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ON AN INTERVAL
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IBRAHIM M. NABIEV (Baku)

Abstract. The inverse problem of spectral analysis for the diffusion operator with
quasiperiodic boundary conditions is considered. A uniqueness theorem is proved, a so-
lution algorithm is presented, and sufficient conditions for the solvability of the inverse
problem are obtained.

1. Introduction. Inverse problems of spectral analysis consist in the
reconstruction of the operators from their spectral data. One takes for the
main spectral data, for instance, one, two, or more spectra, the spectral
function, the spectrum and the normalizing constants, the Weyl function.
Different statements of inverse problems are possible depending on the se-
lected spectral data. The already existing literature on the theory of inverse
problems of spectral analysis is abundant. Many aspects of the modern state
of this theory and its applications are presented in [2], [6], [7], [11], [12], [15],
[17]–[20], [27], [30], [31], [37].

The problem of describing the interactions between colliding particles is
of fundamental interest in physics. For a radial static potential V (x) the
s-wave Schrödinger equation is written as

y′′ + [E − V (E, x)]y = 0,

where V (E, x) has the form:

V (E, x) = 2
√
E p(x) + q(x).

We note that with the additional condition q(x) = −p2(x), the above equa-
tion reduces to the Klein–Gordon s-wave equation for a particle of zero mass
and energy

√
E (see [13]).

In this paper we consider the boundary value problem Lt generated on
the interval [0, π] by the diffusion differential equation

(1.1) lλy = y′′ + [λ2 − 2λp(x)− q(x)]y = 0
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with real coefficients p ∈W 1
2 [0, π] and q ∈ L2[0, π] and boundary conditions

(1.2) y(π) = eity(0), y′(π) = eity′(0),

where t is a fixed real number. If t = mπ, where m is an integer, then the
boundary conditions (1.2) transform into periodic (if m is even) or antiperi-
odic (if m is odd) boundary conditions. For t 6= mπ, the boundary conditions
(1.2) are said to be quasiperiodic (see [3, p. 442]).

The first paper dedicated to the study of the periodic inverse problem for
the Sturm–Liouville operator (p(x) ≡ 0) was [32]. In that paper, Lyapunov
functions were applied. Subsequently, this problem was studied using differ-
ent approaches in [28], [19] and [14]. In [28] a uniqueness theorem for the
inverse problem is proved using certain mappings of solution spaces. In [19]
a complete characterization of the spectrum of the Hill operator is obtained,
based on a parametrization of a class of real entire functions using special
conformal mappings of the upper half-plane onto the upper half-plane with
vertical cuts. Using the direct method (in which the results of [19], the
Gelfand–Levitan–Marchenko equation and the trace formulas are not used),
in [14] the inverse problem with gap lengths for the Hill operator is solved.
Here a real analytic isomorphism between Hilbert spaces and two-sided es-
timates of the potential in terms of spectral data are applied. Using the
methods of [19], in [25] and [26] the problem of reconstruction of similar (in-
cluding quasiperiodic) Sturm–Liouville problems is completely solved (recall
that two boundary-value problems are called similar if their characteristic
functions differ only by a constant). Such a problem is also studied in [35]
using a different approach, where the characterization of the spectrum is
obtained without using the asymptotic properties of special conformal map-
pings. In [5], [10] and [18] inverse problems for the Sturm–Liouville operators
with regular nonseparated boundary conditions are solved.

Some versions of inverse problems for the equation (1.1), which is a natu-
ral generalization of the Sturm–Liouville equation, were thoroughly studied
in [4], [8], [9], [11], [13], [16], [22], [24], [29], [36]. Thus, for example, in-
verse problems for lλ on the half-line and on the whole line are considered
in [13] and [20], where the scattering data and the Weyl function are used
as spectral data. The problem of reconstructing the equation (1.1) from the
spectra of two boundary-value problems with some separated boundary con-
ditions is solved in [4]. Inverse spectral problems for (1.1) with other forms
of separated boundary conditions, and also with periodic and antiperiodic
boundary conditions are studied in [8] (see also [9]), where the correspond-
ing results of the monograph [19] are generalized to the case p(x) 6≡ 0.
Problems of reconstructing nonsimilar boundary-value problems generated
by (1.1) and nonseparated boundary conditions are studied in [11] and [22].
In [24] and [29] the uniqueness of the reconstruction of lλ by three spectra
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is investigated. We also record the papers [1], [16], [33] and [38], in which
inverse nodal and half-inverse problems for lλ on the interval and on graphs
are considered.

