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Abstract. We note that every positive integer N has a representation as a sum of
distinct members of the sequence {d(n!)}n≥1, where d(m) is the number of divisors of m.
When N is a member of a binary recurrence u = {un}n≥1 satisfying some mild technical
conditions, we show that the number of such summands tends to infinity with n at a rate of
at least c1 logn/log logn for some positive constant c1. We also compute all the Fibonacci
numbers of the form d(m!) and d(m1!) + d(m2)! for some positive integers m,m1,m2.

1. Introduction. Let d(m) be the number of divisors of the positive
integer m. There are a few papers in the literature addressing the function
d(n!). For example, several results about this function can be found in [2].
In the more recent paper [6], it was shown that d(n!) is a divisor of n! for
all n ≥ 6.

For simplicity, put an = d(n!). The sequence {an}n≥1 starts as

1, 2, 4, 8, 16, 30, 60, 96, 160, 270, 540, 792, . . . .

It would seem that an ≤ 2an−1 with several cases of equality. This is our
first result.

Proposition 1.1. The inequality an ≤ 2an−1 holds for all n ≥ 2.

Since an ≤ 2an−1 for all n ≥ 1 and a1 = 1, it then follows, by the
greedy algorithm, that for every positive integer N there exist k ≥ 1 and
mk > · · · > m1 ≥ 1 such that

N = amk + · · ·+ am1 .

There might be several such representations of a given N , but we shall pick
the one with a minimal k. For example,

55 = 30 + 16 + 8 + 1 = a6 + a5 + a4 + a1.
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In this paper, we take a binary recurrent sequence u = {un}n≥0 where u0, u1
are integers

un+2 = run+1 + sun for all n ≥ 0,

and r and s are fixed nonzero integers. Assuming that ∆ = r2 + 4s 6= 0 and
writing α, β for the two roots of the quadratic equation x2 − rx− s = 0, we
see that there exist c and d in Q(α) with

(1.1) un = cαn + dβn for all n ≥ 0.

The sequence u is called nondegenerate if cd 6= 0 and α/β is not a root of 1.
Since α/β is not a root of 1, the sequence un has at most one zero. That is,
un 6= 0 for all n ≥ 0 with at most one exception.

We study the representation

(1.2) |un| = amk + · · ·+ am1 with mk > · · · > m1 ≥ 1.

Under mild assumptions on the sequence u, we show that the number of
terms k in the above representation grows with n.

Theorem 1.2. Assume that u is nondegenerate and has gcd(r, s) = 1.
Then there exist positive constants n0 and c0 > 0 depending on u which are
computable such that in the representation (1.2) we have

k >
c0 log n

log logn
whenever n > n0.

Perhaps the condition gcd(r, s) = 1 can be removed but we have not
succeeded in doing so. Representation problems similar to the above one in-
volving members of binary recurrences, factorials or both have been studied
in the literature. For example, it was shown in [11] and [4] that if b ≥ 2 is
an integer and

|un| = dkb
mk + · · ·+ d1b

m1 where di ∈ {1, . . . , b− 1} (1 ≤ i ≤ k),

and mk > · · · > m1 ≥ 1, then k > c1 log n/log log n whenever n > n0, where
c1 > 0 is a computable constant depending on u and b. If we write

n! = dkb
mk + · · ·+ d1b

m1 where di ∈ {1, . . . , b− 1} (1 ≤ i ≤ k),

where again mk > · · · > m1 ≥ 1, then k > c2 log n, where c2 > 0 depends
only on b (see [5]). Finally, in [3], it was shown that if

(1.3) |un| = m1! + · · ·+mk! with mk > · · · > m1 ≥ 1,

and k is fixed, then n is bounded by some computable number depend-
ing on u and k. In particular, in any representation (1.3) with large n,
the parameter k tends to infinity with n. Although this is not explicitly
stated in [3], from the proof of the main result in that paper one can deduce
k > c3 log n/log log n, whenever n > n0, where c3 > 0 is some computable
constant depending on u.
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When r = s = 1, u0 = 0 and u1 = 1 the sequence u becomes the famous
sequence F = {Fn}n≥0 of Fibonacci numbers. We prove the following result.

Theorem 1.3. If Fn = am, then n ∈ {1, 2, 3, 6}. If Fn = am2 + am1

with m2 > m1 ≥ 1, then n ∈ {4, 5, 9}.

2. Proof of Proposition 1.1. The fact that the stated inequality is
an equality when n is prime is a consequence of the multiplicativity of the
function “number of divisors”. The stated inequality also holds for n = 4, 8.
Assume now that n 6∈ {4, 8} is composite.

