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THE REAPING AND SPLITTING NUMBERS OF NICE IDEALS

BY

RAFAŁ FILIPÓW (Gdańsk)

Abstract. We examine the splitting number s(B) and the reaping number r(B) of
quotient Boolean algebras B = P(ω)/I where I is an Fσ ideal or an analytic P-ideal. For
instance we prove that under Martin’s Axiom s(P(ω)/I) = c for all Fσ ideals I and for
all analytic P-ideals I with the BW property (and one cannot drop the BW assumption).
On the other hand under Martin’s Axiom r(P(ω)/I) = c for all Fσ ideals and all analytic
P-ideals I (in this case we do not need the BW property). We also provide applications of
these characteristics to the ideal convergence of sequences of real-valued functions defined
on the reals.

1. Introduction. Let B be a Boolean algebra. A set S is a splitting set
for B if for every nonzero b ∈ B there is an s ∈ S such that b·s 6= 0 6= b·(−s).
A set D ⊆ B \ {0} is weakly dense if for every b ∈ B there is d ∈ D such
that d ≤ b or d ≤ −b. By the splitting number of B we mean the cardinal
s(B) = min{|S| : S is a splitting set for B}, and by the reaping number of B
we mean r(B) = min{|D| : D is weakly dense in B}. Many results on s(B)
and r(B) for various Boolean algebras can be found in [23].

In the following we assume that if I is an ideal on ω then [ω]<ω ⊆ I and
ω /∈ I.

For a set A ⊆ ω we put A0 = A and A1 = ω \A.
Let I be an ideal on ω. We denote by I+ = P(ω) \ I the coideal of I.

A set A I-splits B if both B ∩ A0, B ∩ A1 are in I+. A family R ⊆ I+ is
I-unsplittable if no single set I-splits all members of R. An I-splitting family
is a family S ⊆ P(ω) such that each A ∈ I+ is I-split by at least one S ∈ S.

In this paper we are interested in the splitting and reaping numbers of
quotient Boolean algebras of the form B = P(ω)/I where I is an Fσ ideal
or an analytic P-ideal on ω (see Section 2 for definitions). We then write
s(I) = s(P(ω)/I) and r(I) = r(P(ω)/I). In this case the definitions of s(I)
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and r(I) can be rephrased in the following manner:

s(I) = min{|S| : S ⊆ I+, S is an I-splitting family},
r(I) = min{|R| : R ⊆ I+, R is I-unsplittable}.

In the case of the ideal I = Fin of all finite subsets of ω, we obtain the
classical cardinal characteristics of the continuum: s = s(Fin) and r = r(Fin)
(see e.g. [2] and [27]). It is well known that s and r are uncountable, and if
we assume Martin’s Axiom (MA) then s = r = c.

In Section 3 we show that s(I), r(I) are uncountable for every Fσ ideal
(Proposition 3.1), and that if we assume MA then s(I) = r(I) = c for every
Fσ ideal (Theorem 3.2).

In Section 4 we prove that r(I) is uncountable for every analytic P-ideal
(Proposition 4.1), and that if we assume MA then r(I) = c for every analytic
P-ideal (Theorem 4.2).

In [9] it is proved that s(I) = ω ⇔ the ideal I does not have the BW
property (see Section 2 for the definition). We prove that if we assume MA
then s(I) = c for all analytic P-ideals I with the BW property (Theo-
rem 4.3).

The splitting, reaping and other cardinal characteristics (e.g. a, p and t)
of the quotient Boolean algebras P(ω)/I were already considered in some
papers; see e.g. [1], [3], [8], [13], [15], [16] and [26].

In Section 5 we apply the results on s(I) and r(I) to the ideal convergence
of sequences of real-valued functions defined on the reals.

2. Preliminaries

2.1. Nice ideals. By identifying sets of natural numbers with their
characteristic functions, we equip P(ω) with the Cantor-space topology and
therefore we can assign topological complexity to ideals of sets of integers.
In particular, an ideal I is Fσ (resp. analytic) if it is an Fσ (resp. analytic)
subset of the Cantor space.

An ideal I is a P-ideal if for every countable family {An : n ∈ ω} ⊆ I
there is A ∈ I such that An \A is finite for every n ∈ ω.