Note that the problem of reconstructing the diffusion equation (1.1) with
quasiperiodic boundary conditions has special features and the conditions
of solvability of the inverse problem in this case are essentially different
from the results for other types of nonseparated boundary conditions. This
paper is devoted to the inverse problem of reconstructing the boundary-value
problem Lt. A uniqueness theorem is proved, an algorithm is constructed and
sufficient conditions for the solvability of the inverse problem are obtained.
Analogous results for the Dirac operator are obtained in [23].

2. Asymptotics of eigenvalues. We denote by Wn
2 [0, π] the Sobolev

space of complex-valued functions on the interval [0, π] which have n − 1
absolutely continuous derivatives and square-summable nth derivative. In
what follows, for brevity, we will say that the condition (T) is satisfied if
the inequality

(2.1)

π�

0

{|y′(x)|2 + q(x)|y(x)|2} dx > 0

holds for all functions y ∈W 2
2 [0, π], y(x) 6≡ 0, satisfying (1.2). Note that the

inequality (2.1) holds in particular if q(x) > 0.

Let c(λ, ·) and s(λ, ·) be the solutions of the equation (1.1) satisfying
the initial conditions c(λ, 0) = s′(λ, 0) = 1, c′(λ, 0) = s(λ, 0) = 0. The
Wronskian of these solutions is identically one:

(2.2) c(λ, x)s′(λ, x)− c′(λ, x)s(λ, x) = 1.

It is easy to see that the function

(2.3) ∆(λ) = c(λ, π) + s′(λ, π)− 2 cos t

is the characteristic function of the boundary-value problem Lt. The zeros
of this function coincide with the eigenvalues of the problem Lt. When the
condition (T) is satisfied, the eigenvalues are real and nonzero [21]. Accord-
ing to [21], a number λ0 is a double eigenvalue of Lt if and only if t = mπ
(m = 0,±1,±2, . . .) and c′(λ0, π) = s(λ0, π) = 1. Since in this paper we
assume t 6= mπ, all eigenvalues of the problem Lt are simple.

In what follows, we will suppose that p(0) = p(π), 0 < t < π/2.

Theorem 2.1. The eigenvalues a±k (k = 0,±1,±2, . . .) of the boundary-
value problem Lt (p(0) = p(π), 0 < t < π/2) have the asymptotics

(2.4) a±k = 2k + a± t

π
+
A

2k
+
τ±k
k
,
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where

a =
1

π

π�

0

p(x) dx, A =
1

2π

π�

0

[p2(x) + q(x)] dx,
∞∑

k=−∞
|τ±k |

2 <∞.

Proof. From the representations (see [9], [11])

c(λ, π) = cosπ(λ− a) +Aπ
sinπ(λ− a)

λ− a
+
f1(λ− a)

λ− a
,

s′(λ, π) = cosπ(λ− a) +Aπ
sinπ(λ− a)

λ− a
+
f2(λ− a)

λ− a
and the equality (2.3) we deduce that the eigenvalues of the problem Lt
satisfy the equation

(2.5) cosπ(λ− a) +Aπ
sinπ(λ− a)

λ− a
+
f(λ− a)

λ− a
− cos t = 0,

where f1(·), f2(·), f(·) are entire functions of exponential type not exceed-
ing π, square-summable on the real line. By Rouché’s theorem the roots a±k
(k = 0,±1,±2, . . .) of this equation have the asymptotics

(2.6) a±k = 2k + a± t

π
+ ε±k ,

where
∑∞

k=−∞(ε±k )2 <∞. It is obvious that

cosπ(a±k − a) = cos t∓ ε±k π sin t+O

(
1

k2

)
,(2.7)

sinπ(a±k − a)

a±k − a
= ± π sin t

2kπ ± t
+O

(
1

k2

)
,(2.8)

f(a±k − a)

a±k − a
=
πf(2k ± t/π)

2kπ ± t
+O

(
1

k2

)
(2.9)

(here we used [19, Lemma 1.4.3]). Substituting (2.6)–(2.9) into (2.5) we
obtain the asymptotics

ε±k =
A

2k
+
τ±k
k
,

the substitution of which in (2.6) leads to (2.4).