Inequality (5) in [2] shows that

(2.1)
an
an−1

≤ exp
S(n)

n
,

where

S(n) =
∑
pαp‖n

αpp

is the sum of the prime factors of n with multiplicity. Note that

αpp

pαp
≤ 1 (αp ≥ 1, p ≥ 2) and

αp
pαp−1

≤ 2

3
(αp ≥ 2, p ≥ 3).

Put ω(n) = k. If k = 1, then n = pαp for some prime p and αp ≥ 2. If p = 2,
then αp ≥ 4, therefore S(n)/n = αp/2

αp−1 ≤ 1/2, while if p ≥ 3, then
S(n)/n ≤ 2/3 by the above inequality. If ω(n) = k ≥ 3 and p1 < · · · < pk
are all the distinct prime factors of n, then

(2.2)
S(n)

n
≤

k∑
j=1

1∏
i 6=j pi

≤ k

p1 · · · pk−1
≤ k

k!
=

1

(k − 1)!
≤ 1

2
.

If k = 2 and n is divisible by some prime p ≥ 7, then

(2.3)
S(n)

n
≤ 1

2
+

1

7
=

9

14
.

If n = 3a · 5b, then

(2.4)
S(n)

n
≤ 1

3
+

1

5
=

8

15
.

Finally, if n = 2a · 3b or n = 2a · 5b, then

S(n)

n
≤ 2a+ 3b

2a3b
and

S(n)

n
≤ 2a+ 5b

2a5b
,

respectively. Unless n = 6, 10, we have either a ≥ 2 or b ≥ 2, so

(2.5)
S(n)

n
≤ max

{
7

12
,
4

9
,

9

20
,

6

25

}
=

7

12
.
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In conclusion, collecting all the above inequalities (2.2)–(2.5), we find that
if n is composite, then, unless n ∈ {6, 10}, we have

S(n)

n
≤ max

{
1

2
,
2

3
,

9

14
,

8

15
,

7

12

}
=

2

3
,

so
an
an−1

< exp
2

3
< 2

by (2.1). One can check that the inequality an ≤ 2an−1 holds also for the
values n = 6, 10.

3. Preliminary results for the proofs of Theorems 1.2 and 1.3.
We write π(x) for the counting function of the primes p ≤ x.

Lemma 3.1. The following inequalities hold:

(i)

π(x) >
x

log x
for all x ≥ 17,

π(x) <
5x

4 log x
for all x ≥ 114,

π(x) >
x

log x− 0.5
for all x ≥ 67,

π(x) <
x

log x− 1.5
for all x ≥ 5.

(ii)

π(x)− π
(
x

2

)
>

3x

10 log x
for all x ≥ 41.

(iii) For each prime number q, there exists x0 depending on q such that

π

(
x

q − 1

)
− π

(
x

q

)
>

x

2q2 log x
for all x > x0.

(iv)

log an >
n

log n
for all n ≥ 17,

log an <
3n

log n
for all n ≥ 286.

Proof. Parts (i) and (ii) follow from inequalities (3.3), (3.4), (3.5), (3.7)
and (3.8) in [7]. Part (iii) follows from the last two inequalities in (i). For
part (iv), we start with the lower bound and assume that n ≥ 17. Recall
that

an = d(n!) =
∏
p≤n

(αp(n) + 1), where αp(n) =

⌊
n

p

⌋
+

⌊
n

p2

⌋
+ · · · .
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Thus,

αp(n) + 1 ≥
⌊
n

p

⌋
+ 1 >

n

p

leading to

log an ≥ log
∏
p≤n

n

p
=
∑
p≤n

(log n− log p) = π(n) log n−
∑
p≤n

log p

= π(n) log n−
(
π(n) log n−

n�

2

π(t)

t
dt

)

=

n�

2

π(t)

t
dt =

n�

17

π(t)

t
dt+

17�

2

π(t)

t
dt

≥
n�

17

dt

log t
+ c1 =

t

log t

∣∣∣∣n
t=17

+

n�

17

dt

(log t)2
+ c1

>
n

log n
+ (c1 − c2) >

n

log n
,

where

c1 =

17�

2

π(t)

t
dt = 6.68933 . . . > c2 =

17

log 17
= 6.00025 . . . .

and where in the above chain of inequalities we also used integration by
parts, the Abel summation formula, as well as (i).

