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Abstract. A Lie algebra is called a generalized Heisenberg algebra of degree n if its
centre coincides with its derived algebra and is n-dimensional. In this paper we define for
each positive integer n a generalized Heisenberg algebra Hn. We show that Hn and Hn

1 ,
the Lie algebra which is the direct product of n copies of H1, contain isomorphic copies
of each other. We show that Hn is an indecomposable Lie algebra. We prove that Hn

and Hn
1 are not quotients of each other when n ≥ 2, but H1 is a quotient of Hn for each

positive integer n. These results are used to obtain several families of Hn-modules from
the Fock space representation of H1. Analogues of Verma modules for Hn, n ≥ 2, are also
constructed using the set of rational primes.

1. Introduction. The classical Heisenberg algebra plays an important
role in representations of affine algebras. Vertex operator representations of

the simplest affine algebra A
(1)
1 arise from a canonical representation of a

Heisenberg subalgebraH1 with generators {xk, z : k ∈ Z−{0}} and relations{
[xk, xl] = kδk+l,0z,

z is a central symbol,

where δx,y is Kronecker delta for any symbols x, y. In analogy with the
notation in Hn defined below we write kz as zk and assume that zk is
Z-linear in the subscript with z1 = z and 0z = z0 = 0.

The importance of the Heisenberg algebra in this context is reflected
in [KP] and [L] where it is shown that each vertex operator realization of
the basic module depends on the choice of the Heisenberg subalgebra of the
corresponding affine Lie algebra. In other words, the number of distinct real-
izations is equal to the number of inequivalent (i.e., non-conjugate under the
adjoint action of the associated Kac–Moody group) Heisenberg subalgebras
of the corresponding affine Lie algebra. This precise formulation is taken
from [M]. We refer the reader to [D], [FJ], [J], [LW], and [KKLW] for more
on the role of Heisenberg algebras in representations of infinite-dimensional
algebras.
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Toroidal algebras are defined in [MRY] for n ≥ 1 and for n = 1 they
are precisely the affine algebras. Related objects have also been studied in
a physical context (see [B]). In contrast to the one-dimensional centre for
affine algebras, the toroidal algebras have an infinite-dimensional centre for
n ≥ 2. One property of the toroidal algebras that distinguishes them from
many of the infinite-dimensional Lie algebras in the literature is that they
have vertex operator representations.

Another interesting feature of the toroidal algebras is that they contain
Generalized Heisenberg Algebras (GHA’s) as subalgebras (see for instance
[F], [FO2], [BA], and [RB]). Like the Heisenberg algebra H1, these have the
property that their derived algebra is equal to the centre, but the centre
is now infinite-dimensional. We distinguish the generalized Heisenberg al-
gebras that have a finite-dimensional centre from Generalized Heisenberg
Algebras by calling the former generalized Heisenberg algebras of degree n,
where n is the dimension of the centre. Unlike the Heisenberg algebra H1,
the simplest Generalized Heisenberg Algebra does not have a canonical irre-
ducible representation. It is given by generators {xr, zr(s) : r, s ∈ Zn−{0}}
and relations {

[xr, xs] = zr(r + s),

zr(s) is central and Z-linear in the subscript,

and z(0,...,0) = 0.

Guided by the lesson of affine algebras we feel that a better understand-
ing of GHA’s would contribute to the study of toroidal algebras. One direc-
tion of pursuit is to follow the route of [BC] and work with a central quotient
of the toroidal algebra. In [BC] only the central terms of homogeneous de-
gree zero remain. This means that the resulting toroidal algebra τn has an
n-dimensional centre.

In this paper we investigate the corresponding effect on the Heisenberg
subalgebra. The resulting generalized Heisenberg algebra of degree n, de-
noted by Hn, is given by generators {xr, zr : r ∈ Zn − {0}} and relations{

[xr, xs] = δr+s,0zr,

zr is central and Z-linear in the subscript.

We show that although Hn and Hn1 = H1 × · · · × H1 are quite similar,
they are not isomorphic and neither is a quotient of the other. On the other
hand, they are related in the sense that one can obtain some representations
of Hn from those of Hn1 because they are isomorphic to subalgebras of each
other.