3. Uniqueness theorem and algorithm for solving the inverse
problem. Let λk (k = ±1,±2, . . .) be the zeros of the function s(·, π), i.e.
the eigenvalues of the boundary-value problem generated by the equation
(1.1) and the Dirichlet boundary conditions

(3.1) y(0) = y(π) = 0.

We denote σk = sign[1− |s′(λk, π)|], k = ±1,±2, . . . .
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Theorem 3.1. The boundary-value problem Lt (p(0) = p(π), 0 < t <
π/2) is uniquely determined by the three sequences {a±k }, {λk} and {σk}.

Proof. Given the spectrum {a±k } of the problem Lt the parameter t of
the boundary conditions is uniquely determined from

(3.2) t =
π

2
lim
k→∞

(a+k − a
−
k ),

since {a±k } has the asymptotics (2.4). The characteristic function ∆(·) of
the boundary-value problem Lt, which is an entire function of exponential
type, is uniquely determined by the sequence {a±k } in the form of an infinite
product. We denote

(3.3) u+(λ) = c(λ, π) + s′(λ, π).

Knowing ∆(·) and t, the function u+(·) can be determined from (2.2):

(3.4) u+(λ) = ∆(λ) + 2 cos t.

Given the sequence {λk} we construct the function

(3.5) s(λ, π) = π

∞∏′

k=−∞

λk − λ
k

,

where the prime on the product (or summation) symbol (here and after-
wards) indicates that the term corresponding to k = 0 is excluded. If we
also knew the function

(3.6) u−(λ) = c(λ, π)− s′(λ, π),

we would be able to determine the function s′(·, π) from the identity

(3.7) s′(λ, π) = 1
2 [u+(λ)− u−(λ)],

and the knowledge of the functions s(·, π), s′(·, π), according to [8], is suf-
ficient to uniquely determine p(·) and q(·). From (3.3), (3.6) using (2.2) we
have

u2+(λ)− u2−(λ) = 4 + 4c′(λ, π)s(λ, π).

Putting λ = λk in this equality, we get u2+(λk)− u2−(λk) = 4. Hence

u−(λk) = (signu−(λk))
√
u2+(λk)− 4.

It is known [9] that sign s′(λk, π) = (−1)k. Then

signu−(λk) = sign[c(λk, π)− s′(λk, π)] = sign
1− [s′(λk, π)]2

s′(λk, π)
= (−1)kσk.

Taking into account (3.6) and the representations of the functions c(·, π) and
s′(·, π), we infer that u−(λ) = o(eπ|Imλ|/|λ|) as |λ| → ∞. Then according to
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[34, p. 178] the interpolation formula

(3.8) u−(λ) = s(λ, π)

∞∑′

k=−∞

u−(λk)

(λ− λk)ṡ(λk, π)

holds, where u−(λk) = (−1)kσk

√
u2+(λk)− 4. Therefore, knowing the func-

tion u+(·) and the sequences {λk} and {σk} we can determine the function
u−(·) using (3.8). Uniqueness of u−(·) follows from the fact that this in-
terpolation formula sets up a bijection between l2 and the space of entire
functions of exponential type not exceeding π, square-summable on the real
line. Hence, with the help of u+(·) and u−(·) we can determine the func-
tion s′(·, π) by (3.7). The zeros νk, k = ±1, ±2, . . . , of this function are the
eigenvalues of the boundary value problem generated by the equation (1.1)
and the boundary conditions

(3.9) y(0) = y′(π) = 0.

As noted above, the sequences {λk} and {νk} uniquely determine the func-
tions p(·) and q(·).

Therefore the coefficient functions p(·) and q(·), and the parameter t,
are uniquely determined by the spectrum {a±k } of the problem Lt and the
sequences {λk}, {σk}.

Bearing in mind the proof of Theorem 3.1 we arrive at the following
solution algorithm for the inverse problem of recovering the boundary-value
problem Lt.

Algorithm. Let the sequences {a±k }, {λk} and {σk} be given.

(1) Determine the parameter t from (3.2).
(2) With the help of the sequence {a±k }, construct the function ∆(·) in

the form of an infinite product.
(3) Find the function u+(·) from (3.4).
(4) Construct the function (3.5).
(5) Reconstruct the function u−(·) using the interpolation formula (3.8).
(6) Define the characteristic function s′(·, π) of the boundary-value prob-

lem (1.1), (3.9) by (3.7).
(7) Determine the coefficients p(·) and q(·) from the sequences of zeros

of the functions s(·, π) and s′(·, π) by a well-known procedure (see
[8], [9]).