A map φ : P(ω) → [0,∞] is a submeasure on ω if φ(∅) = 0 and φ(A) ≤
φ(A ∪ B) ≤ φ(A) + φ(B) for all A,B ⊆ ω. In what follows we assume
that φ({n}) < ∞ for every submeasure φ and n ∈ ω. A submeasure φ is
lower semicontinuous (we will write lsc for short) if for all A ⊆ ω we have
φ(A) = limn→∞ φ(A ∩ {0, 1, . . . , n− 1}). For a submeasure φ we write

Fin(φ) = {A ⊆ ω : φ(A) <∞}, Exh(φ) = {A ⊆ ω : ‖A‖φ = 0},

where ‖A‖φ = limn→∞ φ(A \ {0, 1, . . . , n− 1}).
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Theorem 2.1 ([21], [25]). Let I be an ideal on ω (not necessarily proper).

(1) I is an Fσ ideal ⇔ I = Fin(φ) for some lsc submeasure φ on ω.
(2) I is an analytic P-ideal ⇔ I = Exh(φ) for some lsc submeasure φ

on ω.

2.1.1. Examples. For many examples of nice ideals see e.g. [16] or [7].
Below we list some of them.

(1) The ideal Fin is an Fσ P-ideal.
(2) Let f : ω → [0,∞) be such that

∑
n∈ω f(n) = ∞. The summable

ideal generated by f ,

If =
{
A ⊆ ω :

∑
n∈A

f(n) <∞
}
,

is an Fσ ideal [21].
(3) The ideal of sets of asymptotic density 0,

Id =
{
A ⊆ ω : lim sup

n→∞

|A ∩ {0, 1, . . . , n− 1}|
n

= 0

}
,

is an analytic P-ideal (and it is not an Fσ ideal).
(4) Let f : ω → [0,∞) be such that

∞∑
i=0

f(i) =∞ and lim
n→∞

f(n)∑
i∈n f(i)

= 0.

The Erdős–Ulam ideal generated by f ,

EUf =

{
A ⊆ ω : lim

n→∞

∑
i∈A∩n f(i)∑
i∈n f(i)

= 0

}
,

is an analytic P-ideal [17]. Note that Id is an Erdős–Ulam ideal.
(5) Assume that In are pairwise disjoint intervals on ω, and µn is a mea-

sure that concentrates on In. Then φ = supn µn is a lower semicon-
tinuous submeasure and Exh(φ) is called the density ideal generated
by (µn)n. It is known that Erdős–Ulam ideals are density ideals.

(6) The van der Waerden ideal

W = {A ⊆ ω : A does not contain arithmetic progressions
of arbitrary length}

is an Fσ ideal (and it is not a P-ideal).
(7) The eventually different ideal

ED = {A ⊆ ω × ω : ∃m,n ∈ ω ∀k ≥ n (|{i ∈ ω : (k, i) ∈ A}| ≤ m)}

is an Fσ ideal (and it is not a P-ideal).
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2.2. Ideal convergence. Let I be an ideal on ω and A ⊆ ω. We say that
a sequence (xn)n∈A of reals is I-convergent to x ∈ R if {n ∈ A : |xn − x| ≥
ε} ∈ I for every ε > 0. We say that an ideal I on ω has the BW property
(I ∈ BW, for short) if for every bounded sequence (xn)n∈ω of reals there
exists A ∈ I+ such that (xn)n∈A is I-convergent [9].

Proposition 2.2 ([9]).

(1) Every Fσ ideal has the BW property (hence Fin, summable ideals, W
and ED have the BW property).

(2) Erdős–Ulam ideals (and Id) do not have the BW property.
(3) A density ideal does not have the BW property if and only if it is an

Erdős–Ulam ideal.

Theorem 2.3 ([9]). Let I be an ideal on ω. Then s(I) = ω ⇔ I does
not have the BW property.

2.3. Big intersections. Below we present some auxiliary results which
we will need later (however they seem to be interesting on their own).

Lemma 2.4. Let I be an ideal on ω. There is a function x : P(ω)→{0, 1}
such that ⋂

{Ax(A) : A ∈ A} /∈ I

for every finite and nonempty family A ⊆ P(ω).
Proof. Let J be a maximal ideal such that I ⊆ J . For A ∈ P(ω) we

define
x(A) =

{
0 if A /∈ J ,
1 if A ∈ J .

