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CONTINUITY OF HALO FUNCTIONS ASSOCIATED TO
HOMOTHECY INVARIANT DENSITY BASES

BY
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Abstract. Let B be a collection of bounded open sets in Rn such that, for any x ∈ Rn,
there exists a set U ∈ B of arbitrarily small diameter containing x. The collection B is
said to be a density basis provided that, given a measurable set A ⊂ Rn, for a.e. x ∈ Rn
we have

lim
k→∞

1

|Rk|

�

Rk

χA = χA(x)

for any sequence {Rk} of sets in B containing x whose diameters tend to 0. The geometric
maximal operator MB associated to B is defined on L1(Rn) by

MBf(x) = sup
x∈R∈B

1

|R|

�

R

|f |.

The halo function φ of B is defined on (1,∞) by

φ(u) = sup

{
1

|A|

∣∣∣∣{x ∈ Rn : MBχA(x) >
1

u

}∣∣∣∣ : 0 < |A| <∞
}

and on [0, 1] by φ(u) = u. It is shown that the halo function associated to any homothecy
invariant density basis is a continuous function on (1,∞). However, an example of a
homothecy invariant density basis is provided such that the associated halo function is
not continuous at 1.

1. Introduction. Let B be a collection of sets of positive measure in Rn.
Moreover, suppose that for each point x in Rn there exist members of B of
arbitrarily small diameter containing x. A natural question to pose is: for
which functions f do we have

(1) lim inf
diamR→0
x∈R∈B

1

|R|

�

R

f = lim sup
diamR→0
x∈R∈B

1

|R|

�

R

f = f(x) a.e.?

Here the underlying measure is Lebesgue measure and, following the usual
convention, |A| denotes the Lebesgue measure of a measurable set A. Of
course, the answer to this question largely depends on B itself. If B were,
for instance, the collection of cubes in Rn, (1) would hold for any f in
L1(Rn). If B were the larger class consisting of all rectangular parallelepipeds
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in Rn whose sides were parallel to the axes, (1) would hold for all f in
L(logL)n−1(Rn) but would not hold for some functions in L(logL)n−2(Rn).
If B were the collection of all rectangular parallelepipeds in Rn, (1) would
fail even for some functions in L∞(Rn). (Proofs of these results may be
found in [4].)

If (1) holds for every function lying in the class LΦ of measurable func-
tions f such that

	
Rn Φ(|f |) <∞, then B is said to differentiate the integral

of any f in LΦ(Rn), or, more colloquially, differentiate LΦ(Rn). Whether or
not B differentiates LΦ(Rn) is closely linked to the behavior of the associated
geometric maximal operator MB, defined by

MBf(x) = sup
x∈R∈B

1

|R|

�

R

|f |.

It is rather easily shown that if Φ is a Young function and MB is of weak
type (Φ,Φ), i.e.

|{x : MBf(x) > α}| ≤ C
�
Φ(|f |/α),

where C is independent of f and the parameter α, then B differentiates
LΦ(Rn). Moreover, as was shown in [5], if B is homothecy invariant the
converse also holds.

A boundedness property of a geometric maximal operator quite a bit
weaker than a weak type (Φ,Φ) estimate is a so-called Tauberian estimate.
In particular, for a given 0 < α < 1 we say that the maximal operator MB
satisfies a Tauberian estimate with respect to α if

|{x : MBχA(x) > α}| ≤ C|A|
holds for all measurable A ⊂ Rn, where the constant C is independent of A.
It is important here that C does depend on α and can generally be expected
to tend to infinity as α tends to 0. The optimal C with respect to 1/u for
u ∈ (1,∞) is given by the halo function associated to B:

φ(u) = sup

{
1

|A|

∣∣∣∣{x ∈ Rn : MBχA(x) >
1

u

}∣∣∣∣ : 0 < |A| <∞
}
.

We emphasize here that the supremum is only being taken over measurable
sets A of finite measure in Rn. Following the usual convention, we extend
the halo function φ to [0, 1] by setting φ(u) = u for u ∈ [0, 1].