We hope that these results will stimulate interest in the several questions
they raise. For instance, what is the relationship between the representa-
tions given by our results and the known constructions of representations



GENERALIZED HEISENBERG ALGEBRAS 257

for toroidal Lie algebras? In [F] Fabbri has given vertex representations of
the simplest GHA given by our second set of relations above. Are there
representations of Hn that can be manufactured from these vertex repre-
sentations? There is an exchange between Hn and Hn1 in which each passes
its representations to the other using Propositions 2.5–2.7. In particular,
Proposition 2.5 permits us to regard every representation of the classical
Heisenberg Lie algebra H1 as Hn-representations for all n ≥ 2.

The methods in this paper can be used to show that, for an arbitrary
positive integer n, there are p(n) isomorphism classes of generalized Heisen-
berg algebras of degree n, where p(n) is the number of partitions of n. This
paper deals only with the shortest partition of n and the longest partition
of n.

There is a class of generalized Heisenberg algebras similar to those in this
paper. It is the d-fold Heisenberg algebra on p. 98 of [KMPS]. The commu-

tation relations are given by [aim, a
j
n] = mδijδm+n,0, i, j = 1, . . . d, m,n ∈ Z.

Unlike the generalized Heisenberg algebras in the present paper, the derived
algebra of the d-fold Heisenberg algebra is one-dimensional. The significance
of the d-fold Heisenberg algebra in elementary quantum mechanics is dis-
cussed on pp. 98 and 99 of [KMPS].

We end this introduction with the statement of our main theorem.

Main Theorem. For each positive integer n, the generalized Heisen-
berg algebra Hn is indecomposable. The direct product H1

n embeds in Hn,
and Hn embeds in H1

n. When n ≥ 2, Hn is not a quotient of H1
n, and H1

n

is not a quotient of Hn. Moreover, for every integer n, H1 is a quotient
of Hn.

2. Relationships between the generalized Heisenberg algebras
of degree n and the Heisenberg algebra. The definitions of the Lie
algebras in this paper make sense for any integral domain of characteristic
zero. However, for concreteness, one may assume that our Lie algebras are
over the field of complex numbers, C.

A basis for the centre, Z(Hn), of Hn is {ze1 , . . . , zen} where {e1, . . . , en}
is the standard basis for Zn. With z as the generator of Z(H1) a basis for
Z(Hn1 ) is {ze1, . . . , zen}

Remark. When n ≥ m, the centre of Hm embeds in the centre of Hn.
For that reason not only does Hm embed in Hn but it is also a quotient
of Hn. The same statement applies to Hm1 and Hn1 .

Definition 2.1. A Lie algebra, L, is indecomposable if whenever L =
L1 +̇ L2 (internal direct sum), where L1, L2 are ideals, then L1 or L2 is 0.

Proposition 2.2. Hn is an indecomposable Lie algebra.
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Proof. Given any f ∈ Hn and a generator xr, it follows from the defini-
tion of the Lie bracket in Hn that [f, xr ] is non-zero only when f has x−r
as a non-zero component. In that case [f, xr ] is a non-zero multiple of zr.
A consequence of this fact is that if Hn = A +̇ B, A 6= 0, B 6= 0, then for
each i ∈ {1, . . . , n}, either A or B, but not both, has an element, fi, with a
non-zero xei-term. From [fi, x−ei ] we conclude that zei is in A or B and does
not split into two non-zero summands zA and zB with zA ∈ A and zB ∈ B.

Suppose that zei ∈ A for every i ∈ {1, . . . , n}. Then Z(Hn) ⊆ A. This
implies that every generator xr is in A by the first paragraph of the proof.
Hence B = 0. In that case we would be done. We therefore assume that the
standard basis of Z(Hn) splits into two disjoint non-empty subsets SA ⊆ A
and SB ⊆ B. The subscripts ei of the elements zei give a corresponding parti-
tion, TA∪TB, of the standard basis of Zn. We deduce from [xr, xs] = δr+s,0zr
that whenever xr is a component of an element in A (respectively, B), then r
is spanned by TA (respectively, TB.) Conversely, if every component of s is
non-zero, then xs is neither in A nor B. Moreover no member of A or B has
xs in any of its terms.

By the linear independence of {xr : r ∈ Zn − {0}} we deduce that if no
component of s is 0, then xs 6∈ A +̇B. This contradicts the assumption that
Hn = A +̇B. Therefore, Hn is indecomposable.