4. Sufficient solvability conditions for the problem of recovering
the boundary-value problem Lt. First we prove the following auxiliary
proposition.
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Lemma 4.1. The function

(4.1) ∆(z) = 4 sin2 t

2

∞∏
k=−∞

π2(a−k − z)(a
+
k − z)

4π2k2 − t2

has the representation

(4.2) ∆(z) = 2 cosπ(z − a) + 2Aπ
sinπ(z − a)

z − a
+
g(z − a)

z − a
− 2 cos t,

where g(z) = M(cosπz − cos t) +
	π
−π g̃(x)eixz dx, M is some constant,

g̃ ∈ L2[−π;π], a±k has the form (2.4), in which a,A are real numbers and
0 < t < π/2.

Proof. We denote

(4.3) p±(z) = ±a
±
0 − z
t

sin
t

2

∞∏′

k=−∞

a±k − z
2k

∞∏′

k=−∞

1

1± t/(2πk)
.

According to [9], [11] the function l(z) = π(z− a)
∏′∞
k=−∞(uk − z)/k can be

represented as

l(z) = sinπ(z − a) +A0π
4(z − a)

4(z − a)2 − 1
cosπ(z − a) +

f0(z − a)

z − a
,

where

uk = k+a−A0

k
+
δk
k
, f0(z) = a0 sinπz+

π�

−π
f̃0(t)e

itz dt, f̃0 ∈ L2[−π, π],

f0(0) = f ′0(0) = 0, a, a0, A0 are some numbers,
∑′∞

k=−∞ |δk|2 < ∞. Using

this fact and the formula sinπz = πz
∏′∞
k=−∞(1− z/k), from (4.3) we have

(4.4) p±(z) = ± a±0 − z
2π(z − a)

[
sinπz± − Aπz±

4(z±)2 − 1
cosπz± +

g±(z±)

z±

]
,

where z± = 1
2(z − a ∓ t/π), g±(z) = a± sinπz +

	π
−π g̃

±(t)eitz dt, g̃± ∈
L2[−π, π], g±(0) = dg±(0)/dz = 0 and a± are some numbers. The formulas
(4.1) and (4.3) imply ∆(z) = 4p−(z)p+(z). From this, taking into account
the representation (4.4) and the Paley–Wiener theorem [34, p. 101], after
elementary transformations we obtain the formula (4.2).

Now we prove our main result, which gives a characterization of the
spectrum of the problem Lt.

Theorem 4.2. For a sequence {a±k } to consist of the eigenvalues of a
quasiperiodic problem Lt (p(0) = p(π), 0 < t < π/2), it is sufficient that the
following conditions hold:

(1) the a±k satisfy the asymptotic condition (2.4), in which a and A can
be arbitrary real numbers;
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(2) limk→∞ k[∆(2k+a)−4 sin2(t/2)] = 0, where ∆(z) is defined by (4.1);
(3) the zeros µ±2k and µ±2k+1 (k = 0,±1, ±2, . . .) of the functions ∆p(z) =

∆(z)− 4 sin2 t
2 and ∆a(z) = ∆(z) + 4 cos2 t

2 , respectively, satisfy

(4.5)
0 > µ−0 > µ+−1 ≥ µ

−
−1 > µ+−2 ≥ µ

−
−2 > · · · ,

0 < µ+0 < µ−1 ≤ µ
+
1 < µ−2 ≤ µ

+
2 < · · ·

and the asymptotic formula (as |m| → ∞)

(4.6) µ±m = m+ a+
A

m
+
γ±m
m
,

∞∑′

k=−∞
(γ±m)2 <∞.

Proof. According to the above lemma the function ∆(z) has the repre-
sentation (4.2). It is obvious that

∆(2k + a) = M(1− cos t) +

π�

−π
g̃(x)e2ikx dx+ 4 sin2 t

2
.