The halo function φ associated to a basis B provides considerable infor-
mation regarding the differentiation properties of B. Busemann and Feller
showed in [2] that, provided B is homothecy invariant, the finiteness of its
halo function φ(u) for all u in [0,∞) holds if and only if (1) holds for all
f ∈ L∞(Rn). (A basis B satisfying such a condition is called a density
basis.) Bounds on the growth of the halo function φ(u) are able to yield
better differentiation properties. For example, Soria showed in [12] that, if
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φ(u) ≤ c0u(1 + log u)m for some non-negative constants m, c0, then B dif-
ferentiates L(log+ L)m log+ log+ L(Rn). (Further estimates along these lines
may be found in the subsequent paper [10] of Sjölin and Soria.)

Motivated by the known sharp weak type bounds of the Hardy–Little-
wood and strong maximal operators, mathematicians working in the area of
differentiation of integrals have long suspected the following:

The Halo Conjecture. Let B be a homothecy invariant collection of
open sets in Rn and let φ be the halo function associated to B. Then B
differentiates Lφ(Rn).

Although significant work on the Halo Conjecture has been done by,
among others, de Guzmán, Hayes, Pauc, Sjölin, and Soria (see for instance
[4, 5, 8, 9, 10, 12]), the status of the Halo Conjecture appears to be far from
resolution.

One difficulty regarding the Halo Conjecture is a lack of general under-
standing regarding structural properties of halo functions. Partial progress
on this front was made recently by P. Hagelstein and A. Stokolos, who
proved in [6] quantitative bounds on the growth of a class of halo functions
that enabled them to ascertain that, provided B is a homothecy invariant
basis of convex sets, finiteness of φ(u) for any value of u > 1 was enough to
imply that B differentiates Lp(Rn) for sufficiently large p. (This turns out
to not only be of intrinsic interest but also have implications regarding Lp

bounds of certain multiplier operators in harmonic analysis; see in this re-
gard [1, 3, 7].) However, many rather näıve questions regarding properties of
halo functions remain unanswered. The purpose of this paper is to address
one of these; namely, the issue of continuity of halo functions. In particular,
we will show that, provided B is a homothecy invariant density basis, the
halo function φ associated to B must be continuous on (1,∞). However, we
shall also see that the halo function associated to a homothecy invariant
density basis need not be continuous at 1. We will also indicate an appli-
cation of the proof of the main result to issues involving semicontinuity of
halo functions associated to bases of rectangles, as well as suggest directions
for further research in this area.

2. Continuity of halo functions

Theorem 1. Let B be a homothecy invariant density basis consisting
of bounded open sets in Rn, and let φ be the halo function associated to B
defined on (1,∞) by

φ(u) = sup

{
1

|A|

∣∣∣∣{x ∈ Rn : MBχA(x) >
1

u

}∣∣∣∣ : 0 < |A| <∞
}
.

Then φ is a continuous function on (1,∞).
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Proof. We first observe that, since B is a homothecy invariant density
basis, φ(u) is finite for every u > 1. (A proof of this may be found in
Chapter III of [4].)

Let now 0 < α < 1. Since φ(1/α) is a nonincreasing function of α, it
suffices to prove the following lemma, as together they rule out the possibility
of a jump discontinuity of φ(1/α) as a function of α.

Lemma 1. Let B be a homothecy invariant density basis consisting of
bounded open sets in Rn, and let 0 < α < 1.

(i) Suppose that for some finite constant C,

(2) |{x : MBχE(x) > α}| ≤ C|E|
holds for all measurable sets E in Rn. Then, for the same constant C,

(3) |{x : MBχE(x) ≥ α}| ≤ C|E|
holds for all measurable sets E in Rn.

(ii) Suppose that for some finite constant C,

(4) |{x : MBχE(x) ≥ α}| ≤ C|E|
holds for all measurable sets E in Rn. Then for any ε > 0, there exists δ > 0
such that, for the same constant C,

(5) |{x : MBχE(x) > α− δ}| ≤ (C + ε)|E|
holds for all measurable sets E in Rn.