Since Ax(A) /∈ J for every A, and J is a maximal ideal, we have
⋂
{Ax(A) :

A ∈ A} /∈ J . Thus
⋂
{Ax(A) : A ∈ A} /∈ I.

Corollary 2.5. Let I = Fin(φ) be an Fσ ideal. There is x : P(ω) →
{0, 1} such that

φ
(⋂
{Ax(A) : A ∈ A}

)
=∞

for every finite and nonempty family A ⊆ P(ω).
Proof. Apply Lemma 2.4 and note that A /∈ I ⇔ φ(A) =∞.

Corollary 2.6. Let I = Exh(φ) be an analytic P-ideal. There is x :
P(ω)→ {0, 1} such that∥∥∥⋂{Ax(A) : A ∈ A}∥∥∥

φ
> 0

for every finite and nonempty family A ⊆ P(ω).
Proof. Apply Lemma 2.4 and note that A /∈ I ⇔ ‖A‖φ > 0.
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Below we show that for ideals with the BW property we can obtain a
strengthening of the above result.

Lemma 2.7. Let I = Exh(φ) be an analytic P-ideal. The ideal I has the
BW property if and only if there are δ > 0 and x : P(ω)→ {0, 1} such that∥∥∥⋂{Ax(A) : A ∈ A}∥∥∥

φ
≥ δ

for every finite and nonempty family A ⊆ P(ω).

Proof. (⇒) By [9, Theorem 3.6] there exists δ > 0 such that for every
finite partition A1 ∪ · · · ∪An = ω there exists 1 ≤ i ≤ n with ‖Ai‖φ ≥ δ. We
will show that this δ is as required.

For every finite and nonempty family A ⊆ P(ω) we define

CA =
{
x ∈ {0, 1}P(ω) :

∥∥∥⋂{Ax(A) : A ∈ A}∥∥∥
φ
≥ δ
}
.

We will show that

(1) CA 6= ∅;
(2) CA is a closed set in {0, 1}P(ω);
(3) the family {CA : A is finite and nonempty} is centered.

Then using compactness of the topological space {0, 1}P(ω) we get

x ∈
⋂
{CA : A is finite and nonempty}.

It is easy to see that this x is as required. Thus, the proof will be finished as
soon as we derive (1)–(3).

(1) Take any finite and nonempty A ⊆ P(ω). Since the family{⋂
{As(A) : A ∈ A} : s ∈ {0, 1}A

}
is a finite partition of ω, there is s ∈ {0, 1}A with ‖

⋂
{As(A) : A ∈ A}‖φ ≥ δ.

Then any x ∈ {0, 1}P(ω) such that s ⊆ x belongs to CA.
(2) Take any finite and nonempty A ⊆ P(ω). Since S = {x�A : x ∈ CA}

⊆ {0, 1}A is finite and CA =
⋃
s∈S{x ∈ {0, 1}P(ω) : s ⊆ x}, CA is a finite

union of basic clopen sets, hence closed.
(3) Take any finite and nonempty A1, . . . ,An ⊆ P(ω). Since A =

A1 ∪ · · · ∪ An is finite, CA 6= ∅ by (1). On the other hand, it is not dif-
ficult to see that CA ⊆ CA1 ∩ · · · ∩ CAn .

(⇐) Let δ > 0 and x : P(ω)→ {0, 1} be such that∥∥∥⋂{Ax(A) : A ∈ A}∥∥∥
φ
≥ δ

for every finite and nonempty family A ⊆ P(ω).
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By [9, Theorem 3.6], I has the BW property if and only if there is ε > 0
such that for every N ∈ ω and every partition A1, . . . , AN of ω there is i ≤ N
with ‖Ai‖φ ≥ ε.

Let ε = δ. Let N ∈ ω and A = {A1, . . . , AN} be a partition of ω. Then
there is i ≤ N with x(Ai) = 0 (otherwise

⋂
{Ax(A) : A ∈ A} = ∅, hence

‖
⋂
{Ax(A) : A ∈ A}‖φ = 0 < δ). Thus Ai ⊇

⋂
{Ax(A) : A ∈ A}, hence

‖Ai‖φ ≥
∥∥∥⋂{Ax(A) : A ∈ A}∥∥∥

φ
≥ δ = ε.

3. Fσ ideals

Proposition 3.1. Let I = Fin(φ) be an Fσ ideal. Then s(I), r(I) ≥ ω1.