Hence, by (2) and the Riemann–Lebesgue lemma we have M = 0. The
representation (4.2) and the asymptotic formula (4.6) imply

(4.7)

∆p(z) = π2(z − µ−0 )(µ+0 − z)
∞∏′

k=−∞

(µ−k − z)(µ
+
k − z)

(2k)2
,

∆a(z) = 4

∞∏
k=−∞

(µ−2k+1 − z)(µ
+
2k+1 − z)

(2k + 1)2
.

We put u1(z) = ∆(z) + 2 cos t. It is easy to see that

(4.8) ∆p(z) = u1(z)− 2, ∆a(z) = u1(z) + 2,

where

(4.9) u1(z) = 2 cosπ(z − a) + 2Aπ
sinπ(z − a)

z − a
+
g(z − a)

z − a
.

Take any point λk ∈ [µ−k , µ
+
k ], k = ±1,±2, . . . . Then from (4.6) we have

(4.10) λk = k + a+
A

k
+
δk
k
,

∞∑′

k=−∞
δ2k <∞.

As noted above (see the proof of Lemma 4.1) the function

(4.11) (z − a)s(z) = π(z − a)

∞∏′

k=−∞

λk − z
k

can be represented in the form

(z − a)s(z) = sinπ(z − a)−Aπ 4(z − a)

4(z − a)2 − 1
cosπ(z − a) +

ψ(z − a)

z − a
,
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where

ψ(z) = b sinπz +

π�

−π
ψ̃(t)eitz dt, ψ̃ ∈ L2[−π, π], ψ(0) = ψ′(0) = 0.

According to (4.7) and (4.8) we have

u21(z)− 4 = ∆p(z)∆a(z) = −4π2(µ−0 − z)(µ
+
0 − z)

∞∏′

k=−∞

(µ−k − z)(µ
+
k − z)

k2
.

Hence using the inequalities µ−k ≤ λk ≤ µ+k we obtain u21(λk) − 4 ≥ 0 and
signu1(λk) = (−1)k. Then it is obvious that

u1(λ2m−1) ≤ −2, u1(λ2m) ≥ 2 (m = 0,±1,±2, . . .).

Therefore, there exist numbers hk such that

(4.12) u1(λk) = 2(−1)k chhk.

Since at both endpoints of [µ−k , µ
+
k ] the function u1(·) takes the same value

2(−1)k, its derivative has at least one zero βk in that interval. From (4.9)
we have, as |z| → ∞,

u′1(z) = −2π sinπ(z − a) +O(eπ|Im z|/|z|).

Using this estimate and Rouché’s theorem it is easy to show that, the func-
tion u′1(·) has exactly 2n + 1 zeros in each strip |Re z − a| ≤ n + 1/2 for
sufficiently large n, and from (4.6) it is seen that

−(n+ 1/2) + a < β−n < β−n+1 < · · · < β0 < β1 < · · · < βn < n+ 1/2 + a.

Therefore all zeros βk are simple and the derivative u′(·) has no other zeros.
So, on each interval (βk, βk+1) the function u′1(·) has constant sign. Since
βk ∈ [µ−k , µ

+
k ], we have u21(βk) ≥ 4 and signu1(βk) = (−1)k. Thus there

exists a number h′k ≥ 0 such that

(4.13) u1(βk) = 2(−1)k chh′k.

From the equalities u1(µ
±
k ) = 2(−1)k, u′1(βk) = 0 and the Taylor formula

we have

2(−1)k = u1(µ
±
k ) = u1(βk) + 1

2(µ±k − βk)
2u′′1(β±k ),

and using (4.13) we get

chh′k = 1 +
(−1)k+1

4
(µ±k − βk)

2u′′1(β±k ),

where the points β±k are located between µ±k and βk. Then

1 + 1
2h
′2
k ≤ 1 + 1

4(µ±k − βk)
2Mk, Mk = max

z∈[µ−k ,µ
+
k ]
|u′′1(z)|,
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and hence

h′k ≤
√

2Mk

4
(µ+k − µ

−
k ),

since one of the numbers |µ−k − βk|, |µ
+
k − βk| does not exceed 1

2(µ+k − µ
−
k ).

According to the Bernstein inequality [34, p. 104] for the derivatives of
bounded entire functions of exponential type,

sup
z∈(−∞,∞)

|u′′1(z)| ≤ π2M, M = sup
z∈(−∞,∞)

|u1(z)| <∞,

so h′k ≤
π
√
2M
4 (µ+k − µ

−
k ). From (4.6) we have

µ+k − µ
−
k =

γ+k − γ
−
k

k
.