Proof of Lemma 1. We first prove (i). Suppose (3) did not hold for all
measurable sets E. Then for some measurable set E (which we now fix) we
must have

|{x : MBχE(x) ≥ α}| > C|E|.
Let ε̃ > 0 be such that

|{x : MBχE(x) ≥ α}| > (C + ε̃)|E|.
Note that for every ε > 0,

|{x : MBχE(x) > α− ε}| > (C + ε̃)|E|.
Let now 0 < ε < min(α/2, 1 − α). By Fatou’s lemma there exists

{Rj}Nj=1 ⊂ B such that

1 >
1

|Rj |

�

Rj

χE > α− ε

for each j and ∣∣∣ N⋃
j=1

Rj

∣∣∣ > (C + ε̃/2)|E|.
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Since
⋃N
j=1Rj is a finite union of open sets, there exists a measurable set

E′ ⊂
⋃N
j=1Rj − E satisfying

1

|Rj − E|

�

Rj−E
χE′ =

1

1− α
ε

for each j. Let Ẽ = E ∪E′. Setting c = 1
1−α we find that for each R ∈ {Rj},

1

|R|

�

R

χẼ =
1

|R|
[|E ∩R|+ cε(|R| − |E ∩R|)]

=
1

|R|
[cε|R|+ |E ∩R|(1− cε)]

>
1

|R|
[cε|R|+ (α− ε)|R|(1− cε)] ≥ α+ ε[c(1− α)− 1] ≥ α.

So (1/|R|)
	
R χẼ > α. Note now that since φ(2/α) < ∞, there exists a

finite constant Cα/2 such that |{x : MBχA(x) > α/2}| ≤ Cα/2|A| for all
measurable A, and accordingly

|Ẽ| ≤ |E|+ cε
∣∣∣ N⋃
j=1

Rj

∣∣∣ ≤ |E|+ cεCα/2|E|

as
⋃
Rj ⊂ {x : MBχE(x) > α− ε} ⊂ {x : MBχE(x) > α/2}. Moreover

|{x : MBχẼ(x) > α}| ≥
∣∣∣ N⋃
j=1

Rj

∣∣∣ > (C + ε̃/2)|E|

≥ (C + ε̃/2)
|Ẽ|

1 + cεCα/2
> (C + ε̃/4)|Ẽ|

for ε sufficiently small, contradicting (2).

The proof of (ii) follows along similar lines. We proceed by contradiction.
Suppose (5) did not hold for all measurable sets E. Then there would exist
an ε > 0 (which we now fix) such that, for any δ > 0, there exists Eδ such
that

|{x : MBχEδ(x) > α− δ}| > (C + ε)|Eδ|.

Let now 0 < δ < min(α/2, 1−α) and Eδ the set associated to δ as above.
Let {Rj}Nj=1 ⊂ B be such that

1 >
1

|Rj |

�

Rj

χEδ > α− δ,
∣∣∣ N⋃
j=1

Rj

∣∣∣ > (C + ε/2)|Eδ|.
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Let E′δ ⊂
⋃N
j=1Rj − Eδ be a measurable set satisfying

1

|Rj − Eδ|

�

Rj−Eδ

χE′δ =
1

1− α
δ for each j.

Let c = 1
1−α , and let Ẽδ = Eδ ∪ E′δ. Observe that if R ∈ {Rj} we have

1

|R|

�

R

χẼδ ≥
1

|R|
[|Eδ ∩R|+ cδ(|R| − |Eδ ∩R|)]

=
1

|R|
[cδ|R|+ |Eδ ∩R|(1− cδ)]

≥ 1

|R|
[cδ|R|+ (α− δ)|R|(1− cδ)]

≥ α+ [−δ + cδ(1− α)] ≥ α.
Note also

|Ẽδ| ≤ |Eδ|+ cδ
∣∣∣ N⋃
j=1

Rj

∣∣∣ ≤ |Eδ|+ cδCα/2|Eδ|

as
⋃
Rj ⊂ {x : MBχEδ(x) > α/2}, and hence

|{x : MBχẼδ(x) ≥ α}| ≥
∣∣∣ N⋃
j=1

Rj

∣∣∣ > (C + ε/2)|Eδ|

≥ (C + ε/2)
|Ẽδ|

1 + cδCα/10
> (C + ε/4)|Ẽδ|

for δ > 0 sufficiently small, contradicting (4) and completing the proof of
the lemma and the theorem.