For the upper bound, we assume that n ≥ 286 and use the fact that

αp(n) ≤ n

p
+
n

p2
+ · · · = n

p− 1
,

to get

log an ≤ log
∏
p≤n

(
n

p− 1
+ 1

)
= log

∏
p≤n

n

p

p

p− 1

(
1 +

p− 1

n

)
=
∑
p≤n

(log n− log p) +
∑
p≤n

log
p

p− 1
+

1

n

∑
p≤n

p = S1 + S2 + S3.

We have already seen that

S1 =

n�

2

π(t)

t
dt,

but we need an upper bound for it. Using (i), we have

S1 ≤
5

4

n�

114

dt

log t
+

114�

2

π(t)

t
dt =

5

4

n�

114

dt

log t
+ c3,
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where c3 =
	114
2 (π(t)/t) dt. Integrating by parts, we get

n�

114

dt

log t
=

t

log t

∣∣∣∣n
t=114

+

n�

114

dt

(log t)2
≤ n

log n
− c4 +

1

log 114

n�

114

dt

log t
,

where c4 = 114/log 114. Thus,
n�

114

dt

log t
≤ 1

1− 1/log 114

(
n

log n
− c4

)
.

Hence,

S1 ≤
(

5

4(1− 1/log 114)

)
n

log n
+

(
c3 −

5c4
4(1− 1/log 114)

)
<

8n

5 log n
,

where we used the facts that

c3 = 35.0161 . . . < 38.1404 . . . =
5c4

4(1− 1/log 114)

and
5

4(1− 1/log 114)
= 1.58456 . . . <

8

5
.

By (3.29) in [7], which holds under the assumption that n ≥ 286, we have

S2 < c5 + log log n+ log

(
1 +

1

2(log n)2

)
< log log n+

(
c5 +

1

2(log 286)2

)
< log logn+ 1,

where c5 = 0.57721 . . . is the Euler constant. For S3, we have

S3 =
1

n

∑
p≤n

p ≤ nπ(n) ≤ 5n

4 log n
.

Thus,

log an <

(
8

5
+

5

4

)
n

log n
+ log log n+ 1 <

3n

log n
,

where for the last inequality we used the fact that

0.15n

log n
> log log n+ 1 for all n > 70.

This completes the proof of Lemma 3.1.

4. Proof of Theorem 1.2. Throughout this section, we label positive
constants c1, c2, . . . in the order of appearance in our arguments. We need a
result from the theory of linear forms in p-adic logarithms. For an algebraic
number η with minimal polynomial

f(X) = a0X
d + a1X

d−1 + · · ·+ ad ∈ Z[X] with gcd(a0, a1, . . . , ad) = 1,
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we put H(η) = max{|ai| : i = 0, 1, . . . , d}. For example, if η = m/n is a
rational number written in reduced form, i.e., with coprime integers m and
n > 0, then H(η) = max{|m|, n}. Given a number field K, a prime ideal
π of its ring of algebraic integers OK and η ∈ K∗, we write ordπ(η) for
the exponent with which π appears in the prime ideal factorization of the
principal fractional ideal ηOK generated by η inside K. The following result
is due to Kunrui Yu [12].

Lemma 4.1. Let K be an algebraic number field, π a prime ideal of OK
and let η1, η2 ∈ K∗. Let H1, H2 be real numbers, Hi ≥ max{H(ηi), 3},
i = 1, 2. Let m1,m2 be integers and put M = max{|m1|, |m2|, 3}. Assume
ηm1
1 ηm2

2 − 1 6= 0. Then

ordπ(ηm1
1 ηm2

2 − 1) < c1 logH1 logH2 logM,

where c1 = c1(K, π) is a positive constant depending on K and π.

We work with the nondegenerate binary recurrent sequence u = {un}n≥0
whose Binet formula for its general term is given by (1.1). We label the roots
α, β in such a way that |α| ≥ |β|. Clearly, |α| > 1. The following result is
due to Stewart [10] (see also [9, Theorem 3.1]).

Lemma 4.2. There exist computable constants n0 and c2 such that

|un| > |α|n−c2 logn for all n ≥ n0.
Proof of Theorem 1.2. Throughout this proof, n0 ≥ 286 and m0 are large

numbers not necessarily the same at each occurrence. Consider the equation
(1.2). Assume that n > n0 so un 6= 0. We only consider the case of positive
un since the case of negative un can be treated in a similar way. Clearly,

(4.1) c3n+ c4 > log un ≥ log amk >
mk

logmk
,

with c3 = log |α| and c4 = log max{|c| + |d|, 1}, while by Lemma 4.2, we
have

c3n− c5 log n < log un ≤ log(kamk) ≤ 3mk

logmk
+ log k(4.2)

≤ 3mk

logmk
+ logmk,

where c5 = c2c3. The combination of (4.1) and (4.2) shows that

(4.3) c6n log n < mk < c7n log n whenever n > n0,

where we can take c6 = c3/2 and c7 = 2c3. Let q be the smallest prime
exceeding s and let π be a prime ideal dividing q in K = Q(α).

