aligned}$$

Consequently, we obtain

$$\operatorname{div}(\nabla_{tv_a} tv_a) = (n+1) - \operatorname{Tr} A_a^2 + \frac{1}{2} |[P, A_a]|^2.$$

Generally we have (cf. [3])

$$\begin{split} g(\nabla^2 A, A) &= \sum_{a,i,j} g((R(e_i, e_j) A_a) e_i, A_a e_j) \\ &= \sum_{a,i,j} g(R(e_i, e_j) A_a e_i, A_a e_j) - \sum_{a,i,j} g(A_a R(e_i, e_j) e_i, A_a e_j). \end{split}$$

For a fixed a, we choose an orthonormal basis $e_0 = \xi, e_1, \ldots, e_n$ such that

$$A_a e_t = \lambda_t e_t + u(e_t)\xi, \quad t = 1, \dots, n_t$$

where $u(e_t) = g(A_a e_t, \xi) = -g(e_t, tv_a)$. Then we have

$$\begin{split} \sum_{i,j} g(R(e_i, e_j) A_a e_i, A_a e_j) \\ &= 2 \sum_t g(R(\xi, e_t) A_a \xi, A_a e_t) + \sum_{t,s} g(R(e_t, e_s) A_a e_t, A_a e_s) \\ &= - \sum_{t,s} \lambda_t \lambda_s K_{t,s} + 4 \sum_{a,b} [g(A_a t v_b, A_a t v_b) - g(A_a e_t, A_a e_t)], \end{split}$$

where $K_{t,s}$ denotes the sectional curvature spanned by e_t and e_s , and

$$\begin{split} &-\sum_{i,j} g(A_a R(e_i, e_j) e_i, A_a e_j) \\ &= -\sum_t g(R(\xi, e_t) \xi, A_a^2 e_t) \\ &- \sum_{t,s} g(A_a R(e_t, e_s) e_t, A_a e_s) - \sum_t g(R(e_t, \xi) e_t, A_a^2 \xi) \\ &= \sum_{t,s} \lambda_t^2 K_{ts} + (2n+p) + \sum_{a,t} g(A_a e_t, A_a e_t) - 4 \sum_{a,b} g(A_a t v_b, A_a t v_b), \end{split}$$

where we have used the fact that $A_a A_b = A_b A_a$ by the assumption $R^{\perp} = 0$. Consequently, we obtain

$$\sum_{i,j} g((R(e_i, e_j)A_a)e_i, A_a e_j) = -\sum_{t,s} \lambda_t \lambda_s K_{t,s} + \sum_{t,s} \lambda_t^2 K_{ts} + (2n+p) - 3\sum_t g(A_a e_t, A_a e_t),$$

from which

$$\begin{aligned} -\sum_{i,j} g((R(e_i, e_j)A_a)e_i, A_a e_j) &= -\frac{1}{2} \sum_{t,s} (\lambda_t - \lambda_s)^2 (K_{ts} + 3g(Pe_t, e_s)^2) \\ &+ \frac{3}{2} |[P, A_a]|^2 + 3(\operatorname{Tr} A_a^2 - 1) - (2n + p). \end{aligned}$$

Suppose that

$$K_{ts} + 3g(Pe_t, e_s)^2 \ge \frac{1}{n}$$

Then

$$\begin{split} &-\sum_{i,j} g((R(e_i,e_j)A_a)e_i,A_ae_j) - 3|[P,A_a]|^2 \\ &\leq -\operatorname{Tr} A_a^2 + 2 - \frac{3}{2}|[P,A_a]|^2 + 3\operatorname{Tr} A_a^2 - 3(n+1) + (n-p) \\ &= -2\operatorname{div}(\nabla_{tv_a}tv_a) - (p-1) - \frac{1}{2}|[P,A_a]|^2. \end{split}$$

On the other hand, we have

$$-\frac{1}{2} \triangle \left(\sum_{a} \operatorname{Tr} A_{a}^{2}\right) + g(\nabla A, \nabla A) = -g(\nabla^{2} A, A)$$
$$= -\sum_{a,i,j} g((R(e_{i}, e_{j})A_{a})e_{i}, A_{a}e_{j})$$

and

$$g(\nabla A, \nabla A) = \sum_{a,t,s} g((\nabla_t A_a)e_s, e_r)^2 + 3\sum_a |[P, A_a]|^2.$$

Hence

$$\begin{aligned} -\frac{1}{2} \triangle \left(\sum_{a} \operatorname{Tr} A_{a}^{2}\right) + \sum_{a,t,s} g((\nabla_{t} A_{a}) e_{s}, e_{r})^{2} \\ &= -\sum_{a,i,j} g((R(e_{i}, e_{j}) A_{a}) e_{i}, A_{a} e_{j}) - 3\sum_{a} |[P, A_{a}]|^{2} \\ &\leq -2 \operatorname{div} \sum_{a} (\nabla_{tv_{a}} tv_{a}) - p(p-1) - \frac{1}{2} \sum_{a} |[P, A_{a}]|^{2}. \end{aligned}$$

If M is compact, we have

$$\int_{M} \sum_{a,t,s} g((\nabla_t A_a) e_s, e_r)^2 * 1 \le - \int_{M} \left[p(p-1) + \frac{1}{2} \sum_a |[P, A_a]|^2 \right] * 1.$$

This implies that $g((\nabla_t A_a)e_s, e_r) = 0$ for all t, s, r and a, and $PA_a = A_aP$ for all a. Thus we also have p = 1. Consequently, M is a hypersurface of S^{2m+1} . Combining this fact with a theorem of [1], we obtain the following

THEOREM. Let M be an (n + 1)-dimensional compact minimal generic submanifold of S^{2m+1} with flat normal connection. If the sectional curvature K of M satisfies

$$K_{ts} + 3g(Pe_t, e_s)^2 \ge 1/n,$$

then M is a hypersurface of S^{m+1} and M is congruent to $S^{2m-1}(r_1) \times S^1(r_2)$, where

$$r_1 = \left(\frac{2m-1}{2m}\right)^{1/2}, \quad r_2 = \left(\frac{1}{2m}\right)^{1/2}.$$

REFERENCES

- H.-J. Kim, S.-S. Ahn and M. Kon, Sectional curvatures of minimal hypersurfaces immersed in S²ⁿ⁺¹, Colloq. Math. 67 (1994), 309–315.
- [2] K. Yano and M. Kon, Generic submanifolds of Sasakian manifolds, Kodai Math. J. 3 (1980), 163–196.
- [3] —, —, CR Submanifolds of Kaehlerian and Sasakian Manifolds, Birkhäuser, Boston, 1983.

Department of Mathematics Faculty of Education Hirosaki University Hirosaki, 036-8560 Japan E-mail: makon@cc.hirosaki-u.ac.jp

> Received 24 October 2000; revised 30 May 2001

(3985)