3. Further remarks

1. The above theorem regarding the continuity of halo functions asso-
ciated to density bases finds the following nice application regarding the
semicontinuity of a Tauberian condition associated to a homothecy invari-
ant basis of rectangular parallelepipeds satisfying a Tauberian condition at
a particular constant.

Theorem 2. Let B be a homothecy invariant collection of rectangular
parallelepipeds in Rn. Suppose for some 0 < γ < 1 the maximal operator
MB satisfies the Tauberian condition |{x : MBχE(x) > γ}| ≤ C|E| for all
measurable sets E ⊂ Rn. Then MB moreover satisfies the inequality

|{x : MBχE(x) ≥ γ}| ≤ C|E|
for all measurable sets E in Rn.
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Proof. Let E be a measurable set in Rn. We inductively define HkB,γ(E)

for k = 0, 1, 2, . . . by setting H0
B,γ(E) = E and

HkB,γ(E) = {x : MBχHk−1
B,γ (E)(x) ≥ γ} for k ≥ 1.

Define γ̃ = γ + 1
2(1 − γ). Note that 0 < γ < γ̃ < 1 and H1

B,γ̃(A) ⊂ {x :
MBχA(x) > γ} for all measurable A ⊂ Rn. By the Tauberian condition on
MB we then also have

|H1
B,γ̃(A)| ≤ C|A|

for all measurable A ⊂ Rn.
Now, by a lemma of Hagelstein and Stokolos in [6], if R ∈ B and

|R|−1
	
R χE = α < γ, then R ⊂ HKα,γB,γ (E) for some constant Kα,γ depending

only on n, α, and γ, with in particular

Kα,γ =

⌈
− log(γ/α)

log γ

⌉
·
⌈

2 +
log+(γ · 2n)

log(1/γ)

⌉
+ 1.

This implies that B forms a density basis. To see this, let 0 < α < γ
and let E be a measurable set in Rn. Let R be a member of B such that
|R|−1

	
R χE > α. Then R ⊂ HKα,γ̃B,γ̃ (E) and in particular

|{x : MBχE(x) > α}| ≤ |HKα,γ̃B,γ̃ (E)| ≤ C|HKα,γ̃−1B,γ̃ (E)|

≤ · · · ≤ CKα,γ̃ |E|.
Hence B is a density basis. By the lemma above, the desired result follows.

2. We remark that the statement of the above theorem was used in the
proof of Proposition 1 of [6] without explicit justification; we are pleased
to have provided it here. Hagelstein and Stokolos thank Teresa Luque for
bringing this issue to their attention.

A closely related and open problem is the following:

Problem. Suppose B is a collection of open sets in Rn (not necessarily
forming a density basis) and the associated maximal operator MB satisfies
the Tauberian condition |{x : MBχE(x) > γ}| ≤ C|E| for all measurable
sets E ⊂ Rn. Must MB satisfy the inequality

|{x : MBχE(x) ≥ γ}| ≤ C|E|
for all measurable sets E in Rn?

3. Although the halo function of a density basis is defined on [0,∞) and
has been seen to be continuous on (1,∞), it is not necessarily continuous
at 1, as is seen by the following example:

Example. Let B consist of all homothecies of sets in R of the form

((0, 1) ∪ (x, x+ ε)) ∩ (0, 2)
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where 0 < ε < 1. Then MB is dominated by twice the Hardy–Littlewood
maximal operator and hence is bounded on Lp(R) for 1 < p ≤ ∞. Thus B
forms a density basis. (Note that, given x ∈ R, B contains sets of arbitrarily
small diameter containing x since it contains all the homothecies of a col-
lection of bounded sets.) Observe however that MBχ(0,1) = 1 on (0, 2) and
hence limu→1+ φ(u) ≥ 2, so that φ(u) is discontinuous at 1.

Of course, the collection B does not consist solely of convex sets, sug-
gesting the following problem:

Problem. Let B be a homothecy invariant density basis of convex sets
in Rn, and let φ(u) be the halo function of the associated maximal opera-
tor MB. Must φ(u) be continuous at 1?

A. A. Solyanik proved in [11] that the halo functions of both the Hardy–
Littlewood and strong maximal operators are indeed continuous at 1. We
wish to thank A. Stokolos for informing us of this result.
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