Proof. (s(I) ≥ ω1) Let S = {Sn : n ∈ ω} ⊆ I+. We will show that S
is not an I-splitting family, i.e. we will construct an A ∈ I+ such that for
every n ∈ ω, either A ∩ S0

n ∈ I or A ∩ S1
n ∈ I.

Let ε ∈ {0, 1}ω be a sequence such that
⋂
i≤n S

εi
i ∈ I+ for every n ∈ ω.

By lsc of φ, we can find finite sets Fn (n ∈ ω) such that Fn ⊆
⋂
i≤n S

εi
i and

φ(Fn) ≥ n.
Let A =

⋃
n Fn. Then A ∈ I+ and A ∩ S1−εn

n ⊆
⋃
i<n Fi ∈ I for every

n ∈ ω.
(r(I) ≥ ω1) Let R = {Rn : n ∈ ω} ⊆ I+. We will show that R is

not an I-unsplittable family, i.e. we will construct a set A ⊆ ω such that
Rn ∩A0 ∈ I+ and Rn ∩A1 ∈ I+ for every n ∈ ω.

By lsc of φ, we can find pairwise disjoint finite sets F ki,n (i, n ∈ ω and
k ∈ {0, 1}) such that F ki,n ⊆ Rn and φ(F ki,n) ≥ i for every i, n ∈ ω and
k ∈ {0, 1}.

Let A =
⋃
i,n∈ω F

0
i,n. If n ∈ ω and k ∈ {0, 1}, then Rn ∩ Ak ⊇

⋃
i∈ω F

k
i,n

and hence Rn ∩Ak ∈ I+.

Theorem 3.2. Assume MA. Let I = Fin(φ) be an Fσ ideal. Then s(I) =
r(I) = c.

Proof. (s(I) = c) Let S ⊆ P(ω) be such that |S| = κ < c. We will show
that S is not an I-splitting family.

Let x : P(ω) → {0, 1} be as in Corollary 2.5. Let F = {Sx(S) : S ∈ S}
and P = [ω]<ω × [F ]<ω. For (s,A), (t, B) ∈ P we define (s,A) ≤ (t, B) if

(1) s ⊇ t,
(2) A ⊇ B, and
(3) s \ t ⊆

⋂
B.

Then it is not difficult to show that 〈P,≤〉 is a ccc poset.
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Define

DF = {(s,A) ∈ P : F ∈ A} for every F ∈ F ,
Dn = {(s,A) ∈ P : φ(s) > n} for every n ∈ ω.

It is easy to see that DF is dense for every F . We show that Dn is also dense
for every n.

Let (s,A) ∈ P and A = {F0, . . . , Fm−1}. Let Fi = S
x(Si)
i with Si ∈ S for

i < m. Since
⋂
A =

⋂
i<m Fi =

⋂
i<m S

x(Si)
i , we have φ(

⋂
A) =∞. By lsc of

φ there is a finite set t ⊆
⋂
A such that φ(t) > n. Then (s ∪ t, A) ∈ Dn and

(s ∪ t, A) ≤ (s,A).
By Martin’s Axiom, there is a filter G ⊆ P such that G ∩ Dn 6= ∅ and

G ∩DF 6= ∅ for every n ∈ ω and F ∈ F . Let

X =
⋃
{s : (s,A) ∈ G}.

Clearly X ∈ I+, and X is not I-split by any member of S because if
F = Sx(S) ∈ F and (s,A) ∈ G ∩ DF , then X ∩ S1−x(S) ⊆ s and hence
X ∩ S1−x(S) ∈ I.

(r(I) = c) Let κ < c and F = {Fα : α < κ} ⊆ I+. We will show that
there is a set which I-splits all members of F .

Let P = 2<ω. Then 〈P,⊇〉 is a ccc poset. Define

Dα,n = {s ∈ P : φ(s−1(0) ∩ Fα) > n ∧ φ(s−1(1) ∩ Fα) > n}

for every n ∈ ω and α < κ. Using lsc of φ it is not difficult to show that the
sets Dα,n are dense in P.

By Martin’s Axiom, there is a filter G ⊆ P such that G ∩ Dα,n 6= ∅ for
every n ∈ ω and α < κ. Let

f =
⋃
G and X = f−1(0).