Corollary 2.3. Hn is not isomorphic to Hn1 for n ≥ 2.

Apart from having isomorphic centres, what other relationships can be
established between Hn and Hn1 when n ≥ 2? Proposition 2.4 states that
neither is a quotient of the other. But Propositions 2.6 and 2.7 show that
each contains an isomorphic copy of the other. Recall that Z(A) denotes the
centre of a Lie algebra A, shortened to Z if A is clear from the context.

Proposition 2.4. Let n ≥ 2. Then Hn is not a quotient of Hn1 , nor is
Hn1 a quotient of Hn.

Proof. The proof is by contradiction. Denote the derived algebra, [L,L],
of a Lie algebra L by L′. Suppose χ : Hn1 → Hn is an epimorphism.
Then χ(Z(Hn1 )) = χ((Hn1 )′) = H′n = Z(Hn). Recall that dimZ(Hn1 ) =
dimZ(Hn) = n. Hence χ restricted to Z(Hn1 ) is an isomorphism onto Z(Hn).
We now show that this implies that χ is injective. Suppose g ∈ Hn1 and g 6∈
Z(Hn1 ). Then g = f+z for some f that has no non-zero component in Z(Hn1 )
and some z ∈ Z(Hn1 ). Therefore some component of f has a non-zero xr-
term, r some non-zero integer. Say f = (a1, . . . , ar + αxr, 0, . . . , 0) where
ai ∈ H1, ar has no xr-term and α is a non-zero scalar. If χ(f + z) = 0, then
χ(f) ∈ Z(Hn). Now [f, (0, . . . , 0, x−r, 0, . . . , 0)] = (0, . . . , 0, αzr, 0, . . . , 0).
Hence

[χ(f), χ((0, . . . , 0, xr, 0, . . . , 0))] = χ((0, . . . , 0, αzr, 0, . . . , 0)) ∈ Z(Hn).
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Since χ is injective on Z(Hn1 ), this implies that χ(f) /∈ Z(Hn). Hence
χ(f + z) 6= 0. Therefore χ : Hn1 → Hn is an isomorphism. This contra-
dicts Corollary 2.3.

The proof that Hn1 is not a quotient of Hn is similar, mutatis mutandis.

Remark. The obvious projection from Hn onto H1 is not a Lie algebra
map, as we now show. Let j ∈ {1, . . . , n}. The map xr 7→ xrj , zr 7→ zrj is
not a Lie algebra epimorphism from Hn to H1. For instance, let n = 2. Then
[x(1,−1), x(1,1)] = 0, while [x1, x−1] 6= 0. So an epimorphism from Hn onto
H1 cannot be obtained in the natural way.

To get around the difficulty pointed out in the above remark, we let
Sj = {(r1, . . . , rj , rj+1, . . . , rn) : r1, . . . , rn ∈ Z, rj > 0} and let ψj : Sj → N
be a bijection between Sj and the set of natural numbers. In our use of ψj
in the proof of Proposition 2.5 the subscript j in ψj will be suppressed.

Proposition 2.5. Let n ≥ 2. For each j ∈ {1, . . . , n} there is a Lie
algebra epimorphism φj : Hn → H1.

Proof. Let r = (r1, . . . , rn). If rj = 0, set φj(xr) = φj(zr) = 0. If rj > 0,
then r ∈ Sj ; set

φj(xr) =
rj
ψ(r)

xψ(r), φj(x−r) = x−ψ(r), φj(zr) = rjz.

If rj < 0, then −r ∈ Sj . In that case, set φ(xr) = x−ψ(−r). Set φj(z−r) =
−rjz. Proposition 2.5 now follows from the definitions of ψ and Hn and
the assumptions that zr and zk are Z-linear in the arbitrary subscripts r
and k.

The natural map (xr1 , . . . , xrn) 7→ x(r1,...,rn) and (zr1 , . . . , zrn) 7→ z(r1,...,rn)
looks like a good candidate for an embedding ofHn1 intoHn. However it does
not yield a Lie algebra map. For example, let n = 2. Then [(x1, x2), (x−1, x2)]
= (z, 0) 6= (0, 0) but [x(1,2), x(−1,2)] = 0. So for the non-zero element (z, 0)
we have (z, 0) 7→ 0. Hence we do not have an embedding.

In order to get an embedding, we let Gn1 and Gn be the respective gen-
erators of Hn1 and Hn.