Note that since q - s, it follows that π divides neither α nor β. Then

ordq(un) ≤ ordπ(cαn + dβn) = ordπ(dβn) + ordπ((−c/d)(α/β)n − 1)

≤ c8 log n+ c9;
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here c9 = max{ordπ(d), 1} and for the right-most inequality above we used
Lemma 4.1 with η1 = −c/d and η2 = α/β. Observe that if m > q2 and p is
a prime in (m/q,m/(q − 1)], then p2 > (m/q)2 > m, therefore

αp(m) = ordq(m!) =

⌊
m

p

⌋
= q − 1.

Hence, αp(m) + 1 = q for all primes p ∈ (m/q,m/(q − 1)]. Lemma 3.1(iii)
now shows that if m > m0, then the interval (m/q,m/(q − 1)] contains at
least c10m/logm primes p, where c10 = 1/(2q2).

In particular, for such m we have ordq(am) ≥ c10m/logm. Thus, assum-
ing m1 ≥ m0, we see that

c8 log n+ c9 ≥ ordq(un) = ordq(amk + · · ·+ am1) ≥ min
1≤i≤k

{ordq(ami)}

≥ c10m1/logm1,

giving

(4.4) m1 ≤ c11(log n)2 for n ≥ n0.
We further assume c11 ≥ m0 so that the above inequality includes also the
case when m1 ≤ m0. Comparing (4.3) with (4.4) tells us that k ≥ 2 once
n ≥ n0, for if not we would get c6n log n < m1 < c11(log n)2, so n < n0. We
also assume that c11(log n)2 < n for n > n0.

We will show, recursively, that the following holds:

Claim. There exists a constant c12 > 1 such that if j < k and

(4.5) mj < (c12 log n)2j and (c12 log n)2j+2 < n,

then

(4.6) mj+1 < (c12 log n)2j+2.

Let us see that once we have proved the above implication, we are
through. Indeed, let j ≤ k be maximal such that inequalities (4.5) hold.
If j = k, then

(4.7) c6n log n < mk ≤ (c12 log n)2k.

If j < k, then (4.6) holds. By the maximality of j, we must have

(4.8) (c12 log n)2k ≥ (c12 log n)2j+2 ≥ n.
Inequalities (4.7) and (4.8) together show k ≥ c0 log n/log log n for n ≥ n0,
which is the desired conclusion.

To prove the Claim, notice that we have already proved it with c12 = c
1/2
11

for the case when j = 1. Assume now that (4.5) holds for some j < k with
some c12 to be determined later. We distinguish two cases.

Case 1: s 6= ±1. In this case, there exists a prime ideal p ∈ OK divid-
ing α. Indeed, if this were not true, then α would be a unit. Since |α| > 1,
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this unit cannot be rational because the only rational units are ±1. Hence,
α is a quadratic unit, β is its conjugate and s = −αβ = ±1, which is not the
case we are treating. Further, since p divides α, and r and s are coprime,
it follows that p does not divide β. Moreover, it is clear that p sits above a
rational prime p dividing s. We write

(4.9) Nj = amj + · · ·+ am1 .

Rewrite (1.2) as

(4.10) cαn + (dβn −Nj) = amk + · · ·+ amj+1 .

Suppose that

(4.11) dβn −Nj 6= 0.

We then compute an upper bound for the p-adic order of the above nonzero
number using Lemma 4.1. For this, note first that if mj < 286, then

(4.12) logNj ≤ c13.
Assume next that mj ≥ 286. Then

(4.13) logNj ≤ log(jamj ) ≤
3mj

logmj
+ logmj ≤ 2mj ≤ 2(c12 log n)2j

because logmj > 3 when mj ≥ 286. We assume that n0 is such that
c12 log n > c13, so (4.13) incorporates the case of (4.12) when mj < 286
as well. Thus,

ordp(dβn −Nj) = ordp(dβn) + ordp(β−n(Njd
−1)− 1)(4.14)

≤ c14 + c15(c12 log n)2j+1 ≤ 2c15(c12 log n)2j+1

for n ≥ n0, where c14 = max{ordp(d), 1} and we applied Lemma 4.1 with
η1 = β, η2 = Njd

−1, m1 = −n, m2 = 1, and we also used the fact that

log max{H(η2), 3} ≤ c16 log max{H(d), 3} log max{Nj , 3} ≤ c17(c12 log n)2j

(see (4.13)); here c16 is absolute (see [9, Lemma A.3]), c15 depends also on
p and β, and c17 = 2c16 log max{H(d), 3}. Assume that n0 is such that the
inequality log n > 4c15/c12 holds for n > n0. Then (4.14) implies

ordp(dβn −Nj) < (c12 log n)2j+2/2 < n/2 ≤ ordp(cαn)

for n > n0, which shows that

ordp(un −Nj) = ordp(cαn + (dβn −Nj)) = ordp(dβn −Nj)(4.15)

< 2c15(c12 log n)2j+1.