Therefore
∑∞

k=−∞(kh′k)
2 <∞. It is easy to see that |hk| ≤ h′k and hence

(4.14)
∞∑

k=−∞
(khk)

2 <∞.

Let {σk} (k = ±1,±2, . . .) be any sequence (of signs) consisting of the
numbers −1, 0 and 1. Since (4.14) holds, as in [9] (see also [19]) it can be
shown that the function

(4.15) u2(z) = 2s(z)

∞∑′

k=−∞

σk|shhk|
(z − λk)s′(λk)

can be represented as

(4.16) u2(z) =
m(z − a)

z − a
,

where

m(z) =

π�

−π
m̃(t)eitz dt, m̃ ∈ L2[−π, π], m(0) = 0.

Consider the function

(4.17) s1(z) = 1
2 [u1(z)− u2(z)].

Taking into account (4.9) and (4.17), we have

s1(z) = cosπ(z − a) +Aπ
sinπ(z − a)

z − a
+
ϕ1(z − a)

z − a
,

where ϕ1(z) = 1
2 [g(z)−m(z)], ϕ1(0) = 0. Therefore (see [9], [11]) the zeros

νk(k = ±1,±2, . . .) of the function s1(·) satisfy the asymptotic formula

(4.18) νk = k − 1

2
sign k + a+

a1
k

+
δ′k
k
,

∞∑
k=−∞

|δ′k|2 <∞.



DIFFUSION OPERATOR 175

Putting z = λk in (4.17) and taking into account (4.12) and the equality

u2(λk) = 2σk|shhk|,
which can be obtained from (4.15), we have

s1(λk) = (−1)k chhk − σk|shhk| = (−1)k chhk[1− (−1)k|thhk|]
and since |thhk| < 1, it follows that

(4.19) sign s1(λk) = (−1)k (k = ±1,±2, . . .).

Now we will show that the sequence {σk} can be chosen so that

(4.20) s1(0) > 0.

Indeed, according to (4.17) the inequality (4.20) is equivalent to

(4.21) u2(0) > u1(0).

From (4.11) and (4.15) we obtain

s(0) = π

∞∏′

k=−∞

λk
k
> 0, u2(0) = −2s(0)

∞∑′

k=−∞

σk|shhk|
λks′(λk)

.

Therefore (4.21) is equivalent to

(4.22)

∞∑′

k=−∞

2σk|shhk|
−λks′(λk)

<
u1(0)

s(0)
.

Since u1(0) = ∆1(0) + 2 and ∆1(0) > 0, we have u1(0) > 0 and hence the
right-hand side of (4.22) is positive. Thus if we take, for example, σk =
sign(λks

′(λk)), then the left-hand side of (4.22), will be negative. So, for
such σk the inequality (4.22), and therefore (4.20), will be satisfied.

The relations (4.19) and (4.20) show that, in each interval

. . . , (λ−2, λ−1), (λ−1, 0), (0, λ1), (λ1, λ2), . . .

the function s1(·) has one, and according to (4.18), only one zero. Therefore,
the zeros of the functions s1(·) and s2(·) satisfy the inequalities

· · · < ν−3 < λ−2 < ν−2 < λ−1 < ν−1 < 0 < ν1 < λ1 < ν2 < λ2 < ν3 < · · · .
In addition, {λk} and {νk} have the asymptotics (4.10) and (4.18). So the
sequences {λk} and {νk} satisfy all the conditions of [8, Theorem 3]. Hence
there exist unique real-valued functions q ∈ L2[0, π] and p ∈ W 1

2 [0, π] such
that {λk} and {νk} are the spectra of the boundary-value problems gener-
ated by one and the same equation

y′′ + [λ2 − 2λp(x)− q(x)]y = 0

and the boundary conditions (3.1) and (3.9), and s(λ) = s(λ, π), s1(λ) =
s′(λ, π), where s(λ, ·) is a solution of this equation with initial conditions
s(λ, 0) = 0, s′(λ, 0) = 1.
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It is easy to prove that {a±k } is indeed the spectrum of the reconstructed
problem Lt.

Remark 4.3. Note that the conditions of Theorem 4.2 are also necessary
when the condition (T) is satisfied. But the real function q(·) constructed
in the proof of Theorem 4.2 may not satisfy the inequality (2.1).
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