Proposition 2.6. The map φ from Gn1 to Gn given by φ((xr1 , . . . , xrn))
=
∑n

i=1 xriei and φ((r1z, . . . , rnz)) = z(r1,...,rn) yields a Lie algebra embed-
ding of Hn1 into Hn.

Proof. Let φ : Hn1 → Hn be the hoped-for embedding. We have

φ((xr1 , . . . , xrn)) =

n∑
i=1

xriei , φ((r1z, . . . , rnz)) = z(r1,...,rn)
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and

[φ((xr1 , . . . , xrn)), φ((xs1 , . . . , xsn))] =
[ n∑
i=1

xriei ,

n∑
i=1

xsiei

]
.

Using [xriei , xsiej ] = 0 if i 6= j, we get[ n∑
i=1

xriei ,
n∑
i=1

xsiei

]
=

n∑
i=1

δri+si,0zriei .

On the other hand,

[(xr1 , . . . , xrn), (xs1 , . . . , xsn)] = (δr1+s1,0zr1 , . . . , δrn+sn,0zrn).

By the definition of φ and Z-linearity in subscripts, we find that

φ((δr1+s1,0zr1 , . . . , δrn+sn,0zrn)) = z(δri+si,0
r1,...,δrn+sn,0rn) =

n∑
i=1

δri+si,0zriei .

Therefore φ is Lie algebra map. Moreover, φ(Z(Hn1 )) = Z(Hn). This proves
that φ is a Lie algebra map with φ(Z(Hn1 )) = Z(Hn). This puts φ in the
same situation as χ in Proposition 2.4. Replacing χ by φ there shows that
φ is an embedding.

Remark. The obvious embedding x(r1,...,rn) 7→ (xr1 , . . . , xrn) of Hn into
Hn1 is not a Lie algebra map. For example, [x(1,1), x(−1,1)] = 0 in H2, but

[(x1, x1), (x−1, x1)] = (z1, 0) 6= 0 in H2
1. The first embedding we present is

not explicit as it relies on Proposition 2.5 and the remark that the kernel of
φj in Proposition 2.5 is generated by {xr : rj = 0}. We give two proofs of
Proposition 2.7. The first proof shows that Hn is a subdirect product of Hn1 .

Proposition 2.7. Hn1 contains a subalgebra isomorphic to Hn.
First proof of Proposition 2.7. Define

∏n
j=1 φj : Hn → Hn1 , where φj is

the map in Proposition 2.5, by (
∏n
j=1 φj)(xr) = (φ1(xr), . . . , φn(xr)). This

map is an embedding because the kernel of φj is generated by {xr : rj = 0}
and the convention is that x(0,...,0) = 0.

We have already noted that the natural map from Hn given by x(r1,...,rn)
7→ (xr1 , . . . , xrn) is not an embedding. We now remedy the situation in a way
that allows us to get intrinsic representations of Hn in Section 2. First we
define positive elements in Zn, n ≥ 2. An element xr = x(r1,...,rn) is positive
(respectively negative) if its first non-zero entry is positive (respectively, neg-
ative). Consequently, if an element xr = x(r1,...,rn) is positive (respectively,
negative), then for some positive integer k, rk > 0 (respectively rk < 0) and
rm = 0 for 1 ≤ m < k.

Example. Let n = 4. The elements x(10,0,0), x(0,2,−1,1), and x(0,0,1,−1)
are positive while x(−1,1,2,3), x(0,−1,2,4) and x(0,0,0,−2) are negative.
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We have a countably infinite set of positive generators. We impose an
enumeration on them as {n1, n2, . . .}. We need an infinite set of disjoint
infinite subsets of the set of natural numbers. For that, we let Pi be
the set of positive powers of the ith positive prime pi. We match {P1, P2, . . .}
with {n1, n2, . . .}. Suppose ni = x(r1,...,rn). We match (r1, . . . , rn) with

(pi, p
2
i , . . . , p

n
i ), the first n elements of Pi . Let φ(ni) = Pi. For j = 1, . . . , n,

let φj(rj) = pji . We use these bijections and notation to give a second proof
of an embedding Φ of Hn1 into Hn. We suppress j in φj .