It is easy to see that X ∈ I+. We will show that X I-splits all sets in F .
Let α < κ. For any n ∈ ω there is sn ∈ G ∩ Dα,n. Since Fα ∩ Xi ⊇

Fα∩ s−1n (i) for i = 0, 1 and every n, we have φ(Fα∩Xi) > n for i = 0, 1 and
every n, and so Fα ∩Xi ∈ I+ (i = 0, 1).

4. Analytic P-ideals

Proposition 4.1. Let I=Exh(φ) be an analytic P-ideal. Then r(I)≥ω1.

Proof. Let F = {Fn ∈ I+ : n ∈ ω}. We will show that there is a set
which I-splits all members of F .

Let δn > 0 be such that ‖Fn‖φ > δn for every n ∈ ω. Let 〈Gn : n ∈ ω〉 be
a sequence such that {Gn : n ∈ ω} = {Fn : n ∈ ω} and {k ∈ ω : Gk = Fn}
is infinite for each n ∈ ω. Let f : ω → ω be such that Gn = Ff(n) for every
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n ∈ ω. We will construct sequences 〈sn : n ∈ ω〉 and 〈tn : n ∈ ω〉 such
that

(1) sn, tn are finite,
(2) sn, tn ⊆ Gn \ {0, 1, . . . , n− 1} for every n ∈ ω,
(3) sn ∩ sk = ∅, tn ∩ tk = ∅ and sn ∩ tk = ∅ for every n, k ∈ ω,
(4) φ(sn) > δf(n), φ(tn) > δf(n).

Suppose that we have already constructed si, ti for i ≤ n. Let s = s0∪· · ·∪sn
and t = t0 ∪ · · · ∪ tn. Let G = Gn+1 \ (s ∪ t). Since s ∪ t is finite we have
‖G‖φ > δf(n+1). By the definition of ‖ · ‖φ and lsc of φ there is a finite
set sn+1 ⊆ G \ {0, 1, . . . , n} with φ(sn+1) > δf(n+1). Applying the defini-
tion of ‖ · ‖φ and lsc of φ again, there is a finite set tn+1 ⊆ G \ sn+1 with
φ(tn+1) > δf(n+1).

Let X =
⋃
n∈ω sn. Then sn ⊆ Gn\{0, 1, . . . , n−1} = F0\{0, 1, . . . , n−1}

for every n ∈ f−1(0). Thus φ(X \ {0, 1, . . . , n − 1}) ≥ φ(sn) > δ0 > 0 for
every n ∈ f−1(0), hence ‖X‖φ ≥ δ0 > 0. We will show that X I-splits all
sets in the family F .

First of all, we will show that Fk ∩ X ∈ I+. Let i ∈ ω. Then there is
n ∈ f−1(k) with n > i. Then

φ((Fk ∩X) \ {0, 1, . . . , i− 1}) = φ((Gn ∩X) \ {0, 1, . . . , i− 1})
≥ φ((Gn ∩X) \ {0, 1, . . . , n− 1}) ≥ φ(sn) > δk.

Thus ‖Fk ∩X‖φ ≥ δk > 0.
Using the same argument as above one can show that Fk \X ∈ I+.
Theorem 4.2. Assume MA. Let I = Exh(φ) be an analytic P-ideal.

Then r(I) = c.

Proof. Let κ < c and F = {Fα : α < κ} ⊆ I+. Let δα > 0 be such that
‖Fα‖φ > δα for every α < κ.

Let P = 2<ω. Then 〈P,⊇〉 is a ccc poset. Define

Dα,n =
{
s ∈ P : φ

(
(Fα ∩ s−1(i)) \ {0, 1, . . . , n− 1}

)
> δα for i = 0, 1

}
for every n ∈ ω and α < κ. It is not difficult to show that Dα,n is dense in P.

By Martin’s Axiom, there is a filter G ⊆ P such that G ∩ Dα,n 6= ∅ for
every n ∈ ω and α < κ. Let f =

⋃
G and X = f−1(0). Then X ∈ I+ and

X I-splits all sets in F .
Theorem 4.3. Assume MA. Let I = Exh(φ) be an analytic P-ideal with

the BW property. Then s(I) = c.

Proof. Let S ⊆ P(ω) be such that |S| = κ < c. We will show that S is
not an I-splitting family.