However, if mj+1 ≥ m0, we have ordp(amj+1) ≥ c18mj+1/logmj+1, where
c18 = 1/(2p2) plays the same role for the rational prime p sitting above p
as c10 = 1/(2q2) played for q. So, assuming that mj+1 ≥ m0, we have

(4.16) ordp(amk + · · ·+ amj+1) ≥ min
j+1≤`≤k

{ordp(am`)} ≥ c18
mj+1

logmj+1
.
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Comparing the bounds (4.15) and (4.16), we get

c18
mj+1

logmj+1
≤ 2c15(c12 log n)2j+1,

so
mj+1

logmj+1
≤ c19(c12 log n)2j+1,

where c19 = 2c15/c18.

If A > 10, then the inequality x/log x < A implies x < 2A logA. Taking
A = c19(c12 log n)2j+1 and assuming that n0 is such that A > 10 for n > n0,
we get

mj+1 < 2c19(log n)2j+1
(
log c19 + (2j + 1) log(c12 log n)

)
(4.17)

< 4c19(c12 log n)2j+2

for n > n0, because (2j + 1) log(c12 log n) < log((c12 log n)2j+2) < log n,
and for n > n0 we have log c19 < log n. We enlarge c19 by replacing it with
max{c19,m0} so that the last inequality above incorporates the case when
mj+1 < m0 as well. Comparing (4.17) with (4.6), we see that it is sufficient
to choose c12 such that c212 > 4c19 and then indeed inequality (4.6) is a
consequence of inequalities (4.5).

This was however under the assumption (4.11). Let us see what happens
if on the contrary Nj = dβn. Then d ∈ Q∗ and β ∈ Z. If |β| ≥ 2, we then
have

n log 2 + log |d| ≤ log |dβn| = logNj < 2(c12 log n)2j < 2c−212

n

(log n)2
,

which is not possible for n ≥ n0. Thus, β = ±1. Treating separately the cases
when n is even and when n is odd, i.e., replacing the sequence {un}n≥0 by
the two sequences {u2n}n≥0 and {u2n+1}n≥0, which results in replacing the
pair of roots (α, β) by the pair of roots (α2, β2), we may assume that β = 1.
Then d = Nj , and so j = j0 ≤ c20. We fix j0 and work with the relation

aαn = amk + · · ·+ amj0+1 .

Relabeling the indices on the right-hand side above, we may assume that
they are mk > · · · > m1 ≥ 1. We let q be the smallest prime not dividing a.
Then m1 < c21. We rewrite our equation as

aαn − am1 = amk + · · ·+ am2 .

We apply Lemma 4.1 to bound the q-adic valuation of the the left-hand side
above getting ordq(aα

n − am1) < c22 log n. This implies, by an argument
similar to the one used before, that m2 < c23 log n. From now on, the proof
proceeds in the same way as before and shows that (4.5) implies (4.6) with
some appropriate constant c12 > c23.
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Case 2: s = ±1. Here, α and β are quadratic units. As we already
mentioned before, treating separately the cases n even and n odd amounts
to replacing {un}n≥0 by the two sequences {u2n}n≥0 and {u2n+1}n≥0. Thus,
we replace (α, β) by (α2, β2), and therefore we may assume that s = −1 and
β = α−1. We write

un −Nk = cαn + dβn −Nj = cβn(α2n − c−1Njα
n + dc−1)