Second proof of Proposition 2.7. In order to define Φ : Hn → Hn1 , we
note that any xr is either positive or negative. Suppose that it is positive.
Then it is equal to ni for some positive integer i. Hence ni = x(r1,...,rn). Set

Φ(x(r1,...,rn)) =

(
r1

φ(r1)
xφ(r1), . . . ,

rn
φ(rn)

xφ(rn)

)
and Φ(x−r) = (x−φ(r1), . . . , x−φ(rn)). Let Φ(zr) = (r1z, . . . , rnz), where z is

the generator of Z(H1).

This takes care of every generator xr. We note that Φ(Z(Hn)) ∼= Z(Hn1 ).
To check that we have a Lie algebra map, we have to verify that φ[xr, xs] =
[φ(xr), φ(xs)]. If r = −s, the definitions of φ and of the respective Lie brack-
ets guarantee the validity of the above equation.

For the rest of the verification, we use the convention that z0 = z0 = 0.
Suppose r + s 6= 0. Then [xr, xs] = 0. If r and s are both positive, then

[φ(xr), φ(xs)]

=

[(
r1

φ(r1)
xφ(r1), . . . ,

rn
φ(rn)

xφ(rn)

)
,

(
s1

φ(s1)
xφ(s1), . . . ,

sn
φ(sn)

xφ(sn)

)]
= (0, . . . , 0)

because the subscripts are all positive and δφ(rj)+φ(sj),0 = 0. Suppose r is
positive and s is negative. Then r and −s are both positive variables. Say
r = ni. Then −s = nj , and i 6= j, because r 6= −s. Hence δφ(rj)+φ(sj),0 = 0.
This proves that Φ : Hn → Hn1 is a Lie algebra map.

We observe that Φ(Z(Hn)) = Z(Hn1 ). We now use the technique in the
proof of Proposition 2.4 to show that φ is an embedding. Let g 6∈ Z(Hn1 ).
Then g = f + f1 + z where f = αx(r1,...,rn), α is a non-zero scalar, f1 has
no non-zero x(r1,...,rn) component, and z ∈ (Hn1 ). Just as in Proposition 2.4,
Φ(f + f1 + z) = 0 leads to Φ(f + f1) ∈ Z(Hn). Now use [f + f1, x−(r1,...,rn)]
= z(r1,...,rn) to conclude as in Proposition 2.4 that Φ(f+f1) 6∈ Z(Hn). Hence
Φ(f + f1 + z) 6= 0 and Φ is a Lie algebra embedding.

Remark. The methods in this section can be applied to the following
questions:
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Suppose m and n are positive integers with 1 < m < n. Given the
ordered pair (Hn,Hm), is there an epimorphism from Hn to Hm? Analogous
questions can be posed for the ordered pairs (Hn1 ,Hm) and (Hn,Hm1 ).

As we shall see in the next section, there are several families of non-
isomorphic representations of Hn when n ≥ 2. Let M be any representation
of Hn. Then successive applications of Propositions 2.6 and 2.7 lead to a
descending chain of Hn-submodules of M .

3. An abundance of representations. The goal this section is to use
the results of Section 2 to obtain representations of Hn, n ≥ 2, from the
representations of the Heisenberg algebra H1. We also give representations
that are intrinsic to Hn when n ≥ 2. For compatibility with our references,
in this section we work over a field K of characteristic zero. Our refer-
ences for representations of H1 are [FLM], [KR], and [MP]. We find from
any of the above references that the Fock space, i.e. the associative algebra
B = K[x−1, . . . , x−n, . . .] (the ring of polynomials, with coefficients in a field
K of characteristic zero, in the variables, x−1, x−2, . . .), is an irreducible rep-
resentation ofH1. In fact it is also an irreducible representation of a quantum
Heisenberg algebra, Uq(A), when q is not a root of unity (see [FO1]).

Proposition 2.5 and the following evident result yield irreducible repre-
sentations of Hn.

Proposition 3.1. An epimorphism from Hn to H1 makes every irre-
ducible representation of H1 an irreducible representation of Hn for every
positive integer n.

Denote by Φ1 and Φ2 respectively the first and second embedding in
Proposition 2.7 of Hn into Hn1 . The projection of Hn1 onto H1 restricted to
Φ1(Hn) is onto H1, but not onto H1 when restricted to Φ2(Hn).