Let δ > 0 and x : P(ω)→ {0, 1} be as in Lemma 2.7.
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Let F = {Sx(S) : S ∈ S} and P = [ω]<ω × [F ]<ω. For (s,A), (t, B) ∈ P
we define (s,A) ≤ (t, B) if

s ⊇ t, A ⊇ B, s \ t ⊆
⋂
B.

Then it is not difficult to show that 〈P,≤〉 is a ccc poset.
Define

Dn = {(s,A) ∈ P : φ(s \ {0, 1, . . . , n− 1}) > δ/2} for every n ∈ ω,
DF = {(s,A) ∈ P : F ∈ A} for every F ∈ F .

Clearly DF is dense for every F ∈ F . We will show that the sets Dn are
dense.

Let (s,A) ∈ P and A = {F0, . . . , Fm−1}. Let Fi = S
x(Si)
i with Si ∈ S for

i < m. Since
⋂
A =

⋂
i<m Fi =

⋂
i<m S

x(Si)
i , we have ‖

⋂
A‖φ ≥ δ. Since∥∥∥⋂A

∥∥∥
φ
= lim

k→∞
φ
(⋂

A \ {0, 1, . . . , k − 1}
)

it follows that φ(
⋂
A \ {0, 1, . . . , n − 1}) > δ/2. By lsc of φ there is a finite

set t ⊆
⋂
A \ {0, 1, . . . , n − 1} such that φ(t) > δ/2. Then (s ∪ t, A) ∈ Dn

and (s ∪ t, A) ≤ (s,A).
By Martin’s Axiom, there is a filter G ⊆ P such that G ∩ Dn 6= ∅ and

G ∩DF 6= ∅ for every n ∈ ω and F ∈ F . Let

X =
⋃
{s : (s,A) ∈ G}.

Clearly, ‖X‖φ ≥ δ/2 soX ∈ I+, andX is not I-split by any member of S
because if S ∈ S, F = Sx(S), and (s,A) ∈ G ∩DF , then X ∩ S1−x(S) ⊆ s.

5. Applications. It is not difficult to prove that the Bolzano–Weier-
strass theorem (that every bounded sequence of reals has a convergent sub-
sequence) fails if we consider sequences of functions instead of reals (i.e.
there exists a uniformly bounded sequence (fn)n∈ω of real-valued functions
defined on R such that no subsequence of (fn)n∈ω is pointwise convergent).
The ideal version of this result is presented below (in this case we have to
consider two cases: either I is a “somewhere” maximal ideal or not).

Let I be an ideal on ω and A ⊆ ω. We say that a sequence (fn)n∈A of real-
valued functions defined on a set X is pointwise I-convergent to f : X → R
if for every x ∈ X the sequence of reals (fn(x))n∈A is I-convergent to f(x).
(See [18], [20] and [6] for description of pointwise I-limits of continuous
functions; in [12], [5] and [11] the authors also consider an ideal version of
discrete convergence and equal convergence of sequences of functions.)

For an ideal I on ω and A ⊆ ω we define the ideal I�A = {B ⊆ ω :
B ∩A ∈ I}.
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Proposition 5.1. Let I be an ideal on ω. Let fn : R→ R (n ∈ ω) be a
uniformly bounded sequence of functions.

(1) If I is a maximal ideal then (fn)n∈ω is pointwise I-convergent.
(2) If there is A ∈ I+ such that I�A is a maximal ideal then the subse-

quence (fn)n∈A is pointwise I-convergent.
Proof. (1) Follows from the fact that every bounded sequence of reals is

I-convergent, for each maximal ideal I.
(2) Follows from (1).

Proposition 5.2. Let I be an ideal on ω such that I�A is not maximal
for any A ∈ I+. There exists a uniformly bounded sequence of functions
fn : R→ R (n ∈ ω) such that (fn)n∈A is not pointwise I-convergent for any
A ∈ I+.

Proof. Let {0, 1}ω = {sα : α < c} and R = {xα : α < c}. We define
fn : R→ R by fn(xα) = sα(n) (n ∈ ω, α < c).

Let A ∈ I+. Then there are B,C ⊆ ω such that A = B ∪ C, B ∩ C = ∅
and B,C ∈ I+.