= cβn(αn − z1,j)(αn − z2,j),
where

zi,j =
c−1Nj ±

√
c−2N2

j − 4dc−1

2
for i = 1, 2

are the roots of the quadratic equation x2 − c−1Njx + dc−1 = 0. We let
Lj =K(z1,j) and let p be some prime ideal of L sitting above the prime 2
(which is the smallest prime that does not divide s=1). Then, by Lemma 4.2,
we have

ord2(un−Nj) ≤ ordp(un−Nj) = ordp(cαn)+ordp(αn−z1,j)+ordp(αn−z2,j).
Since Lj is of degree at most 4 and α is a unit, ordp(cαn) = ordp(c) ≤ c24,
where we can take c24 = 4 max{ord2(c), 1}. The other two quantities can be
bounded as

max
i=1,2
{ordp(αn − zi,j)} ≤ c25 logH(zi,j) log n ≤ c26(c12 log n)2j+1,

where we used (4.13), as well as the fact that

logH(zi,j) ≤ c27 logNj for i = 1, 2

(see again [9, Lemma A.3]). Hence,

ord2(un −Nj) < c24 + 2c26(c12 log n)2j+1(4.18)

< 3c26(log n)2j+1 for n ≥ n0.
From now on the argument continues as in the preceding case, by writ-

ing a lower bound for ord2(un −Nj) = ord2(amk + · · ·+ amj+1) of the form
c28mj+1/logmj+1, where, by Lemma 3.1(iii), we can take c28 = 3/10 pro-
vided that mj+1 ≥ m0 = 41, and by comparing this lower bound with the
upper bound (4.18) to get

mj+1

logmj+1
< 10c26(c12 log n)2j+1.

This leads to

mj+1 < 20c26(c12 log n)2j+1
(
log(10c26) + (2j + 1) log(c12 log n)

)
(4.19)

< 40c26(c12 log n)2j+2

for n ≥ n0. We assume that n0 is sufficiently large such that the inequality
40c26(c12 log n)2 ≥ 41 holds, so that the case mj+1 ≤ 41 is also incorpo-
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rated in (4.19). Thus, we deduce that also in this case inequality (4.6) is
a consequence of inequalities (4.5) provided that we choose c12 such that
c212 > 40c26. Theorem 1.2 is therefore proved.

5. Proof of Theorem 1.3. Here, we need the following result from [1].

Lemma 5.1. Let N be a positive integer not of the form Fm for some
positive integer m. Then for all positive integers n ≥ 3 one has

(5.1) ord2(Fn −N) < 1730 log(6N2) max{10, log n}2.

Let γ = (1+
√

5)/2 be the golden section. We also need the following well-
known facts about the size and 2-adic valuation of the Fibonacci numbers.

Lemma 5.2.

(i) We have

γn−2 ≤ Fn ≤ γn−1 for all n ≥ 1.

(ii) Fn is even if and only if 3 |n. If n = 3m and m is odd, then 2 ‖Fn,
while if m is even, then ord2(Fn) = ord2(n) + 2. In particular,

ord2(Fn) ≤ log(n/3)

log 2
+ 2.

We use {Ln}n≥0 for the Lucas companion of the Fibonacci sequence
which is given by L0 = 2, L1 = 1 and Ln+2 = Ln+1 + Ln for all n ≥ 0.
Furthermore

(5.2) Fa − Fb = F(a±b)/2L(a∓b)/2

whenever a ≡ b (mod 2). For a positive integer m we let z(m) be the minimal
positive integer k such that m |Fk. This exists for all m. Moreover, m |Fn
if and only if z(m) |n. With this notation, Lemma 5.2(ii) can be formulated
as z(2s) = 3 · 2s−2 for all s ≥ 3.

Proof of Theorem 1.3. (I) Assume that Fn = am. By Lemma 5.2(i), we
have

(5.3) (n− 2) log γ ≤ logFn ≤ (n− 1) log γ.

Assume that m ≥ 286. Then, by Lemma 3.1(iv),

(5.4) log am <
3m

logm
.

Further, by Lemma 3.1(ii), we see that

ord2(am) ≥ π(m)− π(m/2) >
3m

10 logm
.
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The left-hand side is 15.1698 . . . at m = 286, so that ord2(Fn) ≥ 16. By
Lemma 5.2(ii), we have

ord2(Fn) ≤ log(n/3)

log 2
+ 2.

So, we get

(5.5)
3m

10 logm
< ord2(am) = ord2(Fn) ≤ log(n/3)

log 2
+ 2.

From (5.3)–(5.5), we obtain

(n− 2) log γ <
3m

logm
<

10 log(n/3)

log 2
+ 20,

which gives n ≤ 163. Thus, we have showed that either m ≤ 286 or n ≤ 163.
Since F188 > a286, we deduce that n ≤ 187 and a quick computer calculation
shows that (n,m) = (1, 1), (2, 1), (3, 2) and (6, 4) are the only solutions of
this equation.