Proposition 3.2. When n ≥ 2, there are irreducible representations
of H1 that are also representations of Hn but are not irreducible as Hn-
representations.

Proof. Let Φ2 : Hn → Hn1 be the second embedding in Proposition 2.7.
Denote the projection of Hn1 onto the ith copy of H1 restricted to Φ2(Hn)
by πi ◦Φ2. It is not onto H1 because Φ2 used only powers of positive primes.
Let B be the Fock space. It is an irreducible H1-module. Consider it an Hn-
module through the map πi ◦Φ2. Let xl ∈ H1 for some positive integer that
is not in the image of πi ◦ Φ2. The submodule x−lB is a proper submodule
of B as an Hn-module because the element xl that would have differentiated
x2−l down to x−l is missing from the image of πi ◦ Φ2.

One consequence of (Hn)′ = Z(Hn) is the construction of analogues of
Verma modules without relying on H1-modules. All we need is a partition
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of the set of generators {xr, zr : r ∈ Zn − {0}} into two disjoint subsets
P ∪ (−P). For our first example, we recall the terminology in preceding
Proposition 2.7 (Definition 2.1). An element xr = x(r1,...,rn) is declared posi-
tive (respectively negative) if its first non-zero entry is positive (respectively,
negative).

Let Hn(+), Hn(0), and Hn(−) denote the positive generators P, the
centre of Hn, and −P. Let B = K[x−r : r ∈ P]. This is our analogue of the
Fock space in [FLM], [KR], and [MP].

In order to make B a representation ofHn, we let α be a non-zero element
of K. An element zr in the centre of Hn acts on B as multiplication by α.
In (3.1) the right hand sides show how the left hand sides act as operators
on B, and r is assumed positive.

(3.1)
xr = α∂xr ,

x−r = lx−r ,

where ∂xr is the partial derivative with respect to the variable xr, and lx−r

is left multiplication on B by x−r. When ∂xr acts on B the negative sign
in x−s is ignored. We now show that (3.1) yields a representation of Hn.

Let xr and xt be positive. Hence x−t ∈ B. In Hn, [xr, x−r] = zr and

[xr, x−r] acts on x−t as (α∂xr lx−r − lx−rα∂xr)(x−t). This is equal to

α[∂xr(x−rx−t) − x−r∂xr(x−t)] = αx−t = zrx−t, as required. Let r and s
be arbitrary elements of Zn − {0} with r + s 6= 0. A similar computation
shows that [xr, x−s] acts as the zero operator on B.

Notation. Denote by An(α) the representation of Hn constructed us-
ing (3.1) and the non-zero scalar α. Let A(j) be the representation of Hn
obtained from Proposition 3.1 using Sj , j ∈ {1, . . . , n}, in Proposition 2.5.

We can appeal to the methods in [FLM], [KR], or [MP] to see that An(α)
is an irreducible representation of Hn. Unlike A(j), An(α) is faithful, that is,
it has no non-zero annihilator. Consequently, we have the next proposition.

Proposition 3.3 ([FM]). Let n ≥ 2. For every non-zero element α
in K, An(α) is an irreducible representation of Hn that is not isomorphic
to A(j).

We now want to give examples of representations of Hn that have no
irreducible submodules, using the same definition of positive elements of
Zn − {0} used in the second proof of Proposition 2.7. Hence the Fock space
is again B. Let α = (α1, . . . , αn) be any non-zero vector in Kn. Assuming
that xr is positive we specify the following action of Hn on B. Let zr act as
multiplication by α · r, the usual dot product. We have

(3.2) xr = (α · r)∂xr , x−r = lx−r ,

Denote the resulting module by An(α).
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Proposition 3.4. Let n ≥ 2. Then An(α) is a representation of Hn
that has no non-zero irreducible submodule.

Proof. Let r ∈ α⊥, the orthogonal complement of α. If f is any non-zero
element in a submodule, N , ofAn(α), then x−rf generates a proper non-zero
submodule of N because the element xr needed to differentiate down acts
as zero on B by (3.2).

We have not exhausted all the possible ways of obtaining representa-
tions of Hn when n ≥ 2. For instance, it is likely that new representations
of Hn can be obtained from the vertex representations of the generalized
Heisenberg algebras given in [F] and [FM].

Acknowledgments. We thank the referee for providing us with sug-
gestions. Frank Okoh thanks his friends for their positive comments on this
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