Let α be such that sα(n) = 0 for n ∈ B and sα(n) = 1 for n ∈ C.
Since I+ 3 C ⊆ {n : fn(xα) 6= 0} and I+ 3 B ⊆ {n : fn(xα) 6= 1}, the

sequence (fn)n∈A is not I-convergent.
Saks asked (see [24]) whether for every uniformly bounded sequence

(fn)n∈ω of real-valued functions defined on R there exists an infinite set
A ⊆ ω such that the subsequence (fn(x))n∈A is convergent for uncountably
many x ∈ R. This question was answered in the negative by Sierpiński [24]
under the assumption of the Continuum Hypothesis (CH). Later, Fuchino
and Plewik [14] proved that if s > ω1 then the answer to the question is
positive. In fact, they proved that for every uniformly bounded sequence
fn : R → R and every X ⊆ R with |X| < s there exists an infinite A ⊆ ω
such that (fn�X)n∈A is pointwise convergent. The ideal versions of these
results are presented below.

First, if I is a “somewhere” maximal ideal then the answer to the ideal
version of Saks’ question is positive (by Proposition 5.1).

Second, if I /∈ BW then there exists (in ZFC) a uniformly bounded
sequence fn : R → R (n ∈ ω) such that for every A ∈ I+ the subse-
quence (fn(x))n∈A is not pointwise I-convergent for any x ∈ R. (Indeed, let
(xn)n∈ω be a bounded sequence such that (xn)n∈A is not I-convergent for
any A ∈ I+. Then the functions fn(x) = xn (n ∈ ω, x ∈ R) are as required.)
Thus, the answer to the ideal version of Saks’ question is negative.

Below (Corollaries 5.4 and 5.7) we prove that in the third case (i.e.
I ∈ BW and I�A is not a maximal ideal) the answer to the ideal version
of Saks’ question is independent of ZFC for Fσ ideals and analytic P-ideals.
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Proposition 5.3. Let I be an ideal on ω. If r(I) = c then there exists
a uniformly bounded sequence (fn)n∈ω of real-valued functions defined on R
such that for every A ∈ I+ the subsequence (fn(x))n∈A is I-convergent for
less than c many x ∈ R.

Proof. Let R = {xα : α < c} and I+ = {Aα : α < c}. We define
fn : R→ R by

fn(xα) =

{
0 for n ∈ Sα,
1 for n ∈ ω \ Sα,

where Sα ∈ I+ is a set that I-splits the family {Aβ : β < α} (there is one
since |α| < r(I)).

Let A = Aβ ∈ I+. We will show that the subsequence (fn(xα))n∈A is not
I-convergent for every α > β, and that will finish the proof.

Let α > β. Then {n ∈ A : fn(xα) = 0} = Aβ ∩ Sα ∈ I+ and {n ∈ A :
fn(xα) = 1} = Aβ \ Sα ∈ I+. Thus (fn(xα))n∈A is not I-convergent.

Corollary 5.4. Assume CH. Let I be an Fσ ideal or an analytic P-ideal
on ω. There exists a uniformly bounded sequence (fn)n∈ω of real-valued func-
tions defined on R such that {x : (fn(x))n∈A is I-convergent} is countable
for every A ∈ I+.

Proof. Apply Proposition 5.3 and Proposition 3.1 or 4.1 respectively.

Proposition 5.5. Let I be an ideal on ω with the BW property. Let
fn : R → R (n ∈ ω) be a uniformly bounded sequence of functions. Let
X ⊆ R be such that |X| < s(I). There exists A ∈ I+ such that (fn�X)n∈A
is pointwise I-convergent.

Proof. The proof is a slight modification of the proof of [14, Lemma 4].
We provide it for completeness.

Let |X| = κ < s(I). For every x, y ∈ R let Cyx = {n ∈ ω : fn(x) < y}.
Let C = {Cqx : q ∈ Q, x ∈ X}. Since |C| < s(I), there exists A ∈ I+ such
that A ∩ C ∈ I or A \ C ∈ I for every C ∈ C.

We claim that (fn�X)n∈A is I-convergent to the function f : X → R
given by f(x) = inf{y ∈ R : {n ∈ A : fn(x) < y} ∈ I+} = inf{y ∈ R :
A ∩ Cyx ∈ I+}.

Let x ∈ X and ε > 0. Let B1 = {n ∈ A : fn(x) < f(x) − ε} and
B2 = {n ∈ A : fn(x) > f(x) + ε}.