(II) Assume that Fn = am2 + am1 with m2 > m1 ≥ 1. Assume first that
n ≤ 1000. By Lemmas 5.2(i) and 3.1(iv) we find, assuming m2 ≥ 17, that

(n− 1) log γ ≥ logFn = log(am2 + am1) > log am2 >
m2

logm2
,

giving m2 ≤ 3985. If m1 ≥ 41, then by Lemmas 5.2(ii) and 3.1(ii), we have

log(n/3)

log 2
+ 2 ≥ ord2(Fn) = ord2(am1 + am2)(5.6)

≥ min{ord2(am1), ord2(am2)} ≥ 3m1

10 logm1
,

giving m1 ≤ 179. We wrote a Mathematica code that searched among all
n ≤ 1000, 1 ≤ m1 ≤ 179 and m1 < m2 ≤ 3985, and gave only the solutions
indicated in the statement of the theorem. We now prove that there are no
others.

We may assume that n > 1000. One checks that m2 > 286 just because
2a286 < F1000. In particular, by Lemmas 3.1(iv) and 5.2(i), we have

(5.7) (n−2) log γ ≤ logFn = log(am1+am2) ≤ log(2am2) < log 2+
3m2

logm2
,

and since n > 1000, we get m2 ≥ 1123. Further,

(5.8) ord2(am2) ≥ 3m2

10 logm2
≥ 47.9658 . . . for m2 ≥ 1123,

so that 248 | am2 . If am1 is a Fibonacci number, then, by (I), am1 ∈ {1, 2, 8}.
Since

Fn ≡ 1, 2, 8 (mod 248),



206 F. LUCA AND A. O. MUNAGI

it follows that n ≡ 3 (mod 6) if am1 = 2 and n ≡ 0 (mod 6) if am1 = 8.
Using formula (5.2), we get

am2 = Fn − am1 = F(n±k)/2L(n∓k)/2 for some k ∈ {1, 2, 3, 6},

where, of course, n ≡ k (mod 2). Since Lm is never a multiple of 8 for any
positive integer m, we deduce, by Lemmas 3.1(ii) and 5.2(ii), that

3m2

10 logm2
< ord2(am2) = ord2(F(n±k)/2) + ord2(L(n∓k)/2)

≤ log((n+ 6)/6)

log 2
+ 4.

Thus, by (5.7), we get

(n− 2) log γ < log 2 +
3m2

logm2
< log 2 +

10 log((n+ 6)/6)

log 2
+ 40,

giving n < 192, a contradiction. Thus, am1 is not a Fibonacci number.

We next find an upper bound for m1. Assume that m1 ≥ 286. We rewrite
our equation as

Fn − am1 = am2 .

We compute the 2-adic valuation of the left-hand side. By Lemma 5.1, we
see, assuming n > 23000 > e10, that

(5.9) ord2(Fn − am1) < 1730(log n)2 log(6a2m1
).

Now, by Lemma 3.1(iv) and inequality (5.6), we have

log(6a2m1
) = log 6 + 2 log am1 < log 6 +

6m1

logm1
< log 6 +

20 log(n/3)

log 2
+ 40.

However, Lemma 3.1(ii) shows that

ord2(Fn − am1) = ord2(am2) >
3m2

10 logm2
,

which together with (5.9) gives

(5.10)
m2

logm2
<

17300

3
(log n)2

(
log 6 +

20 log(n/3)

log 2
+ 40

)
.

Inserting (5.10) into (5.7), we get

(n− 2) log γ < log 2 + 17300(log n)2
(

log 6 +
20 log(n/3)

log 2
+ 40

)
,

which leads to n < 1.4 ·1010. In particular, ord2(Fn) ≤ 34. This implies that
ord2(am1) ≤ 34, so, by Lemma 3.1(ii), we have

3m1

10 logm1
< ord2(am1) ≤ 34,
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giving m1 ≤ 750. Computations show that in fact m1 ≤ 202, so the as-
sumption that m1 ≥ 286 does not hold. Hence, m1 ≤ 285, and therefore
log(6a2m1

) ≤ log(6a2285) ≤ 181. Thus, by Lemmas 3.1(ii) and 5.1, assuming
still that n > 23000 > e10, we have

3m2

10 logm2
< ord2(am2) = ord2(Fn − am1) ≤ 1730(log n)2 log(6a2m1

)

< 1730 · 181(log n)2,

and consequently
m2

logm2
< 1.05 · 106(log n)2.

The above inequality together with (5.7) gives

(n− 2) log γ < log 2 + 3.15 · 106(log n)2,

which implies that n < 3.2 · 109. This shows that ord2(Fn) ≤ 31, therefore
ord2(am1) ≤ 31, which gives m1 ≤ 181.

Next, we split the remaining range in two according to the value of m2.
For q ∈ {11, 13, 17, 19, 23}, assume that the interval (m2/q,m2/(q−1)] does
not contain a prime number. Put x = m2/q, and let k be the largest positive
integer such that pk ≤ m2/q, where 2 = p1 < p2 < · · · is the sequence of all
prime numbers. Then, since the interval (x, x+x/q(q− 1)] does not contain
a prime, it follows that pk+1 > (1 + 1/506)pk. A result of Schoenfeld [8]
(even with the number 16597 instead of 506) shows that x < 2010760, so
k ≤ π(2010760) = 149689. We checked numerically that in fact the largest
such k is k = 3385, so m2 ≤ qp3386 = 23 · 31469 = 723787. Thus, assume
that m2 ≤ 750000. Then

log(2am2) ≤ log 2 +
∑

p≤750000
log

(
750000

p− 1
+ 1

)
< 90000,

which yields

(n− 2) log γ ≤ logFn = log(am1 + am2) ≤ log(2am2) < 90000,

giving n < 190000. Next we computed

{Fn (mod 240)}1≤n≤190000 and {am1 (mod 240)}1≤m1≤200,

and we intersected the above two lists. Unsurprisingly, the only common
values were found for (n,m1) = (1, 1), (2, 1), (3, 2), (6, 4), which are the cases
for which am1 ∈ {1, 2, 8} is a Fibonacci number; we have already treated
these.

Thus, from now on, we assume m2 > 750000. We next prove that

248 · 328 · 59 · 74 · 11 · 13 · 17 · 19 · 23 | am2 .

The fact that 248 divides am2 has been shown in (5.8) and the fact that
each of the primes q ∈ {11, 13, 17, 19, 23} divides am2 follows from the above
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arguments because we are in the case when m2 > 750000. For the exponents
of the primes 3, 5 and 7, we used Lemma 3.1(ii) in the following way. For
the power of 3, we checked first that

m2/2

log(m2/2)− 0.5
− m2/3

log(m2/3)− 1.5
≥ 28

for all m2 > 2500. In light of Lemma 3.1, this shows that the interval
(m2/3,m2/2] contains at least 28 primes for m2 > 2500, which is acceptable
for us. Similar arguments work for the other two primes. For example, the
inequality

m2/4

log(m2/4)− 0.5
− m2/5

log(m2/5)− 1.5
> 9

holds for all m2 > 8000, and the inequality

m2/6

log(m2/6)− 0.5
− m2/7

log(m2/7)− 1.5
> 4

holds for all m2 > 41000.

From now on, we start eliminating some values of m1:

• Assume that 4 ‖ am1 . Then 4 ‖Fn, which is impossible.
• Assume that 11 | am1 but 5 - am1 . Then 10 = z(11) |n, so 5 |F10 |Fn,

and 5 | am2 , but 5 - am1 , a contradiction.
• Assume that 15 | am1 but 11 - am1 . Then 20 = z(15) |n, so that

11 |F10 |Fn, and 11 | am2 , but 11 - am1 , a contradiction.
• Assume that 16 | am1 but 9 - am1 . Then 12 = z(16) |n, so 9 |F12 |Fn,

and 9 | am2 , but 9 - am1 , a contradiction.
• Assume that 27 | am1 but 17 - am1 . Then 9 | 36=z(27) |n, so 17 |F9 |Fn,

and 17 | am2 , but 17 - am1 , a contradiction.
• Assume that 27 | am1 but 19 - am1 . Then 18 | 36 = z(27) |n, so that

19 |F18 |Fn, and 19 | am2 , but 19 - am1 , a contradiction.
• Assume that 32 | am1 but 7 - am1 . Then 8 = z(32) |n, so 7 |F8 |Fn, and

7 | am2 , but 7 - am1 , a contradiction.
• Assume that 32 | am1 but 23 - am1 . Then 24 = z(32) |n, so 23 |Fn, and

23 | am2 , but 23 - am1 , a contradiction.
• Assume that 40 | am1 but 11 - am1 . Then 30 = z(40) |n, so z(40) |n,

therefore 11 |F30 |Fn, and 11 | am2 , but 11 - am1 , a contradiction.

After all the above tests, no m1 ∈ [1, 181] \ {1, 2, 4} survived. This com-
pletes the proof of Theorem 1.3.
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[2] P. Erdős, S. W. Graham, A. Ivić and C. Pomerance, On the number of divisors of
n!, in: Analytic Number Theory, Vol. 1 (Allerton Park, IL, 1995), Progr. Math. 138,
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