Since {n ∈ A : |fn(x)− f(x)| > ε} = B1 ∪B2, it is enough to show that
B1, B2 ∈ I.

Suppose that B1 ∈ I+. Since A ∩ Cf(x)−εx = B1 ∈ I+, it follows that
f(x) = inf{y ∈ R : A ∩ Cyx ∈ I+} ≤ f(x)− ε, a contradiction.

Suppose that B2 ∈ I+. Let q ∈ Q be such that f(x) < q < f(x) + ε.
Since B2 ⊆ A \ Cqx, we have A \ Cqx /∈ I. But Cqx ∈ C and C does not
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I-split A, so A ∩ Cqx ∈ I. Thus f(x) = inf{y ∈ R : A ∩ Cyx ∈ I+} ≥ q, a
contradiction.

Remark 5.6. The assumption that I has the BW property is neces-
sary in Proposition 5.5. Indeed, let I be an ideal without the BW. By
Theorem 2.3, s(I) = ω. If (fn)n∈ω is the sequence defined before Propo-
sition 5.3, and X = {0}, then |X| < s(I), but (fn�X)n∈A = (xn)n∈A is not
I-convergent for any A ∈ I+.

Corollary 5.7. Assume MA and ¬CH. Let I be an Fσ ideal, or an
analytic P-ideal with the BW property, on ω. For every uniformly bounded
sequence (fn)n∈ω of real-valued functions defined on R there exists A ∈ I+
such that the subsequence (fn(x))n∈A is I-convergent for uncountably many
x ∈ R.

Proof. Apply Proposition 5.5 and Theorems 3.2 and 4.3 respectively.

Mazurkiewicz [22] proved that if one takes a uniformly bounded sequence
of continuous functions fn : R→ R (n ∈ ω) then there always exist a perfect
set P ⊆ R and an infinite set A ⊆ ω such that (fn(x))n∈A is convergent for
every x ∈ P . (Since perfect sets are uncountable, his result yields a positive
answer to Saks’ question in the realm of continuous functions.) In [10] it is
proved that the ideal version of Mazurkiewicz’s result holds for Fσ ideals and
for analytic P-ideals with the BW property.

Mazurkiewicz’s result shows (taking into account that perfect sets are of
cardinality c) that for a uniformly bounded sequence (fn)n∈ω of continuous
functions one always finds an infinite A ⊆ ω such that the subsequence
(fn(x))n∈A is convergent for c many x ∈ R. Of course, Sierpiński’s result
shows that under CH there is a uniformly bounded sequence (fn)n∈ω such
that there is no infinite A ⊆ ω such that (fn(x))n∈A is convergent for c
many x ∈ R. Ciesielski and Pawlikowski [4] proved that it is consistent with
the axioms of ZFC that for every uniformly bounded sequence (fn)n∈ω of
real-valued functions defined on R there exists an infinite A ⊆ ω such that
(fn(x))n∈A is convergent for c many x ∈ R. We do not know if the result of
Ciesielski and Pawlikowski can be generalized to ideal convergence.

It is known (see e.g. [4] or [19]) that under MA for every uniformly
bounded sequence (fn)n∈ω of real-valued functions defined on R and every
|X| < c there exists an infinite A ⊆ ω such that the subsequence (fn�X)n∈A
is pointwise convergent, and on the other hand, there exists a uniformly
bounded sequence (fn)n∈ω of real-valued functions defined on R such that
for every infinite A ⊆ ω the subsequence (fn(x))n∈A is convergent for less
than c many x ∈ R.

Corollary 5.8. Assume MA. Let I be an Fσ ideal, or an analytic
P-ideal with the BW property, on ω. For every uniformly bounded sequence
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(fn)n∈ω of real-valued functions defined on R and every |X| < c there exists
A ∈ I+ such that the subsequence (fn�X)n∈A is pointwise I-convergent.

Proof. Apply Proposition 5.5 and Theorems 3.2 or 4.3 respectively.

Corollary 5.9. Assume MA. Let I be an Fσ ideal or an analytic
P-ideal on ω. There exists a uniformly bounded sequence (fn)n∈ω of real-
valued functions defined on R such that for every A ∈ I+ the subsequence
(fn(x))n∈A is I-convergent for less than c many x ∈ R.

Proof. Apply Proposition 5.3 and Theorems 3.2 or 4.2 respectively.
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